Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring Dr. Maximilian C. Scardelletti – NASA Glenn Research Center Dr. Christian A. Zorman – Case Western Reserve University #### Introduction #### Sensing systems for harsh environments: ## High temperature electronics and sensors Three Major Industries Downhole Oil and Gas Drilling operations were limited 150 to 175°C for reserves in easily accessible wells Declining reserves force deeper wells, which increase drilling temperatures to 300°C Automobile Cylinder pressures temperature: 300°C Exhaust sensing temperature: 850°C Aerospace Monitoring the health of aircraft engines at temperatures above 300°C (emissions, temperature, blade tip clearance and pressure) Atmospheric and surface conditions of Venus (480°C) #### Introduction Develop a SiC-based MEMs capacitive pressure sensor system that can be used to monitor the pressure of a conventional gas turbofan engine. ## Operating Conditions: Temperature: 25 to 500°C Pressure: 0 to 300 psi Vibration: up to 5.3 G_{rms} ## System Design # The system is realized by integrating the following components on a common, high temperature substrate - A novel SiCN MEMS capacitive pressure sensor - 6H-SiC MESFET as active device - MIM capacitors, wirewound inductors, thick film resistors - 4. Low form factor packaging - Borescope plug adaptor ## **Electronics Design** #### The proposed system uses a Clapp-Type Oscillator Design - The integrated system uses a Clapp-type oscillator with capacitive pressure sensor located in LC tank circuit - As pressure increases, pressure sensor capacitance decreases, which causes the operational frequency to increase - Cree SiC MESFET used for driving circuit into oscillation ## **Electronics Design** #### Clapp-Type Oscillator vs Colpitts Oscillator - The proposed Clapp oscillator requires one inductor, three capacitors and one MESFET. Requires fewer components vs. Colpitts oscillator design - Increases system efficiency - Increases system reliability under harsh environment conditions - L_T and C_{SENSE} are in series and C_{SENSE} is used to set the operational frequency - C₁ and C₂ are used to control the gain conditions - This arrangement increases frequency stability, making it more frequency stable than the Colpitts design. ## **Pressure Sensor Testing** #### High Temperature and Pressure Chamber #### System Key Features - Pressure range: 0 to 100 psi - Temperature range: 25 to 500°C - LabVIEW control program - Power source - Multiple thermocouple - Multiple feedthroughs - Sight glass for signal transmission #### **Pressure Sensor** #### Sporian SiCN Capacitive Pressure Sensor - Parallel plate capacitor model - SiCN membrane - Temperature range: up to 1000°C Pressure range: 0 to 400 psi | SiCN Capacitive
Pressure Sensor | Alumina
Substrate | |------------------------------------|----------------------| | | | | Gold
Feed Lines | | SiCN pressure sensor | Pressure
(psi) | Capacitance
(pF) | |-------------------|---------------------| | 0 | 3.84 | | 50 | 3.6 | | 100 | 3.3 | #### Circuit Simulations Keysight's Advanced Design System (ADS) Software suite CT = 3.84 pF LT = 780 nH C1 = 14 pF C2 = 41 pF $RG = 10K\Omega$ LD = 390 nH CD = 188 pF Cree SiC MESFET model Oscillation Frequency 96.7 MHz #### Circuit Simulations Harmonic Balance Simulation #### Circuit Simulations To achieve oscillation stability 1) Phase must be zero at fo 2) Loop gain must be greater than unity at for #### Circuit Simulations Harmonic Balance Simulation P = 0 psi f = 96.7 MHz P = 50 psi f = 99.2 MHz P = 100 psi f = 102.8 MHz ## **Engine Testing** ## Packaged wired prototype has the following characteristics - Unpackaged Sensor System Size: 8 x 40 x 4 mm³ (including on-board DC bias circuits) - Form Factor: Packaged sensor equipped with borescope adaptor for a borescope plug on engine - Maximum Operational Temperature: 500°C for 1 hour at tip of borescope adaptor - Maximum Vibration: 5.3 G_{rms} along X-, Y- and Zaxis for 20 min Entire circuit assembled on a single alumina substrate $(6 \times 35 \times 2 \text{ mm}^3)$ #### Packaged Sensor System Assembly #### Key Features - Stainless steal packaging - Thermo couples - Custom connector/cable from package to facilitate input power and output signal - Borescope plug adaptor - Size: 30 x 150 mm #### Bench-Top Acceptance Testing - Custom-in-house pressurized fixture - Packaged sensor is attached to quasi-borescope adaptor - Thermocouple inside fixture to emulate inner engine temperature #### Bench-Top Packaged System Characterization To emulate actual jet turbofan engine conditions the packaged sensor was heated to over 500°C and the pressure was increased from 0 to 300 psi. Note: The temperature recorded on the metal sleeve was ≈ 400°C, which is assumed to be the steady-state temperature of the system #### Bench-Top Packaged System Characterization 0 psi → 96.88 MHz 100 psi → 102.79 MHz 200 psi → 109.54 MHz 300 psi → 116.77 MHz 350 psi → 119.86 MHz Note: Simulated and measured response at 0 and 100 psi are virtually stidentical: Incredibly accurate circuit model $6.57 \times 10^{-2} \Delta f/\Delta P MHz/psi$ Percent difference = 21.2% Spectrum response of packaged pressure sensor from 0 to 350 psi at 25°C #### Bench-Top System Characterization The temperature at the tip of the sensor inside the pressurized is fixture is 540°C (≈ 400°C at the sleeve) 0 psi \rightarrow 96.3 MHz 320 psi \rightarrow 117.8 MHz 6.8 x 10 $^{-2}$ $\Delta f/\Delta P$ MHz/psi Percent difference = 20 % The change in frequency at 25 and 540°C at 0 psi is less 1% #### Bench-Top Packaged System Characterization #### Structural Dynamic Testing - Emulate on engine testing - Sine wave sweeps - Random vibration - Maximum vibration 5.3 G_{rms} - X-, Y- and Z-axis testing - Resonate frequency recorded at the beginning and end of each axis test. NO change!! #### Bench-Top Packaged System Characterization The packaged sensor system was again measured after structural dynamic testing. 0 psi $$\rightarrow$$ 25°C \rightarrow 97.3 MHz 0 psi \rightarrow 520°C \rightarrow 96.5 MHz 342 psi \rightarrow 520°C \rightarrow 118.1 MHz The change in frequency at 25 and 540°C at 0 psi is less 1% ## Vehicle Integrated Propulsion (VIPR) VIPR was a series of ground-based onwing engine demonstrations to mature aircraft engine health management technologies Test vehicle was a U.S. Air Force C-17 aircraft equipped with Pratt & Whitney F117 engines VIPR partners include NASA, U.S. Air Force, Pratt & Whitney, GE, Rolls Royce, Boeing, FAA, USGS, and other external organizations Boeing C-17 Globemaster III Pratt & Whitney F117 Turbofan Engine #### **Test Objectives:** Demonstrate capability of advanced health management technologies for detecting and diagnosing incipient engine faults before they become a safety impact and to minimize loss of capability #### Approach: Perform on wing engine ground tests - Normal engine operations - Seeded mechanical faults - Seeded gas path faults - Accelerated engine life degradation through volcanic ash ingestion testing #### CST Aircraft / Communication Layout ### Aircraft Research Station Layout Aircraft Research Station Layout # Measurement setup in fuselage to sensor on the engine attached to the wing - Spectrum analyzer - Power supply - Laptop - Labview program to record measurements - 200 ft cable going from equipment to sensor on engine ## Vehicle Integrated Propulsion (VIPR) #### Sensed Pressure Locations AP7: High temp capacitive pressure sensor system ## Environmental Health Monitoring Test Baseline Engine Test Profile #### Sensor Output Data #### Environmental Health Monitoring Test Transient Engine Test Profile **Sensor Output Data** ## Environmental Health Monitoring Test ## Steady-State Engine Test Profile #### Sensor output data BLD25 Failed Open at Steady-State #### Volcanic Ash Testing 1st day of low flow volcanic ash ingestion testing 1st day of volcanic ash ingestion testing 3rd day of low flow volcanic ash ingestion testing 3rd day of volcanic ash ingestion testing 14 hours low rate ash testing 1 mg/cu meter ## Summary - Simulated Clapp-type oscillator to prove concept - Developed a packaged pressure sensor system - Demonstrated accuracy of simulations vs. measured - Performed pressure, temperature and vibration acceptance testing - Successfully demonstrated sensor system tracking engine performance ## Acknowledgements #### NASA Glenn Research Center Roger Meredith, Elizabeth Mcquaid Jennifer Jordan, Nick Varaljay, Robert Butler, Glenn Beheim and Gary Hunter ## Sporian Microsystems Keven Harsh, Evan Pilant and Mike Usrey ## Thank you # Appendix Slides #### Bench-Top Packaged System Characterization Structural Dynamic Testing 1.4 g sinusoidal sweep profile # Bench-Top Packaged System Characterization Structural Dynamic Testing 5.3 Grms random vibration profile