Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

Dr. Maximilian C. Scardelletti – NASA Glenn Research Center Dr. Christian A. Zorman – Case Western Reserve University

Introduction

Sensing systems for harsh environments:

High temperature electronics and sensors Three Major Industries

Downhole Oil and Gas

Drilling operations were limited 150 to 175°C for reserves in easily accessible wells

Declining reserves force deeper wells, which increase drilling temperatures to 300°C

Automobile

Cylinder pressures temperature: 300°C

Exhaust sensing temperature: 850°C

Aerospace

Monitoring the health of aircraft engines at temperatures above 300°C (emissions, temperature, blade tip clearance and pressure) Atmospheric and surface conditions of Venus (480°C)

Introduction

Develop a SiC-based MEMs capacitive pressure sensor system that can be used to monitor the pressure of a conventional gas turbofan engine.

Operating Conditions:

Temperature: 25 to 500°C

Pressure: 0 to 300 psi

Vibration: up to 5.3 G_{rms}

System Design

The system is realized by integrating the following components on a common, high temperature substrate

- A novel SiCN MEMS capacitive pressure sensor
- 6H-SiC MESFET as active device
- MIM capacitors, wirewound inductors, thick film resistors
- 4. Low form factor packaging
- Borescope plug adaptor

Electronics Design

The proposed system uses a Clapp-Type Oscillator Design

- The integrated system uses a Clapp-type oscillator with capacitive pressure sensor located in LC tank circuit
- As pressure increases, pressure sensor capacitance decreases, which causes the operational frequency to increase
- Cree SiC MESFET used for driving circuit into oscillation

Electronics Design

Clapp-Type Oscillator vs Colpitts Oscillator

- The proposed Clapp oscillator requires one inductor, three capacitors and one MESFET. Requires fewer components vs. Colpitts oscillator design
 - Increases system efficiency
 - Increases system reliability under harsh environment conditions
- L_T and C_{SENSE} are in series and C_{SENSE} is used to set the operational frequency
- C₁ and C₂ are used to control the gain conditions
- This arrangement increases frequency stability, making it more frequency stable than the Colpitts design.

Pressure Sensor Testing

High Temperature and Pressure Chamber

System Key Features

- Pressure range: 0 to 100 psi
- Temperature range: 25 to 500°C
- LabVIEW control program
- Power source
- Multiple thermocouple
- Multiple feedthroughs
- Sight glass for signal transmission

Pressure Sensor

Sporian SiCN Capacitive Pressure Sensor

- Parallel plate capacitor model
- SiCN membrane
- Temperature range: up to 1000°C

Pressure range: 0 to 400 psi

SiCN Capacitive Pressure Sensor	Alumina Substrate
Gold Feed Lines	

SiCN pressure sensor

Pressure (psi)	Capacitance (pF)
0	3.84
50	3.6
100	3.3

Circuit Simulations

Keysight's Advanced Design System (ADS) Software suite

CT = 3.84 pF

LT = 780 nH

C1 = 14 pF

C2 = 41 pF

 $RG = 10K\Omega$

LD = 390 nH

CD = 188 pF

Cree SiC MESFET model

Oscillation Frequency 96.7 MHz

Circuit Simulations

Harmonic Balance Simulation

Circuit Simulations

To achieve oscillation stability

1) Phase must be zero at fo

2) Loop gain must be greater than unity at for

Circuit Simulations

Harmonic Balance Simulation

P = 0 psi f = 96.7 MHz P = 50 psi f = 99.2 MHz P = 100 psi f = 102.8 MHz

Engine Testing

Packaged wired prototype has the following characteristics

- Unpackaged Sensor System Size: 8 x 40 x 4 mm³ (including on-board DC bias circuits)
- Form Factor: Packaged sensor equipped with borescope adaptor for a borescope plug on engine
- Maximum Operational Temperature: 500°C for 1 hour at tip of borescope adaptor
- Maximum Vibration: 5.3 G_{rms} along X-, Y- and Zaxis for 20 min

Entire circuit assembled on a single alumina substrate $(6 \times 35 \times 2 \text{ mm}^3)$

Packaged Sensor System Assembly

Key Features

- Stainless steal packaging
- Thermo couples
- Custom connector/cable from package to facilitate input power and output signal
- Borescope plug adaptor
- Size: 30 x 150 mm

Bench-Top Acceptance Testing

- Custom-in-house pressurized fixture
- Packaged sensor is attached to quasi-borescope adaptor
- Thermocouple inside fixture to emulate inner engine temperature

Bench-Top Packaged System Characterization

To emulate actual jet turbofan engine conditions the packaged sensor was heated to over 500°C and the pressure was increased from 0 to 300 psi.

Note: The temperature recorded on the metal sleeve was ≈ 400°C, which is assumed to be the steady-state temperature of the system

Bench-Top Packaged System Characterization

0 psi → 96.88 MHz 100 psi → 102.79 MHz 200 psi → 109.54 MHz 300 psi → 116.77 MHz 350 psi → 119.86 MHz

Note: Simulated and measured response at 0 and 100 psi are virtually stidentical: Incredibly accurate circuit model

 $6.57 \times 10^{-2} \Delta f/\Delta P MHz/psi$ Percent difference = 21.2% Spectrum response of packaged pressure sensor from 0 to 350 psi at 25°C

Bench-Top System Characterization

The temperature at the tip of the sensor inside the pressurized is fixture is 540°C (≈ 400°C at the sleeve)

0 psi \rightarrow 96.3 MHz 320 psi \rightarrow 117.8 MHz

6.8 x 10 $^{-2}$ $\Delta f/\Delta P$ MHz/psi Percent difference = 20 % The change in frequency at 25 and 540°C at 0 psi is less 1%

Bench-Top Packaged System Characterization

Structural Dynamic Testing

- Emulate on engine testing
- Sine wave sweeps
- Random vibration
- Maximum vibration 5.3 G_{rms}
- X-, Y- and Z-axis testing
- Resonate frequency recorded at the beginning and end of each axis test. NO change!!

Bench-Top Packaged System Characterization

The packaged sensor system was again measured after structural dynamic testing.

0 psi
$$\rightarrow$$
 25°C \rightarrow 97.3 MHz 0 psi \rightarrow 520°C \rightarrow 96.5 MHz 342 psi \rightarrow 520°C \rightarrow 118.1 MHz

The change in frequency at 25 and 540°C at 0 psi is less 1%

Vehicle Integrated Propulsion (VIPR)

VIPR was a series of ground-based onwing engine demonstrations to mature aircraft engine health management technologies

Test vehicle was a U.S. Air Force C-17 aircraft equipped with Pratt & Whitney F117 engines

VIPR partners include NASA, U.S. Air Force, Pratt & Whitney, GE, Rolls Royce, Boeing, FAA, USGS, and other external organizations

Boeing C-17 Globemaster III

Pratt & Whitney F117 Turbofan Engine

Test Objectives:

Demonstrate capability of advanced health management technologies for detecting and diagnosing incipient engine faults before they become a safety impact and to minimize loss of capability

Approach:

Perform on wing engine ground tests

- Normal engine operations
- Seeded mechanical faults
- Seeded gas path faults
- Accelerated engine life degradation through volcanic ash ingestion testing

CST Aircraft / Communication Layout

Aircraft Research Station Layout

Aircraft Research Station Layout

Measurement setup in fuselage to sensor on the engine attached to the wing

- Spectrum analyzer
- Power supply
- Laptop
- Labview program to record measurements
- 200 ft cable going from equipment to sensor on engine

Vehicle Integrated Propulsion (VIPR)

Sensed Pressure Locations

AP7:
High temp capacitive pressure sensor system

Environmental Health Monitoring Test

Baseline Engine Test Profile

Sensor Output Data

Environmental Health Monitoring Test

Transient Engine Test Profile

Sensor Output Data

Environmental Health Monitoring Test

Steady-State Engine Test Profile

Sensor output data

BLD25 Failed Open at Steady-State

Volcanic Ash Testing

1st day of low flow volcanic ash ingestion testing

1st day of volcanic ash ingestion testing

3rd day of low flow volcanic ash ingestion testing

3rd day of volcanic ash ingestion testing

14 hours low rate ash testing 1 mg/cu meter

Summary

- Simulated Clapp-type oscillator to prove concept
- Developed a packaged pressure sensor system
- Demonstrated accuracy of simulations vs. measured
- Performed pressure, temperature and vibration acceptance testing
- Successfully demonstrated sensor system tracking engine performance

Acknowledgements

NASA Glenn Research Center

Roger Meredith, Elizabeth Mcquaid Jennifer Jordan, Nick Varaljay, Robert Butler, Glenn Beheim and Gary Hunter

Sporian Microsystems

Keven Harsh, Evan Pilant and Mike Usrey

Thank you

Appendix Slides

Bench-Top Packaged System Characterization Structural Dynamic Testing

1.4 g sinusoidal sweep profile

Bench-Top Packaged System Characterization Structural Dynamic Testing

5.3 Grms random vibration profile

