
Evaluation of Service Designs Based on SoaML

Michael Gebhart, Marc Baumgartner, Stephan Oehlert, Martin Blersch, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{ gebhart | baumgartner | oehlert | blersch | abeck } @kit.edu

Abstract— In the context of service-oriented architectures,
services are expected to fulfill certain service characteristics,
such as high autonomy or loose coupling. In order to easily
influence the design of these services, it is desirable to evaluate
their characteristics early on in the development process, i.e.
during design time. Related work focuses on the description of
desired service characteristics that refer to services as a whole
and does not address the evaluation of service designs in terms
of their characteristics. Thus, in this paper, we analyze
common and widespread service characteristics, derive
evaluable design attributes that refer to elements of service
designs based on SoaML, and demonstrate the formalization of
an exemplarily design attribute using OCL. The application of
the identified design attributes on a tentative service design of
a service-oriented surveillance system helps to create a revised
service design with improved service characteristics.

Keywords-service design; soaml; evaluation; service
characteristic; design attribute

I. INTRODUCTION
Today, several organizations are shifting their

information technology (IT) to service-oriented architectures.
In this context, services provide the functionality that is
required to support the business of the organization. With the
shift to service-oriented architectures, goals concerning the
IT, such as increased flexibility and better alignment with the
business, are often associated [1] in order to quickly react to
changing business requirements. To attain these goals,
service characteristics have been identified that services
should fulfill. Such characteristics include high autonomy or
loose coupling [1, 4].

Since changing the design of services after their
implementation and deployment is costly and complicated, it
is preferable to analyze services regarding the common and
desired service characteristics during design time. Each
service characteristic can be divided into a pair consisting of
a service attribute and its value. For example, the service
characteristic “loose coupling” is composed of the service
attribute “coupling” and its value “loose”. To evaluate a
service attribute that refers to the service as a whole, it has to
be broken down into a set of evaluable design attributes that
refer to elements of a service design, such as the provided
service interface [3] or the service component [23] that
realizes the functionality and contains the service logic.

Existing work by Erl [1], Reussner et al. [4], Josuttis [5],
Engels et al. [6], and Maier et al. [7, 8, 9] focuses on the
description of desired service characteristics. It introduces a
comprehensive set of service characteristics that services

within a service-oriented architecture should follow.
However, it is not obvious how a characteristic such as loose
coupling is reflected in the design of a service, and the
authors do not specifically address how to evaluate the
fulfillment of service characteristics. Furthermore, their work
does not explicitly describe design attributes that refer to
elements of a service design or metrics. Other work
emphasizing metrics in the context of service-oriented
architecture, as introduced by Perepletchikov et al. [10, 12],
Rud et al. [13], Hirzalla et al. [14], and Choi et al. [15], is
only partly applicable for evaluating service designs with
respect to service characteristics because some metrics
require more information than is actually available during the
design phase. In other cases, the relation of the measured
design attribute to the desired service characteristics is not
apparent, which reduces the motivation to apply this metric.
Additionally, existing metrics are most often described in
merely conceptual terms and are not applied on a commonly
used service design model. This hampers the usage of these
metrics because the concepts within the metrics, such as
“number of clients”, first have to be correctly interpreted and
then mapped onto representations of themselves based on the
service design model.

The contribution of this paper is the direct derivation of
evaluable design attributes from common and widespread
service characteristics. The derived attributes refer to certain
elements within a service design modeled with the Service-
oriented architecture Modeling Language (SoaML) [3] in
order to evaluate service designs during design time. SoaML
was chosen as the language for the service design because it
is a standardized UML profile [28] and metamodel for
describing and formalizing service-oriented architectures and
because it is becoming increasingly accepted and employed.
To determine evaluable design attributes, we first introduce
the notion of a service design itself and define its elements in
SoaML. In a next step, we analyze a comprehensive set of
service characteristics and derive design attributes that refer
to elements of a service design in SoaML. Since some of the
design attributes can be quantified and automatically
measured, while others require intuition, we demonstrate a
formalization with a design attribute that affects the
autonomy of a service. The design attribute is formalized
using the Object Constraint Language (OCL) [29]. This
enables the automatic measurement of the design attribute on
a service design based on SoaML.

A subset of the identified design attributes is illustrated
by a service design of a service-oriented system for a
network-enabled surveillance and tracking developed at the

Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation, called N.E.S.T [27]. Here, services are
developed for data processing and information analysis that
can be combined to high level services for automating tasks,
such as a detecting abnormal human behavior or tracking
suspicious persons. We evaluate a tentative service design
within this scenario using the identified design attributes and
demonstrate how this evaluation can be used to create an
improved service design.

The paper is organized as follows: Section 2 presents the
related work in the context of service design formalization,
service characteristics, and metrics applicable within service-
oriented architectures. In Section 3, the notion of a service
design is introduced based on SoaML. Afterwards, evaluable
design attributes are derived from common and widespread
service characteristics. A subset of these attributes is applied
on a tentative service design of N.E.S.T. and the usage of
this evaluation to create an improved service design is
shown. Finally, one identified design attribute influencing
the autonomy of a service is formalized as an executable
OCL statement. Section 4 concludes the paper and offers
suggestions for future research.

II. RELATED WORK
In Erl [1, 2], a service design is introduced as the result of

the service design process that is performed for every
service. There are different design processes for entity, task,
and utility services extended by the best practices introduced
in [21, 22]. Entity, task, and utility services differ in their
functional scope. Each process contains various steps in
which the service and its logic are designed and states which
information about a service should be expected as the result
of executing these steps. The resulting information that is
available about a service is summarized as a service design.
It includes a description of the provided service interface, the
internal service logic, and the potentially required services.
The design processes use established standards, such as
WSDL [32], to describe the services. We use the processes
as a guideline for building services and see the notion of
service design as useful. However, formal models that
platform independently specify this information are missing.
We introduce the formalization of a service design as a
service design model. The term “service design model” is
derived from the term “service model” [18, 19] as introduced
in the Service-Oriented Modeling and Architecture (SOMA)
[16, 17] as an extension of the Rational Unified Process
(RUP) [20] and the term “service design” as described in Erl.

Service Component Architecture (SCA) [23] similarly
describes the creation of service-oriented solutions as the
composition of services. Functionality is provided by an
interface and the service is implemented by means of a
service component that requires other services. This
conforms to the service design as introduced in Erl [1, 2].
The term “service component” as a realization of a service is
also introduced in RUP SOMA [18, 19]. Hence, we reuse the
notion of a service component as the realizing component of
a service.

The Service-oriented architecture Modeling Language
(SoaML) [3] is an emerging standard from the OMG for a

UML profile and metamodel for modeling service-oriented
architectures, focusing on services and how they relate to one
another. SoaML is heavily based on the UML composite
structure metamodel [28]. The standard describes the content
of service designs, the provided ServiceInterface element, a
Participant element containing the service logic, and the
required ServiceInterface elements similar to Erl [1]. Even
though SoaML is currently only available as a preliminary
beta version, due to its increasing acceptance and
employment, we chose SoaML to formalize service designs.
However, SoaML focuses on the description of modeling
elements and does not explain how to evaluate services.

According to Erl [1], Reussner et al. [4], Josuttis [5],
Engels et al. [6], and Maier et al. [7, 8, 9], a service should
fulfill service characteristics, such as a well-defined service
interface, loose coupling, or high autonomy. They list the
desired service characteristics and provide comprehensive
textual descriptions. However, they do not explain how to
exactly evaluate a service design in terms of their
characteristics or provide a formal description of the
characteristics and their impact on the concrete elements of a
service design. We see these characteristics as valid and
reuse their descriptions to derive design attributes that refer
to concrete elements of a service design and can be evaluated
during the design phase.

Metrics are a widely used approach to assess software
quality based on measuring the artifacts that result from the
development process. There are a number of works
proposing metrics for measuring the attributes of service-
oriented software. Perepletchikov et al. [11] extend the
generic software model of Briand [30] to propose a formal
model for “structural and behavioral properties” of service-
oriented software and introduce metrics for measuring
cohesion [10] and coupling [12]. Rud et al. [13] describe
metrics for measuring the granularity of services; Hirzalla et
al. [14] focus on flexibility. Choi et al. [15] describe metrics
for the reusability of services. However, their work is only
partially applicable for evaluating service designs because
the metrics discussed are mostly meant for application on an
entire service-oriented architecture with fully implemented
services, i.e. they require more information than is available
within service designs. Additionally, some metrics are not
related to common and widespread service characteristics,
which hampers the incentive to measure them. Since no
common modeling language is used, their definitions require
interpretation about how to use them with common service
design models, as for instance SoaML. Therefore, we reuse
the work cited above as essential input on how to evaluate
services, though we base our specifications of design
attributes directly on a concrete modeling language, namely
SoaML, and derive them from common and widespread
service characteristics.

Software metrics often measure source code as the
primary development artifact, thus inhibiting their
application on models. Due to the proliferation of models
based on metamodels as first class development artifacts, as
introduced in model-driven development approaches, such as
MDA [31], new techniques have been proposed to measure
models directly. Reynoso et al. [24] show how

metamodeling techniques can be used to formalize metrics
on models as metamodel instances using OCL [29].
Monperrus et al. [26] describe a modeling approach for
metrics based on the custom metamodel called MDM. In
[25] they describe a generic metric definition approach called
sigma. Model metrics are then defined as specializations of
this sigma metric and can be applied with filtering functions
on custom models, which enables decoupling metric
definitions from these said models. While this enables the
formalization of more generalized metrics, it also introduces
an additional step of indirection which we prefer to avoid.
We thus reuse the concept of formalizing metrics with OCL
because OCL is an established and sound language for
querying UML models.

III. EVALUATION OF SERVICE DESIGNS BASED ON
SOAML

This section introduces service designs based on SoaML
and derives evaluable design attributes from common and
widespread service characteristics. After we introduce the
notion of a service design illustrated by a service of N.E.S.T.
in Section A, in Section B we exemplify the derivation
approach with the autonomy service attribute. Section C
summarizes all identified design attributes and applies a
subset to the previously introduced service design of
N.E.S.T. In Section D, the results of the evaluation are used
to revise the service design of the prior sections in order to
create an improved service design. Section E demonstrates
the automatic measurement of a design attribute that affects
the autonomy of a service using OCL.

A. Service Designs Based on SoaML
According to Erl [1, 2], a service design consists of a

provided service interface, the internal service logic, and
potentially required services. In SCA [23] and RUP SOMA
[18, 19], the service logic is implemented by the service
component that realizes a service. Combined, a service
design consists of a provided service interface, the
implementing service component, and the required services.
The provided service interface is externally visible to service
consumers. The service component and potentially required
service interfaces are part of the internal view and are thus
not visible for service consumers. However, this information
impacts the service characteristics, and is therefore an
important part of a service design.

In SoaML, an element ServiceInterface exists that
correlates with our understanding of a service interface. It is
defined as the type of a ServicePoint or RequestPoint. As the
type of a ServicePoint, ServiceInterfaces represent provided
service interfaces and as the type of a RequestPoint they
represent required service interfaces, i.e. required services.
The service component is represented as a Participant in
SoaML. Thus, the concepts of a service design can be
directly mapped to SoaML. Figure 1 shows a modeled
service design of a tentative draft of the TaskExecuter
service in N.E.S.T. using SoaML as UML profile on a high
level view.

The TaskExecuter service in N.E.S.T. enables

surveillance and tracking of a person by providing the
service interface TaskExecuter as the type of the
ServicePoint SP. The provided technical interface
TaskExecuter describes the provided operations.

The service component is realized as a Participant
TaskExecuter. It includes the internal service logic and
requires four services. For person surveillance, the allowed
routes have to be planned (RoutePlanning), video has to be
streamed (LiveStreaming), the planned route has to be
surveilled (RouteSurveillance), and a virtual model of the
person to be tracked and his or her current position has to be
accessed (NestModelAccess). The final tracking and
surveillance of the person is part of the TaskExecuter’s
internal logic. Each of the required services is described as a
ServiceInterface as the type of a RequestPoint.

A ServiceInterface, both provided and required, can
comprise a technical interface that the service provides and a
required technical interface that a service consumer has to
provide in order to receive callbacks. A technical interface is
a collection of signatures of operations. The signature
contains the name of the operation, the parameters and their
respective names and parameter types, and the return type of
the operation. The types used here can be either primitive
(i.e. atomic) or, as preferred in the context of service-
oriented architecture, complex message types. Additionally,
a ServiceInterface can and should describe the capabilities
the service exposes as well as the allowed interactions
between the service provider and service consumer, which
are called an interaction protocol. Figure 2 shows the
tentative ServiceInterface for TaskExecuter in SoaML. In
this case, the ServiceInterface only provides information
about the provided technical interface and the capabilities.

<<RequestPoint>> RP : <<ServiceInterface>> RoutePlanning

<<ServicePoint>> SP : <<ServiceInterface>> TaskExecuter

<<interface>> TaskExecuter

<<Participant>>
TaskExecuter NestModelAccess

RouteSurveillance

LiveStreaming

Figure 1. Tentative TaskExecuter service design in SoaML

 <<interface>>
TaskExecuter

+ executeTask(:StartTaskMessage) : StartTaskMessageResponse
+ setEndpoint(:SetEndpointRequestMessage) : SetEndpointMessageResponse
+ startTracker(:startTrackerRequestMessage) : startTrackerResponseMessage
+ stopTask(:stopTrackerRequestMessage) : stopTrackerResponseMessage
+ trackPerson(:trackPersonRequestMessage) : trackPersonRequestMessage

<<ServiceInterface>>
TaskExecuter

<<Expose>>
provider :

<<interface>> TaskExecuter

<<Capability>>
TaskExecuter

+ Surveil Person()
+ Track Person()

<<Capability>>
TaskExecuter

+ Surveil Person()
+ Track Person()

Figure 2. Tentative TaskExecuter service interface in SoaML

B. Derivation of Evaluable Autonomy Design Attributes
After creating a service design as defined for the tentative

TaskExecuter service in Figures 1 and Figure 2, it is
desirable to evaluate the service design regarding certain
service characteristics, such as a well-defined service
interface, loose coupling, or high autonomy. This enables the
identification of design flaws whose revision may result in
an improved service design. For this purpose, it is necessary
to break the correlating service attributes down into design
attributes that refer to elements of a service design. This
means that it has to be determined if all required information
is available during design time and if it is part of a service
design based on SoaML. To demonstrate the approach of
how to determine the design attributes, in the following the
tentative TaskExecuter service is evaluated with respect to its
autonomy.

According to Erl [1], a service is highly autonomous if
the following criteria are fulfilled: The functional boundary
should not overlap with other services, services are deployed
in an environment over which they exercise a great deal of
control, service instances are hosted by an environment that
accommodates high concurrency for scalability purposes,
and the number of required services should be minimal.

Now, each criterion is analyzed stepwise. The first
criterion, i.e. that the functional boundary should not overlap
with other services, means that at design time and transferred
to SoaML the capabilities of a given ServiceInterface should
not overlap with the capabilities of another ServiceInterface.
To illustrate this aspect, Figure 3 shows all other
ServiceInterface elements of N.E.S.T. besides TaskExecuter
and their capabilities. There is an overlap of the capabilities
exposed by the TaskExecuter ServiceInterface with the
capabilities of the PersonTracking ServiceInterface: The
capability “trackPerson” is exposed by both
ServiceInterfaces. Thus, the TaskExecuter does not
optimally fulfill this criterion. This shows that this criterion
is evaluable during design time and refers only to
information available within a service design. Thus, this
criterion is appropriate as a design attribute.

The second criterion, which concerns the deployment in
an environment over which they exercise a great deal of
control, is not evaluable during design time and is not part of
a service design. Thus, this criterion is not suitable as a
design attribute.

The third criterion for high autonomy – service instances
are hosted by an environment that accommodates high
concurrency for scalability purposes – is also not evaluable
during design time and not part of a service design. Thus,
this criterion is not considered as a design attribute either.
The fourth and last aspect covers the dependencies of the
service to other services. This can be evaluated at design
time by counting the number of RequestPoints. The more
services are required, the less the autonomy is. Figure 1
shows the service component implementing the Task
Executer Service and its required service interfaces by means
of RequestPoints. Since it requires four services, the Task
Executer service is not maximally autonomous regarding this
design attribute.

C. Summary of Evaluable Design Attributes

The approach for deriving design attributes can be
applied on all service characteristics as identified in Erl [1],
Reussner et al. [4], Josuttis [5], Engels et al. [6], Maier et al.
[7, 8, 9], and SoaML [3]. The design attributes are
summarized in the following table. For each attribute, the
source from which it was derived is given.

TABLE I. SUMMARY OF IDENTIFIED DESIGN ATTRIBUTES

Design Attribute Preferred Characteristic in SoaML

Autonomy

Capability
Redundancy [1]

There is no capability within Capability elements
of a ServiceInterface that is redundant to
capabilities of any other ServiceInterface.

Depending
Services [1] There is no RequestPoint at the Participant.

Service Interface Design

Service Interface
Extent [1]

All possible information (capabilities, interaction
protocol, required / provided technical interface)
is given by the provided ServiceInterface.

Service Interface
Formalization [1,
4]

A ServiceInterface element exists.

Data Model
Consistency [1]

The operations within the provided technical
interface use data types of a common data model.

Convention
Compliance [1]

The ServiceInterface, its operations and
parameters within the technical interfaces follow
conventions, such as naming conventions.

Coupling

Service Interface
Asynchronity [5, 7]

A required technical interface exists and the
interaction protocol describes preferred
asynchronous interactions.

Service Interface
Data Types [5]

The provided technical interface only uses simple
data types instead of complex data types.

Service Interface
Abstraction [1, 5,
7]

The provided technical interface only contains
operations and parameters that hide
implementation details.

Transaction
Handling [1, 5, 7]

If the service logic of the Participant requires
transactions, then the logic includes
compensation functionality and / or the provided
technical interface includes compensating
operations.

Parameter Style [3]
The operations within the technical interfaces use
message style parameters instead of Remote
Procedure Call (RPC) style.

Abstraction

 <<ServiceInterface>>
NestModelAccess

<<ServiceInterface>>
RouteSurveillance

<<ServiceInterface>>
LiveStreaming

<<ServiceInterface>>
RoutePlanning

<<ServiceInterface>>
PersonTracking

<<Capabilitiy>>
NestModelAccess

+ persistEvents()

<<Capabilitiy>>
NestModelAccess

+ persistEvents()

<<Capabilitiy>>
RouteSurveillance

+ surveilRoute()

<<Capabilitiy>>
RouteSurveillance

+ surveilRoute()

<<Capabilitiy>>
LiveStreaming

+ stream()

<<Capabilitiy>>
LiveStreaming

+ stream()

<<Capabilitiy>>
RoutePlanning

+ computeRoute()

<<Capabilitiy>>
RoutePlanning

+ computeRoute()

<<Capabilitiy>>
PersonTracking

+ trackPerson()

<<Capabilitiy>>
PersonTracking

+ trackPerson()

<<Expose>><<Expose>>

<<Expose>><<Expose>><<Expose>>

Redundancy

Figure 3. Capabilities of other services in N.E.S.T.

Service Interface
Abstraction [1, 5]

Equals “Service Interface Abstraction” in
“Coupling”.

Service Interface
Formalization [1,
4]

Equals “Service Interface Formalization” in
“Service Interface Design”.

Reusability

Service Component
Agnosticity [1]

The logic of the Participant can be reused in
several processes.

Service Interface
Genericity [1]

The parameter of operations within the provided
technical interface should be generic.

Concurrency [1] The service logic of the Participant should enable
a concurrent execution of the service.

Self-Containedness

Capability
Redundancy [1, 5]

Equals “Capability Redundancy” in
“Autonomy”.

Depending
Services [1, 5] Equals “Depending Services” in “Autonomy”.

Operation Order [5,
6]

There are no dependencies (order) between
operations within the interaction protocol of the
provided ServiceInterface.

Statelessness

Service Component
State Management
[1, 5]

The logic of the Participant does not include
activities for saving the state within the
Participant.

Operation
Parameters [5]

The operations within the technical interfaces
only contain parameter types of complete objects
instead of IDs for objects.

Discoverability

Convention
Compliance [1]

Equals “Convention Compliance” in “Service
Interface Design”.

Functional Service
Interface [1, 5, 7]

The provided technical interface only contains
operations and parameters with functional
context. These and the service itself are suitably
named.

Composability

Multiple
Granularity [1]

There exist operations within the technical
interfaces that allow similar functionality with
different granularity.

Idempotency
Multiple Operation
Call Handling [1,
5, 8]

The logic of the Participant contains activities to
handle multiple operation calls.

Classification

Entity / Task
Classification [1, 4,
6, 7, 8, 9]

All capabilities within the Capability element are
either responsible for managing data of business
entities (entity service) or keep business logic
that only uses business entities (task service).

Service Interface Well-Definition

Service Interface
Extent [1]

Equals “Service Interface Extent” in “Service
Interface Design”.

To demonstrate the design attributes, a comprehensible

subset based on the information provided in Figures 1 and 2
is applied on the tentative TaskExecuter service design.
Since some information, such as the message details and the
internal service logic in terms of activity diagrams, is hidden
for the sake of simplicity, not all design attributes and their
evaluations would be comprehensible.

TABLE II. EVALUATION OF TASKEXECUTER SERVICE

Design Attribute Applied on tentative TaskExecuter service

Capability
Redundancy

There is redundancy with the PersonTracking
ServiceInterface.

Depending
Services There are several Request Points.

Service Interface
Extent

The ServiceInterface does not provide an
interaction protocol or an technical interface
required by the service consumer.

Service Interface
Formalization A ServiceInterface element exists.

Convention
Compliance

The parameters within the provided technical
interface do not follow uniform conventions:
“SetEndpointMessageResponse” compared to
“stopTrackerRequestMessage“.

Service Interface
Asynchronity

Within the ServiceInterface, neither a required
technical interface nor an interaction protocol
exists. There is also no asynchronous interaction
implemented.

Parameter Style The operations only use message style
parameters.

Service Component
Agnosticity The service logic is very process-specific.

Operation Order
There is no interaction protocol but there would
be dependencies. For example, the setEndpoint
operation has to be called after executeTask.

Functional Service
Interface

The service provides functionality to surveil
persons. However, it is named TaskExecuter.

Multiple
Granularity

Within the provided technical interface for each
functionality, there is only one operation.

Entity / Task
Classification

There are only capabilities that keep complex
business logic, thus the service is a task service.

D. Revision of the Service Design
Following the evaluation of a service design, the results

can be used to create a revised version that better fulfills the
desired service characteristics. In the following, a revised
service design for the TaskExecuter service is created. To
improve the autonomy, the redundant capability
“trackPerson” is reused from the PersonTracking service
even if more services are required. For improved
discoverability and looser coupling, the service is now
named for what it really does, person surveillance. Figure 4
shows the PersonSurveillance service in SoaML. To improve
the service interface design, the service interface is extended
to contain the interaction protocol and a required service
interface description even if no callbacks are required. The
messages are also convention compliant now. Figure 5
shows the new PersonSurveillance ServiceInterface.

PersonSurveillance
<<Participant>>

PersonSurveillance

PersonTracking

NestModelAccess

RouteSurveillance

LiveStreaming

RoutePlanning

<<interface>> TaskCalling

Figure 4. Revised TaskExecuter service in SoaML

E. Automatic Measurement Using OCL

 While some of the identified design attributes require
intuition, others, such as Capability Redundancy, can be
quantified and directly measured. For this purpose, the
design attribute can be transformed into an executable OCL
statement. As proof of concept, the identified design attribute
Capability Redundancy is formalized. The following
measurement is used:

erfaceServiceInttheofescapabilitiallofNumber
erfaceServiceInttheofescapabilitiredundantofNumber

This returns the percentage of redundant capabilities. A
value of 0 means that all capabilities are unique and 1
indicates that all capabilities overlap. As an executable
statement in OCL the design attribute can be formalized as
follows:

context ServiceInterface
let
getAllExposes : Set(Dependency) =
 Dependency.allInstances()->
 select(d|d.isStereotypeApplied
 (d.getApplicableStereotype('SoaML::Expose'))),

getAllCapabilityElements: Set(Class) =
 Class.allInstances()->select(c |
 c.isStereotypeApplied(c.getApplicableStereotype
 ('SoaML::Capability'))),

getOwnCapabilityElements: Set(Class) =
 getAllCapabilityElements->select(c |
 getAllExposes->exists(e | e.supplier->exists(s |
 s = c) and e.client->exists(cl | cl = self))),

getOtherCapabilityElements: Set(Class) =
 getAllCapabilityElements->select(c |
 getAllExposes->exists(e | e.supplier->exists(s |
 s = c) and e.client->exists(cl | cl <> self))),

getOwnCapabilities: Bag(String) =
 getOwnCapabilityElements->collect(c |
 c.ownedOperation->collect(o | o.name)),

getOtherCapabilities: Bag(String) =
 getOtherCapabilityElements->collect(c |
 c.ownedOperation->collect(o | o.name)),

getNumberOfOwnRedundantCapabilities: Integer =
 getOwnCapabilities->
 intersection(getOtherCapabilities)->size(),

getNumberOfOwnCapabilities: Integer =
 getOwnCapabilities->size()

in getNumberOfOwnRedundantCapabilities /
getNumberOfOwnCapabilities

When applied on the tentative service design in Figures 1

and 2, the OCL expression returns 0.5, but for the revised
service design in Figures 4 and 5 it returns 0, the optimal
value.

IV. CONCLUSION AND OUTLOOK
In this paper, we presented evaluable design attributes

for service designs based on SoaML. Since a service design
is one of the first design artifacts when developing a service,
it strongly influences the service characteristics of the
resulting service. Hence, we firstly defined the elements of a
service design. To formalize a service design model, we
chose the emerging standard SoaML from the OMG that
represents a UML profile and metamodel for modeling
service-oriented architectures. Afterwards, we analyzed
common and widespread service characteristics and derived
design attributes that can be evaluated already during design
time on a service design model. Since some of them are
quantifiable, it is partially possible to formalize executable
OCL statements that automatically measure the design
attributes on a SoaML-based service design. We
demonstrated this formalization using one design attribute
that affects the autonomy of a service.

The identified design attributes help IT architects to
evaluate service designs during design time and thus to
develop services more systematically with regard to their
characteristics. Receiving early feedback about the expected
service characteristics helps the IT architect to identify
improvements prior to implementation, and thus easily work
them in and exploit them. Additionally, several different
service design alternatives can be quantified and compared.
The service design can be iteratively evaluated and revised
so that it better fulfills the desired service characteristics.
This improvement in turn supports the attainment of goals
concerning the IT that are associated with the establishment
of a service-oriented architecture, such as increased
flexibility or better alignment with the business.

Due to the usage of SoaML and OCL, common and
standardized languages that are supported by widespread
UML tools were applied in our paper. Though SoaML is a
very new UML profile and metamodel and still under
development, its employment and acceptance are increasing.
Several tools already support SoaML. Additionally, SoaML
reuses the UML profile mechanism, which is widely
supported. The profile is already available as XMI [33],

<<ServiceInterface>>
PersonSurveillance

<<interface>>
PersonSurveillance

+ executeTask(:ExecuteTaskRequest) : ExecuteTaskResponse
+ setEndpoint(:SetEndpointRequest) : SetEndpointResponse
+ startTracker(:StartTrackerRequest) : StartTrackerResponse
+ stopTask(:StopTaskRequest) : StopTaskResponse

<<interface>>
SurveillanceCalling

<<Expose>>
consumer :

<<interface>> SurveillanceCalling

provider :
<<interface>> PersonSurveillance

+
Interaction Protocol

: provider : consumer

executeTask

setEndpoint

<<Capability>>
TaskExecuter

+ Surveil Person()

<<Capability>>
TaskExecuter

+ Surveil Person()

<<use>>

startTracker

stopTask

stopTask

Figure 5. Revised TaskExecuter service interface in SoaML

enabling the identified design attributes to be applied in any
UML-profile-capable development tool.

A comprehensible subset of the design attributes was
exemplarily applied on a real-world service-oriented system
for a network-enabled surveillance and tracking developed
at the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation. Instead of presuming
service characteristics, we systematically used the design
attributes to evaluate a tentative service design. This enabled
us to identify potential design flaws and revise them in order
to create a service design with improved characteristics.

In our future work, we plan to further utilize the
identified design attributes within the entire development
process of a service. On the one hand, this will include the
use of the design attributes to support design decisions
during the creation of a service design. On the other hand,
we also plan to further improve the use of the design
attributes as a tool to identify service design flaws. Our goal
is to report the elements of a service design that should be
revised to the IT architect and to list the design decisions
that should be reconsidered to improve the service design.
Additionally, we will work on formalizing further design
attributes using OCL to enable tool support for the
development of services. Ideally, development tools could
automatically calculate the degree to which a service design
possesses a given design attribute that affects a particular
service characteristic and visually highlight the elements of
a service design that should be revised to improve its
characteristics. The entire approach will be applied to design
services for the domain campus management, as required to
integrate university systems, and for a human-centered
environmental observation system developed at the
Karlsruhe Institute of Technology.

REFERENCES
[1] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.

ISBN 978-0-13-234482-1.
[2] T. Erl, Service-Oriented Architecture – Concepts, Technology, and

Design, Pearson Education, 2006. ISBN 0-13-185858-0.
[3] OMG, “Service oriented architecture modeling language (SoaML) –

specification for the uml profile and metamodel for services
(UPMS)”, Version Beta 1, 2009.

[4] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[5] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[6] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[7] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Lose kopplung – warum das loslassen verbindet“, SOA-
Spezial, Software & Support Verlag, 2009.

[8] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[9] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[10] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Cohesion metrics for predicting maintainability of service-oriented
software”, Seventh International Conference on Quality Software
(QSIC 2007), 2007.

[11] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[12] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[13] D. Rud, S. Mencke, A. Schmietendorf, and R. R. Dumke,
„Granularitätsmetriken für serviceorientierte architekturen, MetriKon,
2007.

[14] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[15] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[16] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: May 10, 2010]

[17] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: May 10, 2010]

[18] S. Johnston, “UML 2.0 profile for software services”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/05/419_soa/, 2005. [accessed: May 10, 2010]

[19] S. Johnston, “Modeling web services, part 1”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
1129_johnston/, 2005. [accessed: May 10, 2010]

[20] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[21] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[22] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[23] Open SOA (OSOA), “Service component architecture (SCA), sca
assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: May 10, 2010]

[24] L. Reynoso, M. Genero, J. Cruz-Lemus, and M. Piattini, “Using ocl
in the formal definition of ocl expression measures”, Workshop on
Quality in Modeling, Co-Located with MoDELS 2006, 2006.

[25] M. Monperrus, J.-M. Jézéquel, J. Champeau, and B. Hoeltzener,
“Measuring models”, 2008.

[26] M. Monperrus, J.-M. Jézéquel, J. Champeau, and B. Hoeltzener, “A
model-driven measurement approach”, MoDELS 2008, 2008.

[27] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[28] OMG, “Unified modeling language, superstructure”, Version 2.2,
2009.

[29] OMG, “Object constraint language”, Version 2.0, 2006.
[30] L. C. Briand, S. Morasca, and V. R. Basili, “Property-Based

Software-Engineering Measurement”, IEEE Transactions on Software
Engineering, Vol. 22, No. 1, 1996.

[31] OMG, “MDA guide”, Version 1.0.1, 2003.
[32] W3C, “Web services description language (WDSL)”, Version 1.1,

2001.
[33] OMG, “XML metadata interchange (XMI) specification”, Version

2.0, 2003.

