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Abstract—Improper disposal of e-waste poses global envi-
ronmental and health risks, raising serious concerns. The ac-
curate classification of e-waste images is critical for efficient
management and recycling. In this paper, we have presented
a comprehensive dataset comprised of eight different classes of
images of electronic devices named the E-Waste Vision Dataset.
We have also presented EWasteNet, a novel two-stream approach
for precise e-waste image classification based on a data-efficient
image transformer (DeiT). The first stream of EWasteNet passes
through a sobel operator that detects the edges while the second
stream is directed through an Atrous Spatial Pyramid Pooling
and attention block where multi-scale contextual information
is captured. We train both of the streams simultaneously and
their features are merged at the decision level. The DeiT is
used as the backbone of both streams. Extensive analysis of
the e-waste dataset indicates the usefulness of our method,
providing 96% accuracy in e-waste classification. The proposed
approach demonstrates significant usefulness in addressing the
global concern of e-waste management. It facilitates efficient
waste management and recycling by accurately classifying e-
waste images, reducing health and safety hazards associated with
improper disposal.

Index Terms—Atrous Spatial Pyramid Pooling, Attention,
Classification, DeiT, E-Waste, Image

I. INTRODUCTION

Electronic waste, commonly referred to as e-waste, is a
growing environmental issue caused by the disposal of elec-
tronic gadgets. Any appliance or electrical equipment that is
powered by electricity or batteries, such as computers, cell
phones, televisions, and kitchen appliances, falls under this
category of waste [1]. The swift progress of technology has
increased the production of electronic devices, which has
raised the generation of e-waste. Due to the toxic materials
found inside these devices, improper management of e-waste
can have a detrimental effect on both human health and the
environment [2], [3]. Recycling is one method of e-waste
management. Since different electronic items are recycled dif-
ferently, it is essential to classify the e-waste images correctly
[4].

Convolutional Neural Networks (CNNs) have revolutionized
the field of computer vision, allowing major developments in
image recognition tasks [5], [6]. Although it has been very
effective at classifying images, there are some drawbacks.
Firstly, CNNs require an extensive amount of labeled training

data to achieve optimal performance [7]. Such datasets can
be time and money-consuming to collect and annotate. Ad-
ditionally, traditional CNNs lack inherent scalability because
growing the model’s size frequently results in inefficient com-
putation and higher memory needs [8]. Finally, it has a limited
ability to accommodate global context [9]. These constraints
compelled researchers to investigate alternative architectures
for image classification.

Transformers initially intended for natural language pro-
cessing, exhibited exceptional performance on various tasks.
However, due to their innate sequential processing nature and
lack of spatial inductive biases, applying transformers directly
into images is complex. The Vision Transformer (ViT) was
proposed as a solution to this problem by splitting an image
into patches and treating them as tokens, allowing transformers
to be applied to image classification [10]. Although ViT has
produced impressive results, it has some drawbacks. It’s re-
liance on a large number of patches causes increased memory
consumption, limiting scalability. To address this shortcoming
of both CNNs and ViT, data-efficient image transformers
(DeiT) were developed [11].

In this paper, we present a dataset named E-Waste Vision
Dataset that consists of 1053 images from eight classes (Mo-
bile, TV, Laptop, keyboard, mouse, Microwave, Smartwatch,
and Camera). Moreover, since the dataset has a limited number
of samples, we employ a data-efficient image transformer
(DeiT), a model capable of handling small datasets, for con-
stricting a robust image classifier. The proposed architecture
named EWasteNet has two streams (edge stream and pyramid
stream). The edge stream consists of sobel operator that detects
the edges and passes to the DeiT. The pyramid stream, on
the other hand, incorporates Atrous Spatial Pyramid Pooling
(ASPP) for capturing multi-scale information and Convolu-
tional Block Attention Module (CBAM) for identifying and
focusing the most important parts of the image. The features
extracted from the streams are fused before the final clas-
sification. The model has been evaluated on a test dataset
and has achieved an impressive accuracy of 96%. Moreover,
the EWasteNet consumes significantly fewer resources for
training. To summarize, the paper has the following major
contributions:

• We have proposed a dataset consisting of eight labels for
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e-waste classification.
• We have presented a novel architecture for e-waste clas-

sification that is made up of two streams of DeiT such
as edge and pyramid.

• The proposed model achieves 96% accuracy by con-
suming less than a million parameters with only twenty
epochs of training.

The subsequent sections are arranged in the following
manner. Section II discusses the related works. Section III
discusses the proposed system. Section IV demonstrates the
results and discussion. Finally, Section V concludes the paper.

II. RELATED WORKS

Authors have proposed various approaches for enhancing
the efficiency and accuracy of electronic waste and materials
classification. Cheng et al. [12] proposed a siamese network-
based model for classifying different types of electronic com-
ponents. In the architecture, they incorporated a fine-tuned
VGG16 with feature map concatenation as a feature extractor
of siamese network. Moreover, they also presented a novel
loss function named channel correlation loss for increasing
the model’s generalization ability. Nafiz et al. [13] presented
a transfer learning-based approach where they fine-tuned a
pre-trained InceptionResnetV2 and achieved 98% accuracy.
They integrated this model into an automatic waste segregation
machine that can place the wastes into their corresponding
bins. Atik [14] presented a custom CNN architecture made of
six convolution layers and four pooling layers for electronic
component classification. Kumsetty et al. [15] presented a
dataset named TrashBox made of seven classes. For clas-
sifying the images of that dataset, they used pre-trained
CNN architecture for feature extraction and a quantum neural
network for fine-tuning the feature vectors. For the CNN
feature extractor, they experimented with five state-of-the-art
image classifiers and found ResNet-101 performed the best.
Kang et al. [16] introduced multi-feature fusion, residual unit
modification and activation function modification on a base
ResNet-34 model to enhance the classification performance. In
the multi-feature fusion stage, they used three parallel routes
that extract features simultaneously and perform feature fusion
at the end. The convolution kernel sizes vary in the three
routes. In the updated residual block, instead of adding the
output of the first convolutional layer to the next one, they used
downsampling and passed it to the following layers. Finally,
the improved ReLU activation function to overcome the dying
ReLU problem. The new activation function has four input
segments and depending on the input value, the calculation
changes.

Liu et al. [17] enhanced the performance of ResNet-50 ar-
chitecture by integrating a new attention module named Depth-
wise Separable Convolution Attention Module (DSCAM).
Inspired by the Convolution Block Attention Module (CBAM),
the DSCAM module also includes channel attention and
spatial attention. However, instead of point-wise convolution,
the DSCAM block uses depth-wise separable convolution.
They experimented with the model on four waste datasets and

Fig. 1. Workflow of the process

found the proposed model outperforms some well-known CNN
architectures. This model, however, consumes huge resources
while training. Another attention-based model with fewer
parameters was proposed by Chen et al. [18] where they intro-
duced a parallel mixed attention mechanism (PMAM). PMAM
computes channel attention and spatial attention parallelly
which are later concatenated with the input features. While
computing the channel attention, they merged the feature
vectors obtained from global average pooling and global max
pooling which is different from squeeze and excitation, the
most popular channel attention mechanism [19]. The newly
developed attention block was integrated with ShuffleNet V2.
The model achieves an accuracy of 97% on a custom dataset.

For waste object detection, Cai et al. [20] presented a neural
network architecture named YOLOG (YOLO for garbage
detection). YOLOG improves YOLOv4 by integrating the
DCSPResNet module that consists of residual connection and
spatial pyramid pooling. Al Duhayyim et al. [21] employed
masked RCNN with ResNet-101 backbone for waste image
detection.

Farjana et al. [22] proposed a system for collecting, clas-
sifying and ejecting e-wastes. They employed various sensors
for locating e-wastes in an area which are then classified
into two classes (metal and plastic). The metal wastes are
recycled and plastic wastes are used to create bio-fuel and bio-
chars. Shawpnil et al. [23] ensembles different approaches for
smart e-waste management. The system proposes dismantling
electronic wastes by crushing them and differentiating the
metallic part from the non-metallic parts with the help of the
gravity separation technique from the trash.

Following the comparison, there remains a clear lack of
adequate datasets for electronic waste image classification.
Therefore, this paper presents a comprehensive dataset of
images from eight classes for e-waste classification. We also
present a two-stream DeiT-based approach for classifying the
images.

III. PROPOSED SYSTEM

This section describes the dataset along with the architecture
of the proposed model. Figure 1 presents a brief introduction
of the whole process.

A. Data Collection and Preprocessing

In this paper, we present the E-Waste Vision Dataset,
which contains 1053 open-source images of various electronic



Fig. 2. Sample of E-Waste Vision Dataset

devices such as mobile phones, televisions, laptop computers,
keyboards, mouses, microwaves, smartwatches, and cameras.
A sample of the dataset is presented in Figure 2. We use
a number of preprocessing steps to get the dataset ready
for efficient training and evaluation. These include removing
the background to isolate the objects of interest, rescaling
the images to a standardized size of 348×384 pixels, and
augmenting the dataset with random rotation, height and
weight shift, shear transformation, zooming, and flipping. In
addition, we divided the preprocessed data into three sets: a
training set, a validation set, and a test set, with respective
ratios of 70:10:20. The data distribution is presented in Table
I.

TABLE I
DISTRIBUTION OF E-WASTE VISION DATASET

Class Train Validatioin Test Total
Camera 60 2 16 78
Keyboards 95 14 22 131
Laptop 104 13 21 138
Microwave 95 7 20 122
Mobile 144 8 33 185
Mouses 94 10 19 123
Smartwatch 93 7 14 114
TV 122 9 31 162
Total 807 70 176 1053

B. Proposed Architecture

As shown in Figure 3, the proposed model, EWasteNet, has
a two streams DeiT architecture. The first stream is named as
edge stream and the second stream as pyramid stream.

1) Edge Stream: The importance of capturing refined edge
information in image processing tasks necessitates the inclu-
sion of an edge stream in a two-stream DeiT architecture. The
sobel operator plays a crucial role in this stream by enabling
the extraction of edge features from input images [24]. The
sobel operator’s main task is to find edges by computing
gradients at each pixel’s location. Let the input image be
defined with Im and output after sobel operation with I .
Therefore, the operation carried out inside this module can
be illustrated as shown in equation 1.

Fig. 3. Proposed Architecture for E-Waste Classification

I =

−1 0 1
−2 0 2
−1 0 1

 ∗ Im (1)

A convolution layer is used in the edge stream after the
sobel operator to match the input dimension of the pre-trained
DeiT. The sobel outputs are convolved in this layer using
a set of learned filters. The DeiT model, which uses self-
attention mechanisms to capture global context and contextual
relationships among edge features is finally introduced in the
stream.

2) Prayed Stream: In a two-stream DeiT architecture, a
pyramid stream is required in order to efficiently capture multi-
scale contextual information. By integrating features from
various receptive field sizes, the pyramid stream improves the
model’s capacity to comprehend and categorize objects. This
gives the model the flexibility to handle objects of different
sizes and complexity levels, which is crucial for effective
visual comprehension tasks.

The ASPP block, which accumulates multi-scale contextual
data, is essential to the pyramid stream. By using parallel con-
volutional layers with various dilation rates, it accomplishes
this. The dilation rates control the effective receptive field size
of the convolutional filters, enabling them to acquire features



at different scales. The ASPP block in our model is made up
of five convolution layers, each with a unique dilation rate (1,
2, 3, 4, and 5). To ensure computational effectiveness, these
layers are accompanied by decreasing numbers of filters (64,
32, 16, 8, and 4, respectively). The architecture of the ASPP
block in our model is illustrated in Figure 4.

Fig. 4. Atrous Spatial Pyramid Pooling for Proposed Model

The importance of capturing both spatial and channel-wise
attention leads to the demand for CBAM. The CBAM module
improves the model’s selective power by recalibrating feature
maps adaptively [25]. As presented in Figure 5, it accom-
plishes this by using a two-step procedure. First, by focusing
on informative visual regions, the spatial attention mechanism
captures fine-grained spatial dependencies. Second, the extrac-
tion of discriminative features is facilitated by the channel
attention mechanism learning to emphasize pertinent channels.
With the help of this dual attention mechanism, the model
is better able to distinguish between various object classes
since it efficiently captures both local and global contextual
information. Therefore the CBAM module is integrated after
the ASPP block.

Following the ASPP block and CBAM block, a convolution
layer is again applied for matching the input dimension of
DeiT. This layer also helps in fusing the multi-scale contextual
information obtained from the ASPP block. Finally, the pre-
trained DeiT model is integrated into the stream.

3) Fusion of Two Streams: In our research work, the two
streams are fused to improve the overall classification per-
formance by integrating their distinct features. These features
are combined to create a unified representation after being
extracted from the edge stream and the pyramid stream,
respectively. This feature vector that has been concatenated
is passed into a Multi-Layer Perceptron (MLP) for additional
processing and classification.

A number of fully connected (FC) layers with distinct
configurations make up the MLP architecture. A dropout layer
with a 30% dropout rate is used after an FC layer with 512

Fig. 5. Convolutional Block Attention Module for Proposed Model

neurons. By randomly eliminating some of the neurons during
training, this dropout layer aids in preventing overfitting.
Following that, a fully connected layer with 256 neurons
is inserted, followed by a 20% dropout layer. To minimize
the dimensionality of the feature representation, a bottleneck
layer made up of 256 dense neurons is inserted last. The
Rectified Linear Unit (ReLU) activation function is used to
activate every FC layer in the MLP. ReLU contributes to
the model’s introduction of non-linearity, helping it to learn
intricate patterns and representations. A softmax layer is used
as the final classification layer.

Algorithm 1 EWasteNet Construction
Input : H = Image height, W = Image Width
Output : M = EWastenet Model
Method :
Edge Stream:

Input1 = InputLayer(heght=H, width=W)
edge img = sobel operator(Input1)
conv1 = Conv2D(edge img)
stream1= DeiT(conv1)

Pyramid Stream:
Input2 = InputLayer(heght=H, width=W)
aspp output = ASPP(Input2)
cbam output = CBAM(aspp output)
conv2 = Conv2D(cbam output)
stream2 = DeiT(conv2)

Combine:
merged = Concatenate(stream1, stream2)
mlp= MLP(merged)

return Model(input =[Input1, Input2] output=mlp)

The construction process of the proposed model is further
elaborated in Algorithm 1. The model construction function
takes the image height and weight as input and returns the full
model. The function first creates the endge stream followed
by the pyramid stream. Later they are merged in the combine
section. Finally the model is returned with two input layers
from the two steams and the output layer being the softmax
layer of the MLP head.



One remarkable feature of the fusion strategy is its com-
putational efficiency. The model strikes a balance between
complexity and effectiveness with less than 1 million trainable
parameters and only 20 epochs of training. The fusion method
successfully merges the complementary data from the edge
and pyramid streams, improving classification performance
while retaining a manageable amount of parameters by uti-
lizing the concatenated features and the MLP architecture.

IV. RESULTS AND DISCUSSION

This section begins with a brief description of the evaluation
metrics used to assess the model, followed by the results and
subsequent discussion.

A. Evaluation Matrices

We used a number of evaluation criteria, including accuracy,
precision, recall, F1-score, and Matthews Correlation Coeffi-
cient (MCC) to evaluate the effectiveness of our model for
classifying e-waste [26]. The model’s capacity to correctly
identify each class and strike a balance between precision
and recall is illustrated as well by these metrics, which also
offer insights into the total classification accuracy [27]. For
further understanding of the model’s performance, we present
the confusion matrix and the receiver operating characteristic
(ROC) curve.

Fig. 6. Confusion Matrix of the Proposed Model

B. Validation Results

Our model attained an accuracy of 0.92 for the validation
set. The proportion of accurately categorized instances among
the expected positive examples as measured by the precision
score was 0.93. In the same way, the recall score, which counts

the percentage of occurrences that were correctly recognized
among the actual positive examples was 0.93. The precision
and recall-balancing F1-score was calculated to be 0.92.
Finally, the MCC, which evaluates classification accuracy by
accounting for true and false positives and negatives, produced
a value of 0.91.

Fig. 7. Receiver Operating Characteristic Curve of the Proposed Model

C. Test Results

Our model’s accuracy for the test set was even higher, at
0.96, demonstrating its sturdiness and generalizability. The
precision score was calculated to be 0.96, indicating a high
percentage of positively classified events that were correctly
identified. The model’s capacity to precisely identify real pos-
itive instances was demonstrated by the recall score of 0.9670.
The F1-score was 0.96. Additionally, the test set’s MCC score
was 0.95, demonstrating a high degree of correlation between
the predicted and actual labels.

The confusion matrix provides specific information about
how well the model classified each class. The confusion matrix
of the model is presented in Figure 6. Based on the analysis
of the confusion matrix, we observed that four occurrences
of the mobile class were incorrectly classified as TV, one
instance of the microwave class was incorrectly classed as
TV, one instance of the mobile class was incorrectly classified
as a smartwatch, and one instance of the camera class was
incorrectly classified as a smartwatch. Aside from these errors
in categorization, the model showed overall correct predictions
for the remaining occurrences across all classes.

The ROC curve is a graphical illustration of the trade-off
between true positive rate (TPR) and false positive rate (FPR)
at various classification thresholds. The ROC curve of our
model is shown in Figure 7. For the test dataset, all classes
had ROC scores of 1, suggesting exceptional performance
in differentiating between positive and negative instances.
Additionally, the micro-average ROC score, which takes into
account the overall performance across all classes, reached the



highest possible value of 1. Overall, the evaluation metrics and
outcomes show that our algorithm is accurate and effective at
classifying e-waste images. The reliability of our model and its
potential for use in practical e-waste management applications
is demonstrated by its high accuracy, precision, recall, F1
score, and MCC values.

V. CONCLUSION

This paper presents a new dataset for e-wast images along
with a detailed study on the classification of e-waste images
using a novel two-stream approach based on a Data-efficient
Image Transformer (DeiT) architecture. The primary objective
of the research was to accurately categorize electronic devices
for effective waste management and recycling in order to ad-
dress the growing concern over inappropriate e-waste manage-
ment on a global scale. For facilitating this research, we cre-
ated the E-Waste Vision Dataset, which contains 1053 open-
source photos from eight distinct classes, including Mobile,
TV, Laptop, keyboard, mouse, Microwave, Smartwatch, and
Camera. A thorough analysis of the presented dataset showed
the efficacy of our approach. On the validation and test sets,
the model obtained excellent scores of accuracy, precision,
recall, F1 score, and MCC, demonstrating its resilience and
generalizability. Additionally, the reliability of the model was
supported by the confusion matrix and ROC curve analysis.
Overall, by offering an innovative approach to classification
and a sizable dataset, our research advances the field of e-
waste management. The outstanding accuracy and efficiency of
the suggested model show promise for real-world applications,
assisting in the ethical disposal and recycling of electronic
trash.

SUPPLEMENTARY MATERIALS

The dataset along with the experiment can be found in this
GitHub repository: https://github.com/NifulIslam/EWasteNe
t-A-Two-Stream-DeiT-Approach-for-E-Waste-Classification.
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