
Is Code Still Moving Around? Looking Back at a Decade of Code Mobility

Antonio Carzaniga

Univ. of Lugano, Switzerland

antonio.carzaniga@unisi.ch

Gian Pietro Picco

Univ. of Trento, Italy

picco@dit.unitn.it

Giovanni Vigna

UC Santa Barbara, USA

vigna@cs.uscb.edu

Abstract

In the mid-nineties, mobile code was on the rise and, in

particular, there was a growing interest in autonomously

moving code components, called mobile agents. In 1997,

we published a paper that introduced the concept of mo-

bile code paradigms, which are design patterns that involve

code mobility. The paradigms highlighted the locations of

code, resources, and execution as first-class abstractions.

This characterization proved useful to frame mobile code

designs and technologies, and also as a basis for a quan-

titative analysis of applications built with them. Ten years

later, things have changed considerably. In this paper we

present our view of how mobile code evolved and discuss

which paradigms succeeded or failed in supporting effec-

tively distributed applications.

1 Introduction

In 1997, midway through our doctorate, we presented

a paper at the 19th International Conference on Software

Engineering (ICSE) about “Designing Distributed Applica-

tions with Mobile Code Paradigms” [3]. The research re-

ported there and later included in a more comprehensive

paper [6] became, for some of us, an integral part of our

doctoral dissertations [12, 19].

Ten years later, our paper was named the Most Influential

Paper from ICSE’97. We were obviously very pleased with

the news—a little less with the implicit realization that ten

years had passed. In this decade many things have changed.

This paper presents our thoughts on what happened to mo-

bile code paradigms and our view on the current state of the

art.

Mobile code and mobile agents were extremely “hot” in

the mid ’90s, when we wrote our paper. Novel applica-

tions and technologies were appearing at a high rate, each

time somehow shifting the common-sense notion of what it

meant to dynamically move the code (and/or the state) of a

program. Indeed, the main contribution of our ICSE’97 pa-

per was precisely to abstract away from the details of tech-

nologies and applications, and identify some recurring de-

sign paradigms featuring code mobility.

This paper is devoted to the analysis of what happened to

code mobility in the last decade. First, in Section 2, we set

the scene for the rest of the paper by defining our notion of

code mobility and related design paradigms. Then, for each

paradigm, in sections 3 through 5 we compare the expec-

tations of the research community a decade ago against to-

day’s reality. In Section 6, we try to understand why things

developed the way they did, and in particular we discuss the

causes that led to the rise (or fall) of each paradigm. We end

the paper in Section 7 with some concluding remarks.

Finally, the reader should be warned that this paper is

less of a comprehensive and impartial report, and more of

a collection of personal opinions, sometimes supported by

anecdotal facts and direct experience.

2 Code Mobility in a Nutshell

In our ICSE’97 paper we defined code mobility as

the capability to reconfigure dynamically, at run-

time, the binding between the software compo-

nents of the application and their physical loca-

tion within a computer network [3].

This entails that executable content is moved across the net-

work in order to execute (part of) the functionality of an

application. The idea behind mobile code is that by bring-

ing the code close to the resources needed for a certain task

it is possible to perform the task in a more effective way.

2.1 Mobile Code Technology

Although in principle code mobility could be imple-

mented in an ad hoc fashion using standard facilities, ded-

icated technologies provide the programmer with direct

means to transfer code (and possibly state) and automati-

cally execute it. Several technologies were proposed at the

time, including new programming languages, extensions to

existing ones, and operating system libraries.



Mobile code technologies can be analyzed by consider-

ing the ability to transfer the state of an execution thread

(or execution unit, to use a more general term) as the cri-

teria to discriminate among them, as we did with another

paper [4, 6]. Therefore, we say that a technology sup-

ports strong mobility if it allows executing units to move

their code and execution state (e.g., the stack and instruction

pointer of a thread) to a different site. When an executing

unit must be transferred to a remote site, it is suspended,

transmitted to the destination site, and resumed there. A

technology supports weak mobility if it allows an executing

unit in a site to be bound dynamically to code coming from

a different site (i.e., the code can be moved and executed

automatically), but no execution state is transferred across

the network. This means that even though some data state

could be transferred, the executing unit would need to be

restarted upon arrival.

2.2 Mobile Code Design Paradigms

The content of our ICSE’97 paper was inspired by the

observation that it is possible to abstract away from the de-

tail of each technology and reason about “common ways,”

or design paradigms, for structuring applications involving

code mobility.

The design paradigms we defined are based on architec-

tural abstractions such as resource components (both data

components and code components, the latter representing

the “know-how”), computational components (threads of

computation), interactions (events that involve two or more

components), and sites, (execution environments represent-

ing a “location”). For a more detailed definition of these

components, please refer to the original paper [3].

These abstractions can then be used to describe differ-

ent ways of structuring a computation. More precisely, the

paradigms focus on a computational component A, located

at a site SA, that needs the results of the computation of a

service. We assume the existence of another site SB , in-

volved in the delivery of the service. To obtain the service

results, A starts the interaction pattern that leads to service

delivery. Service execution involves a set of resources, the

know-how about the service (its code), and a computational

component responsible for the execution of the code. Key

to the discussion is the fact that, to accomplish the service,

these elements must be present at one site at the same time.

The classic Client-Server paradigm can be described

in these terms. Here, a computational component B (the

server) offering a set of services is placed at site SB . The

resources and know-how needed for service execution are

hosted by SB as well. The client component A, located

on SA, requests the execution of a service with an interac-

tion with the server component B. As a reaction, B per-

forms the service requested by executing the corresponding

know-how and accessing the involved resources co-located

with B. In general, the service produces some result that is

delivered back to the client with an additional interaction.

Mobile code paradigms make different use of interac-

tions and service constituents. In the Remote Evaluation

paradigm, a component A owns the know-how necessary to

perform the service but lacks the required resources, which

happen to be located at a remote site SB . Consequently,

A sends the service know-how to a computational compo-

nent B located at the remote site. This component, in turn,

executes the code using the resources available there. An

additional interaction delivers the results back.

In the case of the Code On Demand paradigm, com-

ponent A is already able to access the resources it needs,

which are co-located with it within SA. However, no knowl-

edge about how to process such resources is available at SA.

Thus, A interacts with a component B located at SB by re-

questing the service know-how, which is in SB as well. A

second interaction takes place when B delivers the know-

how to A, which can subsequently execute it.

Finally, in the case of the Mobile Agent paradigm, the

service know-how is owned by A, initially hosted by SA,

but some of the required resources are located on SB .

Therefore, the computational component A migrates to SB

carrying the know-how and possibly some intermediate re-

sults with itself. After it has moved to SB , A completes the

service using the resources available there.

Table 1, reproduced from the original paper, shows how

the characterizing elements of the various paradigms are re-

located as a result of the paradigms’ interactions.

These design paradigms, along with the distinction be-

tween strong mobility and weak mobility, were widely ac-

cepted. This is partly due to the fact that they provided ter-

minological grounds in a period where buzzwords, hype,

and confusion were the norm in the field. Ten years later,

the dust has settled and most of the hype is gone. In the

following sections, we analyze what was the perception at

the time about strengths and weaknesses of each paradigm,

along with their actual impact on the design of real-world

applications.

3 Mobile Agent

Among the paradigms involving code mobility we con-

sidered in our paper, the mobile agent one is arguably the

one that attracted the most interest. Indeed, the idea of an

application component autonomously wandering through

the net tickled more than one mind with the way it radically

changes the mainstream criteria of application design.

At the time when we wrote our ICSE’97 paper, mo-

bile agents were all across the board. Mobile agent sys-

tems were mushrooming, somewhat inspired by the con-

cepts made popular by Telescript [22], and later enabled by



Before After
Paradigm

SA SB SA SB

Client-

Server
A

know-how

resources

B

A

know-how

resources

B

Remote

Evaluation

know-how

A

resources

B
A

know-how

resources

B

Code on

Demand

resources

A

know-how

B

resources

know-how

A

B

Mobile

Agent

know-how

A
resources —

know-how

resources

A

Table 1. Mobile code design paradigms [3]. This table shows the location of the components before

and after service execution. For each paradigm, the computational component in bold face is the
one that executes the code. Components in italics are those that have been moved.

the fundamental building blocks provided by the Java plat-

form. Novel applications were envisioned, formal theories

of mobile agents rapidly became trendy, and conferences

devoted to the topic started to appear.

A decade later, the future of the mobile agent paradigm

looks definitely less bright. A clear symptom is the shrink-

ing of the research community involved. The premiere con-

ference on the topic was the IEEE International Conference

on Mobile Agents (MA), whose last edition was held in

2002 after the steering committee (involving some of the

authors of this paper) observed that the number of sub-

missions, but more importantly their quality and originality

were significantly declining. Interestingly, most of the key

contributors to the field are today involved in other research

areas, often with little or no relation to mobile agents.

Hereinafter, we analyze how mobile agents have evolved

in the past decade by focusing on the two most prominent

dimensions, i.e., applications and technology.

3.1 Mobile Agent Applications

Mobile agents were proposed as the enabling paradigm

for a plethora of applications, where the paradigm’s charac-

teristics were supposed to bring key advantages—according

to some researchers, to the extent of potentially revolution-

izing the development of distributed applications. Those

were times when, shortly after the explosion of the World

Wide Web, many sought a “killer application” for mobile

agents in the hope to get a similar breakthrough. Ten years

later, it is safe to say that a killer application for mobile

agents has not been found (yet?).

One can surely argue pragmatically—and some did—

that mobile agents are indeed useless because there is not

a killer application for them. It turns out, however, that the

quest for a killer application that animated the rise of the

field (and periodically resurfaced during its fall) is some-

what sterile, and, ultimately, based on an ill-defined issue.

Indeed, the notion of “killer application” for mobile agents

was interpreted by many as one that cannot be built without

mobile agents. However, this idea was explicitly rejected

since the early developments of this research area. In fact,

Harrison et al. argue in their seminal paper that “there is

nothing that can be done with mobile agents that cannot also

be done with other means.” [10] We essentially agreed with

this view, and we continued along the same line, asserting

that mobile agents (and in general architectural paradigms

for code mobility) should be considered as simply another

design tool available to the application developer. There-

fore, mobile agents are not enabling new functionalities per

se, but rather they may lead to faster, more flexible, or more

efficient implementations of the same functionality.

Side-by-side with the fanatics of the “killer application”

concept, this view somehow percolated through the research

community, which started to look for application domains

where one could leverage the benefits put forth by mobile

agents. Quickly, some applications caught on as common

informal benchmarks, and were used in discussions among

researchers to highlight advantages or argue over design

tradeoffs.

Two such common applications were information re-

trieval and e-commerce. In both cases, the idea is that a

mobile agent is first assigned a query, for example, to find

a specified document or, in the case of e-commerce, to find

the Web site that sells a given music record at the best price.

Then, the mobile agent is launched into the network where it

somehow finds its way towards relevant sites, queries them

locally, and eventually returns home having collected the

requested information.

The general advantages of the mobile agent approach in



these applications were claimed to be:

1. The ability to reduce the communication overhead, by

replacing remote interactions with local ones.

2. The greater flexibility of the approach, enabling on-

the-fly customization of the server side with client

code.

3. The autonomy of mobile agents, which were assumed

to be able to keep the user entirely out of the loop, by

determining independently the next hop based on the

intermediate results.

Unfortunately, in practice we can observe that:

1. Depending on the amount of data to be returned, the

communication overhead can actually increase, since

the mobile agent state grows at each hop, as we showed

in our ICSE’97 paper and in a follow-up [2].

2. On-the-fly customization seldom requires the reloca-

tion of a running component with its execution state.

Therefore, it is achieved more easily and efficiently by

relocating only code, leveraging either the code on de-

mand or remote evaluation paradigm. Indeed, as dis-

cussed later, these paradigms have been quite success-

ful at this.

3. In practice, in the aforementioned applications it is

quite difficult to come up with sequences of queries

where the result of one determines the input of the

other. More precisely, it is difficult to identify situ-

ations where this ability is necessary or even advan-

tageous. And, finally, even when this is the case it

is quite difficult to encode the corresponding behavior

without involving the user in the intermediate steps.

Also, technological issues hampered these two appli-

cations. Both suffered from the lack of widespread mo-

bile agent platforms integrated in Internet technology (e.g.,

browsers). In addition, e-commerce implies security, and,

unfortunately, devising solid security mechanisms is very

hard in the presence of mobile agents, as it will be discussed

later in this section. As for information retrieval applica-

tions, the widespread acceptance of web-based search en-

gines (most notably, Google) made search engines based on

mobile agents not worth the effort.

Interestingly, in some cases the notion of a mobile agent

able to autonomously roam the network has been replaced

by weaker notions. For instance, the research field of active

networks initially explored the notion of capsule, which is

a network packet that is able to self-route through the net-

work, by carrying the routing logic along with the packet

data—effectively turning a network packet into a mobile

agent [17]. Nevertheless, it was soon recognized that this

strategy was too inefficient in general. An alternative de-

sign appeared shortly after, where the packet carries a tag

referring to the code containing the routing logic [21]. This

code is not carried along with the packet, rather it can be

dynamically downloaded and linked, as well as cached and

reused in the case of functionally-related packet streams. In

terms of the mobile code paradigms we defined, this new

proposal replaces the mobile agent paradigm embodied by

the capsule with a solution based on the code on demand

paradigm.

So, are mobile agents just plain useless? Not really. The

advantages brought by the paradigm are real. For instance,

a follow-up of our ICSE’97 paper examined the benefits of

mobile code paradigms in the domain of network manage-

ment [2]. In this case, mobile agents hold the potential for

huge communication savings, thanks to their ability to per-

form semantic compression and to their decentralized mode

of operation.

Semantic compression is a term used to express that

data are compressed based on their content, unlike com-

mon compression algorithm that instead work by consid-

ering only bit patterns. In the context of network manage-

ment, for instance, a (common) query that requests the high-

est loaded network interface in the network would require

a mobile agent to carry only a single scalar value as part of

this state. Therefore, it does not incur the increasing cost

we mentioned for the information retrieval application.

Moreover, protocols for network management are typi-

cally designed using a client-server paradigm, and therefore

involve the network management station in each interaction.

This can easily cause congestion when a network problem

arises. Mobile agents help greatly in reducing the communi-

cation overhead on the management station, since the com-

putation performed by the mobile agent is performed away

from it.

Therefore, there are cases where mobile agents can be

useful. In these cases, they often bring significant advan-

tages. Unfortunately, these cases are rare, in relative terms,

and none of them is observable today in the context of a

widespread application. Finally, even when there are advan-

tages, the presence of established technology and commer-

cial interest (as in network management), or the relatively

poor state of the art in mobile agent technology hampered

adoption. The latter aspect is discussed next.

3.2 Mobile Agent Technology

Interestingly, the lack of applications was and still is

complemented by a high number of platforms for devel-

oping mobile agents. In 2000, the census in the Mobile

Agent List1, maintained by Fritz Hohl at the University of

Stüttgart, contained 72 systems. This number is even more

1http://www.reinsburgstrasse.de/mal/mal.html



stunning if we consider that the term “mobile agent” started

to emerge in 1994, when Telescript [22], the first mobile

agent system, and Java, the preferred development language

of later systems, came out. Therefore, an average of 12 mo-

bile agent system per year were developed between 1994

and 2000—basically one per month!

As the reader can imagine, among these systems, many

of which are no longer supported or even available, very

few advanced the state of the art. The reason for this “ex-

plosion” (or pollution) of mobile agent systems can be un-

derstood by observing that most of them share the following

key characteristics:

1. They are written in Java.

2. They support only the mobile agent paradigm and pro-

vide a limited set of features, mostly restricted to the

ability to relocate a component through a go method.

In reality, it is very simple to put together a mobile agent

system in Java. This language was designed with distributed

systems in mind, and already provides most of the necessary

building blocks, including multi-threading for the execution

of the agents, serialization and networking for the transmis-

sion of the agents, and—most important—programmable

class loading, which enables the dynamic linking of foreign

code and, as such, is the cornerstone of mobile agents and

code mobility at large.

However, Java had also significant drawbacks. To be-

gin with, Java supports only weak mobility, while a natural

match for the mobile agent paradigm is an implementation

technology supporting strong mobility [7]. Researchers de-

veloping mobile agent systems came up with different ways

of circumventing the problem:

1. Modify the Java virtual machine so that it provides

strong mobility. A few implementations exist [1], but

with Sun adamantly refusing to introduce strong mo-

bility in the Java platform, many of the advantages of

a portable system disappear.

2. Implement some form of preprocessing or code rewrit-

ing to instrument the original application code with

the ability to automatically save its state in applica-

tion variables and correctly resume the execution flow.

Some neat solutions exist [13], but the problem is that

they severely bloat the resulting code. When mobile

agents are used to reduce communication overhead,

this becomes a serious disadvantage.

3. Claim that strong mobility is not really necessary. This

is clearly the easiest solution for the developer of the

mobile agent system, but puts the entire burden on the

application developer. Without appropriate support,

the benefits brought by the expressive power of the mo-

bile agent abstraction are somewhat hampered by the

extra work required to the programmer.

In other words, the availability of ready-to-use building

blocks had a rather perverse effect on the community. In-

stead of simplifying development, and freeing resources to

be invested in more innovative aspects of mobile agents, the

research field handcuffed itself with Java (with a few no-

table exceptions such as D’Agents [9], formerly known as

Agent Tcl), and therefore essentially did not advance sig-

nificantly the state of the art.

To grasp in more detail the extent of this phenomenon,

it is worth comparing briefly the features of Telescript, the

system that first introduced the concept of mobile agents,

and Aglets [11], probably the most popular among Java-

based systems. Table 2 concisely compares the two sys-

tems, which appeared almost four years apart from each

other. The Telescript language and associated run-time

were developed from scratch with the precise goal of sup-

porting the mobile agent abstraction, and therefore included

features that are key in enabling it, and that are very diffi-

cult to provide on top of existing platforms. As a result,

Telescript was ahead of its time, and is still more expressive

and sophisticated than existing mobile agent systems.

By and large, all of these observations hold, with few ex-

ceptions, for the vast majority of existing mobile agents sys-

tems. Surprisingly enough, however, people still build Java-

based mobile agent systems that essentially repeat the same

technology story already told ten years ago, or tackle prob-

lems (e.g., locating mobile agents, or making them inter-

operate—a weird problem for a field where there is not even

one widely-deployed system) that are largely inessential in

boosting a wider adoption of the paradigm.

Although the points above illustrate several opportuni-

ties for supporting mobile agents that have been missed by

the field, from a practical standpoint one of the major causes

commonly associated with the lack of a widespread adop-

tion of mobile agents is security [18]. Mobile agents ex-

acerbate existing security issues and, in addition, introduce

completely new ones.

One issue is that, to enforce access control, a mobile

agent must be authenticated with respect to some identity.

The problem is that there are many identities associated

with a mobile agent. For example, an agent may be associ-

ated with the agent developer, the agent’s code signer, the

agent dispatcher, and the host the agent visited last. It is not

clear which identities should be authenticated and how the

access control mechanisms should take into account this in-

formation. Even if a suitable general model is devised, the

complexity of such a model would make the access control

configuration process extremely error-prone.

The most difficult (and novel) problem, however, is that

mobile agents traveling across multiple hosts to complete



Telescript (1994) Aglets (1998-2004)

Strong mobility Weak mobility

Resource control is built into the run-time No resource control at the run-time level

Ownership rules determine migration of bound objects and security Security and object bindings explicitly dealt with by the developer

Instance-level member protection separates instances of the same agent class Only conventional class-level member protection is allowed

Table 2. “Old” vs. “mainstream” mobile agent technology.

their tasks are vulnerable to a number of attacks coming

from malicious executing environments. For example, a

malicious host can modify the code or memory image of

an agent to change the way the agent behaves. The result

of this “brainwashing” attack would be the creation of a

malicious agent whose actions are attributed to one of the

identities initially associated with the agent. This type of

attack is extremely difficult (if not impossible) to detect and

prevent [14]. Therefore, security is no exception with re-

spect to the current state of mobile agent technology, and

the available solutions still fall short of expectations.

In conclusion, the sad reality is that, after a decade of

mobile agent research and many systems, a reliable, expres-

sive, and secure mobile agent system is still yet to come.

Whether this is the cause or the effect of the lack of mobile

agent applications is difficult to ascertain. However, the net

effect is that the mobile agent paradigm, albeit being the

most powerful and intellectually stimulating, still has virtu-

ally no real-world application to date, and therefore bears

only a very limited impact on common practice.

4 Code On Demand

Code On Demand is a mobile code paradigm in which

the code for the execution of a task is requested by the client

and provided by a (code) server. When the code is received

by the client, it is executed in the client’s context. The code

on demand paradigm is similar to the remote evaluation par-

adigm in the sense that no execution state is exchanged be-

tween client and server, and therefore the execution remains

confined to a single site (the client in code on demand, the

server in remote evaluation). Despite the similarities, the

code on demand paradigm enjoyed a much greater success,

and is arguably, by far, the most widely-used mobile code

paradigm.

The seeds of the success of the code on demand para-

digm in the application domain were already apparent by

1997. These are discussed next, followed by an analysis of

the advantages of this paradigm.

4.1 Code On Demand Technologies and Applica­
tions

Since the early 1990s, but more prominently in the sec-

ond half of the nineties, a number of mainstream technolo-

gies that directly supported the code on demand paradigm

started to emerge. The Java language environment, with its

dynamic class-loading feature, was perhaps the most rep-

resentative one. Java’s primary design goal was to realize

an architecture-neutral platform for networked applications.

The following are some key elements of the rationale behind

the development of Java as explained by its main designers:

The massive growth of the Internet and the World-

Wide Web leads us to a completely new way of

looking at development and distribution of soft-

ware. [. . . ] New code modules can be linked in

on demand from a variety of sources, even from

sources across a network. [. . . ] Interactive exe-

cutable code can be loaded from anywhere, which

enables transparent updating of applications. The

result is on-line services that constantly evolve

[and] remain innovative and fresh [8].

The idea was therefore to create an application-deployment

environment for dynamic applications. That is, applications

extended at run-time through dynamically-linked modules,

or even applications assembled entirely at run-time. Notice

that the code on demand paradigm was a central element of

the design of the Java platform, with the specific intent to

reduce deployment and management costs for feature-rich

applications.

The Java language environment was also soon incorpo-

rated in Web browsers, extending the idea of dynamic ap-

plications to the Web. The use of Java technology in Web

browser was a strategic move in the right direction on the

evolution path of the Web. It was recognized that the Web

would evolve from a collection of interlinked but static and

almost exclusively textual documents, to a dynamic and in-

teractive platform for the delivery of multi-media content as

well as applications. The natural implication of the vision

of a rich and interactive Web was that Web browsers had

to become active components, and Java was one of the first

steps in that direction.

Despite being so forward-looking as a Web technology,

Java was not as successful on the Web as some initially pre-

dicted. Instead, the technology of client-side scripting lan-

guages, whose most common representative is JavaScript,

was to become the chief motor behind active Web con-

tent and code on demand. JavaScript, which despite the

common prefix has very little in common with Java, is a

scripting language whose execution environment is tightly



bound to HTML documents and their rendering within a

browser. In fact, JavaScript was designed specifically to

support active and interactive Web documents, rather than

as a general-purpose language.

Our 1997 paper did not predict the success of active Web

content. In fact, the example scenarios we envisioned for

the code on demand paradigm were consistent with the Java

vision of general-purpose dynamically extensible applica-

tions. Ten years later, however, active and interactive Web

content has become the predominant realization of the code

on demand paradigm.

Nevertheless, the idea of dynamically loaded applica-

tions is all but extinct. In fact, these applications, which

have since been renamed rich Internet applications or

“RIAs,” seem ready for commercial success, and therefore

are receiving great attention even in the mainstream popu-

lar press [5]. Concrete examples are some of the network-

based applications offered by Google, from e-mail readers

and calendars to word processors and spreadsheet applica-

tions. All these applications make extensive use of the code

on demand paradigm. Most of them are currently imple-

mented through JavaScript, although the technology of Web

client-side scripting is evolving very rapidly, too. Not sur-

prisingly, the evolution is in the direction of a more gen-

eral platform, like Java. Examples of this evolution are

new languages and environments for Web browsers, such

as Adobe’s ActionScript language for the Flash player.

In conclusion, it is interesting to note that the code on de-

mand paradigm captures the essence of the success of both

dynamic Web content and dynamic applications, regardless

of the success of specific technologies.

4.2 Advantages of Code on Demand

Given the success of code on demand, it is natural to ask

what are the advantages of this paradigm, independently of

its applications.

There are two reasons for its success. The first reason

lies in the fact that the actual implementation of this par-

adigm does not require significant engineering difficulties.

From a mere execution standpoint, the essence of the code

on demand paradigm can be supported by an interpreter

equipped with a networked dynamic loader. This technol-

ogy is well-understood, and today well-supported by main-

stream platforms (e.g., Java and .NET). From a security

standpoint—the crux of mobile code approaches—some

precautions must be taken. At a minimum, the execution

environment of the client should be able to authenticate the

code coming from the server. A more serious security con-

cern is the ability of the client to limit the behavior of code

executed on demand. However, once more, these are well-

understood problem where good and readily-available tech-

nological solutions exist (e.g., certificate-based schemes, as

well as virtualization and sandboxing).

The second reason for the success of the code on demand

paradigm is that it intrinsically fosters good load balancing

properties. Indeed, client-server places the burden for com-

putation entirely on the server, which holds the resources

and know-how necessary to the service. Instead, the code

on demand paradigm helps in moving the computation as

much as possible on the client. Under the assumption that

there are more clients than servers, code on demand does a

better job at distributing the computational load away from

the server, therefore greatly improving its scalability. In-

terestingly, this is an advantage that code on demand en-

joys not only over client-server, but also over remote eval-

uation. To some extent, this explains why code on demand

has been much more successful than remote evaluation, dis-

cussed next.

5 Remote Evaluation

In the remote evaluation paradigm, the component who

initiates the computation, and is interested in the results,

sends code to a remote executor component that has access

to the resources needed for the computation. Remote eval-

uation can also be seen as a client-server model where the

service being provided is the execution of code—in a way,

a meta-service. Remote evaluation has the advantage of be-

ing simpler than the mobile agent paradigm (which requires

code and execution state to be transferred and managed),

while, at the same time, it provides the flexibility that allows

for the creation of on custom services and the execution of

complex tasks germane to code on demand.

In addition, remote evaluation shares with mobile agents

the ability to perform semantic compression, which we

mentioned already in Section 3. In the interactions between

two components that involve an exchange of data, this can

be “compressed” by transferring the executable code neces-

sary to produce or filter the data. This advantage is to some

extent the raison d’être of remote evaluation, and indeed

was one of the key ideas behind the system that first pro-

posed the concept [16]. The most obvious example is the

execution of a query on a database server: in almost every

practical case, the size of a database far exceeds the size of

a query plus the size of its output. The same argument ap-

plies to the execution of PostScript code on a printer: the

client only needs to ship a short, device-independent repre-

sentation of a document to a printer, which is then used to

generate a typically much larger amount of data in the form

of the raw bitmaps processed by the printer device.

As of today, however, the landscape of technologies

and applications that use the remote evaluation paradigm is

largely unchanged. In our 1997 paper we mentioned three

examples: remote shell, database queries, and PostScript

printing. All these examples are basically still observable



today, along with some more modern applications. For ex-

ample, remote evaluation is used in a number of measure-

ment and monitoring applications such as ScriptRoute [15].

Also, the PlanetLab network2 can be seen as a large plat-

form for applications based on remote evaluation. Other

growing application domains where remote evaluation is

used extensively as a design paradigm are so-called “com-

modity computing” and “grid computing.” In these applica-

tion domains, tasks that logically belong to a single (client)

application are transferred to remote servers for execution.

Therefore, remote evaluation essentially bears the same

impact on common practice as it did a decade ago. Inter-

estingly, the vision of a general-purpose programming sup-

port for remote evaluation put forth originally by Stamos

and Gifford [16], which was a sort of RPC where the code

is itself a parameter, did not really materialize. In all the

application domains above, in fact, the paradigm is embed-

ded in an ad hoc fashion into applications, rather than be-

ing supported through a general application-programming

interface.

6 Discussion

So, is code still moving around? Yes, but not quite in the

way many expected ten years ago.

Regardless of their individual success, mobile code para-

digms collectively had an impact on academia and research,

feeding new ideas and new ways to look at problems. In ad-

dition, mobile code techniques are used by various research

communities in a number of research projects, for achieving

rather disparate goals. However, if we look pragmatically at

how much mobile code paradigms can be “observed in ac-

tion” in today’s applications, reality tells a different story

from the expectations of a decade ago.

At that time, some of the most enthusiastic supporters of

mobile code were certain that the “old” client-server par-

adigm would have soon died to give way to new models

of distributed applications, and that the more sexy and ap-

pealing mobile agent paradigm would have revolutionized

distributed computing. Of course, that did not happen. In-

stead, client-server—the paradigm without code mobility—

is very much alive, and thanks to new interface definition

languages and transport mechanisms, it was re-invented in

the form of so-called Web services. At the other extreme,

mobile agents are essentially relegated to a niche in aca-

demic research with essentially no practical applications.

The story is different for mobile code paradigms that

move only code, that is, the paradigms naturally supported

by weak mobility. Remote evaluation is in use for basi-

cally the same tasks as a decade ago. Code on demand,

which already had its share of popularity thanks to Java-

enabled Web browsers, has been extremely successful as a

2www.planet-lab.org

basis for active Web content. Besides its use as the lan-

guage of active Web pages, code on demand was expected

to catch on and percolate into mainstream computing, lead-

ing to a revolution in the business of desktop office appli-

cations. Thin clients were envisioned as the main comput-

ing platform, with network access to highly componentized

versions of common productivity applications whose bits

and pieces could be separately bought and downloaded on-

demand. This vision did not become a reality. However,

things are once again moving in that direction.

Another way to measure indirectly the success of the

various paradigms is to look at the technology supporting

them today, along the reasoning that a new paradigm, if suc-

cessful, triggers a change in technology to better support it.

This change is evident for the client-server paradigm: re-

mote procedure call (RPC) was developed to simplify the

implementation of applications based on the client-server

paradigm, and in turn boosted its acceptance. Of the mo-

bile code paradigms we considered, only code on demand

gained enough strength to induce the development of ded-

icated technology. This happened along two lines: on one

hand, domain-specific technology appeared to support the

paradigm in Web environments. On the other hand, code on

demand became an important feature in several commer-

cial programming environments and middleware, notably

Java/RMI and .NET, opening up its use in general-purpose

applications. This did not happen for remote evaluation,

which did not really evolve out of specialized application

domains where the existing technologies (e.g., scripting or

query languages) are usually enough to get the job done. As

for mobile agents, we already discussed how the lack of real

applications stifled the development of reliable technology

supporting this paradigm.

The question, however, is: What are the reasons for the

rise or fall of mobile code paradigms?

One argument that is often put forth is that the fate of

ideas—in our case, mobile code paradigms—is eventually

determined by their applications. For instance, the prag-

matic stand of many people about mobile agents is simply

that if using mobile agents made sense from a functionality

or performance standpoint, today we would see them in ap-

plications. Although this is a valid argument, and one that

we often bring up ourselves, ten years may simply be too

short of a time span to assess the impact of an idea. The

history of science is full of seemingly dead-ended ideas that

were only much later successfully applied in other contexts.

From a more technical standpoint, we believe that the

key to the rise or fall of the various paradigms is complex-

ity, in its many forms. In particular, next we discuss the

complexity of mobile code paradigms as it relates to their

execution platform, application development, management,

and run-time efficiency.

One complexity lies in the implementation of the lan-



guage and execution platform. For instance, mobile agent

platforms require dedicated support to handle the transfer of

the execution state as well as its binding to local or remote

resources. This feature is not available in Java precisely

because it would have introduced significant complications

without a motivating application in sight. In contrast, the

code on demand and remote evaluation paradigms are sim-

pler, as they only require the transfer and dynamic execution

of code, which is supported essentially by any scripting lan-

guage and by languages that provide class-loading facilities,

as it is the case for Java. The client-server paradigm re-

quires an even simpler environment, where the components

involved need only agreement about the protocol used to

invoke the service and exchange data.

As for the complexity of developing applications, mobile

agents express a natural and intuitive unit of autonomous

computation, which is also a natural unit of modulariza-

tion for application code. However, this decomposition as-

sumes that every agent may move from node to node inde-

pendently, making decisions based on its accumulated state

or on interactions with other static or mobile components

whose characteristics and capabilities are a priori unknown.

As a result, the emergent collective behavior of an appli-

cation made of multiple mobile agents may be difficult to

predict and hard to control. Instead, all the other paradigms

leave unchanged the familiar criteria of application decom-

position, independent of mobility. A task can be invoked

remotely with client-server, it can be pulled from the server

in code-on demand, or it can be delegated to the server using

remote evaluation. These differences notwithstanding, the

overall structure of a distributed application remains essen-

tially the same as in a completely centralized application.

Moreover, there is the complexity of management. Man-

agement of mobile agents includes the initial configuration

and deployment of the agents, which are complex activi-

ties for the same reason that development and analysis are

complex, but also all the typical phases in the life cycle of

a software system, including update and removal. For ex-

ample, how would one manage a mobile agent component

whose implementation has become obsolete? How can one

update an agent that is executing “in the wild” at some un-

known location? The complexity of these tasks becomes

clear when compared to the client-server paradigm or even

to paradigms that use weak mobility. The fact that compu-

tational components do not move, or that they might move

at most within a single interaction to execute a single task,

allows for a simple binding between components and hosts.

In other words, it is statically possible to figure out what is

executing where, and this, in turn, allows for simpler con-

figuration, testing, deployment, and update of components

as well as of entire applications.

Security is another major management concern, mak-

ing a difference especially between client-server and mo-

bile code paradigms. Providing support for arbitrary code

execution is very difficult, and a single mistake could cause

major security incidents. Not surprisingly, a Web search for

“arbitrary code execution” returns only references to secu-

rity vulnerabilities and no mention of systems and technolo-

gies to support code mobility and distributed applications.

Arguably, security was the primary reason for the failure

of mobile agents, and conversely it promoted the simpler

client-server paradigm. Client-server is manageable from

an authentication and authorization point of view because

the server side has full control on which resources are ac-

cessed and by whom.

On the contrary, mobile code paradigms support the ex-

ecution of arbitrary code and, therefore, require more com-

plex authorization mechanisms and policies. For example,

consider a service that provides a document given a unique

identifier for the document. Consider now the same service

that accepts an arbitrary fragment of code that can access all

the public documents on the server. It is clear that the for-

mer is easier to secure than the latter, because the designer

needs to anticipate only the abuses coming from the ser-

vice inputs (e.g., a maliciously-formatted document identi-

fier triggering a memory error), and can ignore many more

abuses that would come from the execution of arbitrary code

(e.g., code that performs a denial-of-service attack or uses

the service as a trampoline to attack other systems).

Finally, the last dimension of complexity we consider is

run-time complexity, and in particular communication com-

plexity, measured as the amount of bits that an application

transmits over the network. One of the main ideas behind

code mobility is that it can reduce the communication com-

plexity of an application thanks to the semantic compres-

sion obtained when moving code instead of data. Follow-

ing this intuition, mobile agents were initially proposed as

an ideal solution for the retrieval of information from dis-

tributed databases. However, as we showed in our ICSE’97

paper, mobile agents are less than ideal for that task, for

which remote evaluation achieves a better communication

complexity in most cases. It is important to notice that this

result does not necessarily generalize to other applications,

and that no paradigm is inherently more efficient than an-

other. For instance, we found different tradeoffs in the field

of network management [2]. Yet, the characterization of

the mobile code (and client-server) paradigms can serve as

a basis for the quantitative analysis of communication com-

plexity.

7 Conclusions

In 1997, many thought that mobile code (and especially

mobile agents) was going to radically change the design

and implementation of distributed applications. As often

happens when a potentially disruptive idea is introduced,



code mobility was accompanied by a considerable amount

of hype and confusion regarding terminology, applicability

of approaches, and suitability of technologies.

Our ICSE’97 paper was an attempt at identifying some

well-defined abstractions that could be used to reason about

mobile code designs. In addition, we showed that, by us-

ing these abstractions, one can model the behavior of mo-

bile code applications to identify and understand the ad-

vantages and disadvantages of different designs, including

those based on the traditional client-server paradigm.

Ten years later, we can see that things did not go the

way the advocates of mobile code had predicted. Although

mobile code is now a commonly accepted tool for many

distributed applications, and despite the significant impact

of mobile code on the research community, client-server is

still the prevailing design paradigm. Nevertheless, the ba-

sic message of our paper seems still valid and also mostly

uncontroversial: there is no a priori best design paradigm,

and their tradeoffs must be evaluated case by case, based

on the application and functionality at hand. Moreover, our

characterization of mobile code paradigms still proves use-

ful to interpret the landscape of mobile code applications

and technologies, even though both have undergone consid-

erable changes throughout the years.

References

[1] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Lan-

guage for Resource-aware Mobile Programs. In Vitek and

Tschudin [20], pages 111–130.

[2] M. Baldi and G. P. Picco. Evaluating the Tradeoffs of Mobile

Code Design Paradigms in Network Management Applica-

tions. In Proc. of the 20th Int. Conf. on Software Engineer-

ing, pages 146–155, Apr. 1998.

[3] A. Carzaniga, G. P. Picco, and G. Vigna. Designing Dis-

tributed Applications with Mobile Code Paradigms. In Proc.

of the 19th Int. Conf. on Software Engineering, pages 22–32,

Apr. 1997.

[4] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing

Mobile Code Languages. In Vitek and Tschudin [20], pages

93–111.

[5] M. Fitzgerald. Recasting the word processor for a connected

world. The New York Times, Feb. 11 2007.

[6] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding

Code Mobility. IEEE Transactions on Software Engineer-

ing, 24(5):342–361, May 1998.

[7] C. Ghezzi and G. Vigna. Mobile Code Paradigms and Tech-

nologies: A Case Study. In Proc. of the 1st Int. Workshop on

Mobile Agents, LNCS 1219, pages 39–49. Springer, 1997.

[8] J. Gosling and H. McGilton. The Java Language Environ-

ment. A White Paper, May 1996.

[9] R. Gray, G. Cybenko, D. Kotz, R. Peterson, and D. Rus.

D’Agents: Applications and Performance of a Mobile-

Agent System. Software—Practice and Experience,

32(6):543–573, May 2002.

[10] C. Harrison, D. Chess, and A. Kershenbaum. Mobile

Agents: Are they a good idea? In Vitek and Tschudin [20],

pages 25–47.

[11] D. Lange and M. Oshima. Programming and Deploying

Java Mobile Agents with Aglets. Addison-Wesley, 1998.

[12] G. P. Picco. Understanding, Evaluating, Formalizing, and

Exploiting Code Mobility. PhD thesis, Politecnico di Torino,

Italy, Feb. 1998.

[13] T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode

transformation for portable thread migration in Java. In

Proc. of 2nd Int. Symp. on Agents Systems and Applica-

tions and 4th Int. Symp. on Mobile Agents (ASA/MA), LNCS

1882. Springer, Sept. 2000.

[14] T. Sander and C. Tschudin. Protecting Mobile Agents

Againts Malicious Hosts. In Vigna [18].

[15] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A

public Internet measurement facility. In USITS ’03: 4th

USENIX Symposium on Internet Technologies and Systems,

pages 225–238, Mar. 2003.

[16] J. Stamos and D. Gifford. Remote Evaluation. ACM Trans.

on Programming Languages and Systems, 12(4):537–565,

Oct. 1990.

[17] D. Tennenhouse and D. Wetherall. Towards and Active

Network Architecture. Computer Communication Review,

26(2), Apr. 1996.

[18] G. Vigna, editor. Mobile Agents and Security, volume 1419

of LNCS State-of-the-Art Survey. Springer, June 1998.

[19] G. Vigna. Mobile Code Technologies, Paradigms, and Ap-

plications. PhD thesis, Politecnico di Milano, Italy, Feb.

1998.

[20] J. Vitek and C. Tschudin, editors. Mobile Object Systems:

Towards the Programmable Internet. LNCS 1222. Springer,

Apr. 1997.

[21] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A

Toolkit for Building and Dynamically Deploying Network

Protocols. In Proc. of OPENARCH, Apr. 1998.

[22] J. White. Telescript Technology: Mobile Agents. In

J. Bradshaw, editor, Software Agents. AAAI Press/MIT

Press, 1996.


