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Abstract—Edge detection remains an active problem in the
image processing community, because of the high complexity of
natural images. In the last decade, Desolneux et al. proposed a
novel detection approach, parameter free, based on the Helmhotz
principle. Applied to the edge detection field, this means that
observing a true edge in random and independent conditions
is very unlikely, and then considered as meaningful. However,
overdetection may occur, partly due to the use of a single pixel-
wise feature. In this paper, we propose to introduce higher level
information in the a contrario framework, by computing several
features along a set of connected pixels (an edgelet). Among the
features, we introduce a shape prior, learned on a database. We
propose to estimate online the a contrario distributions of the
two other features, namely the gradient and the texture, by a
Monte-Carlo simulation approach. Experiments show that our
method improves the original one, by decreasing the number of
non relevant edges while preserving the true ones.

I. INTRODUCTION

Edge detection is one of the oldest image processing prob-
lematic. Due to high variability between natural images and the
large quantity of information they contain (resolution, color),
this problem has not been solved so far.

Among classical methods, we can cite the Sobel filter, the
Canny filter [1], and the Deriche filter [2]. The aim of last two
was to propose an algorithm satisfying the well known Canny
properties: good detection, good localisation, and minimal
response. However, besides being sensitive to noise, these
methods need supervised parameters tuning and are often too
local to provide relevant detections.

More recently, A. Desolneux, L. Moisan, J.M. Morel pro-
posed in [3] a formal modeling of the Helmhotz principle,
which enunciates that relevant geometric structures have a
very low probability to occur in a random context. The
detected structures are declared as meaningful. The general
methodology consists in defining the randomness to detect
meaningful events, hence yielding the so-called a contrario
method. Structures are defined by the laws of Gestalt The-
ory [4], underlining the importance of perceptual grouping for
human visual perception. Desolneux et al. proposed to apply
their statistical framework to detect alignments in images [3],
clusters [5], and edges [6]. Since then, the a contrario frame-
work have been used in various purposes, such as motion
detection [7], shape recognition [8], object matching [9], and
local features matching [10].

The first step in a contrario methods is to define a set of
possibly meaningful events. In the context of edge detection,

two approaches have been proposed. In [6], [11], [12], can-
didate edges are extracted from the level lines of the image.
Given a grey level image u : Ω → R, level lines are defined
as closed Jordan curves contained in the boundary of a level
set with level λ,

Xλ = {x ∈ Ω, u(x) ≤ λ} and X λ = {x ∈ Ω, u(x) ≥ λ},

with Xλ and X λ respectively the lower and upper sets, and Ω
the image domain. This representation contained several ad-
vantages. First, no information is lost from the image and this
one can be reconstructed from the family of lower (or upper)
sets [13], [11]. Moreover, some level sets boundaries locally
coincide with image contours [6]. Hence, filtering the image
using level sets does not alter contours. These approaches
use the fact that a long and contrasted level line is very
unlikely in the randomness. In [14], [15], authors proposed
to use candidates from an algorithm producing oversegmented
regions. These regions are then merged upon the a contrario
hypothesis that two adjacent regions have, in noise, a very
low probability to present identical characteristics. However,
in an edge detection problematic, using oversegmented regions
provides to small edges to guarantee a high level relevancy.

The a contrario detection is related to the probability of an
event under the random hypothesis. Defining this distribution
is of prime interest, since it directly impacts on the accuracy
of the method. In the previous mentionned approaches, the
edge a contrario distribution is defined by pixel-wise based
on saliency characteristics. Moreover, mainly because of the
difficulty of defining a multi-features closed form a contrario
distribution, the detection often use just one local feature,
namely the gradient of the image. In this paper, and like in
the Desolneux et al. framework, edge candidates are extracted
from level lines. We propose several contributions. First, we
introduce prior information in the a contrario model, in order
to detect part of curves whose shapes are relevant according
to a shape database. Then, by estimating the a contrario
distributions using Monte Carlo simulations, we model higher
level information, by reasoning on sets of connected pixels,
that we call edgelets. This allows defining prior, gradient and
textural features. These features are then combined in the a
contrario framework.

This paper is organized as follows. The a contrario frame-
work for edge detection as proposed in [6] is first presented in
Section II. The proposed approach is described in Section III.



We show experimental results in Section IV, before concluding
in Section V.

II. ε-MEANINGFUL EDGES

We recall here the ε-meaningful edge detector proposed
in [6]. A candidate edge is declared as meaningful if its length
is too long and its contrast is too strong to have been likely
generated by random noise. The quantity ε holds that the
expected number of meaningful events happening by chance
is, on the average, less that ε.

A. Defining the number of false alarm

Let u : Ω → R be a grey level image. Since the image
gradient norm is different from one image to another, the
meaningfullness of a candidate should depend on its distribu-
tion. Then, we first define the distribution of the norm gradient
of u:

∀µ > 0, H(µ) = P (X > µ) =
#{x ∈ Ω, |∇u(x)| > µ}
#{x ∈ Ω, |∇u(x)| > 0}

(1)

with |∇u(x)| the norm of the gradient computed on point x
with a 2 × 2 neighborhood. A level line containing a critical
point (i.e. whose gradient norm is null) is ignored in the
detection process. Hence G is defined only for µ > 0, and is so
normalized by the number of points satisfying this condition.

Let E be a candidate edge and xiE be the i-th point of E.
The candidate E is composed by lE independent points, so
according to the Nyquist distance, the distance between two
consecutive points of E is greater than 2. We define PFA(E),
the probability of false alarm of the event E by:

PFA(E) = H

(
min
i=1..lE

∣∣∇u (xiE)∣∣)lE (2)

The PFA equation fits the intuition that observing lE inde-
pendent points is very unlikely in noise, as soon as lE and the
minimum of gradient along the curve E growth.

The originality of the a contrario approach consists in,
instead of considering the probability of accepting of a false
alarm, limiting its expected number, whose computation is
easier thanks to the linear property of the expected value. Let
C = {E1, . . . , ENE

} the set of NE edge candidates. An edge
candidate En is an ε-meaningful edge if

NFA(En) = NE × PFA(En) < ε (3)

with NFA(En) the number of false alarm of En. The
demonstration of this proposition can be found in [11], using
the lemma that, for X a real random variable, the inequality
P (P (X > µ) < t) ≤ t holds, ∀t ∈ [0, 1].

B. Discussion

As discussed in [6], [11], the detection method is considered
parameter free, since it only depends on ε whose influence
is logarithmic (this is due to the exponent lE in Eq. 2). In
practice, we set ε = 1.

In the Desolneux et al. framework, and in this paper, edge
candidates are extracted from the level lines of the image.

This is done using the Fast Level Lines Transform (FLLT)
algorithm proposed in [16]. Let Li be a level line of length
lLi

, so the number of edge candidates it contains is equal to∑lLi
i=1 i. Considering NL level lines, the total number NE of

edge candidates over all level lines is:

NE =
NL∑
i=1

lLi
(lLi

+ 1)
2

Desolneux et al. proposed a maximality principle in order
to find optimal edges among the detected ones. An edge En
is said maximal meaningful if its NFA is lower to the edges
it includes, and strictly lower to the edges that include itself:
• ∀Em ε-meaningful, Em ⊆ En =⇒ NFA(En) ≤
NFA(Em)

• ∀Em ε-meaningful, En ( Em =⇒ NFA(En) <
NFA(Em)

This definition implies that two different maximal meaningful
edges on the same level line cannot intersect.

Using the same gradient feature, Desolneux et al. also
proposed a boundary detector. A detected boundary is an ε-
meaningful level line, and then it has the nice property to be
closed. Experiments in [6] concluded that the two detectors
give comparable results. A first idea would so be to propose
a region based on feature, for example by supporting flat
and large regions. Nevertheless, in natural images, it is very
unlikely to find a level line representing a whole object, due
to texture, compression and quantification. Along the level
lines, objects appear as fragmented, since just some parts
of some level lines fit well the contours (Figure 1). In this
scenario, defining a region term might not be appropriate.
This is the reason why we choose to focus on edge detection,
which allows splitting level lines and hence only detecting the
relevant parts. The main idea of our contribution is to compute
the features on edgelets instead of pixels. This allows us to
define higher level discriminative features, as we will see in
the next section.

Fig. 1.
Example of a level line in the Valbonne church image.

III. PROPOSED APPROACH

We propose several contributions to the a contrario edge
detector. First, atomic elements, i.e. pixels in the Desolneux
et al. framework, are replaced by connected pixels, called



edgelets. This allows us to handle higher level information
features. The first one is an edgelet prior, automatically learned
using a shape database, which is also a novelty. Moreover, we
model a gradient and a textural features. This last one feature
aims at minimizing response along contours surrounded by
redundant information. The a contrario distributions need
to be estimated using a Monte-Carlo procedure. But first,
we propose to combine several features into the a contrario
framework.

A. Combining several features
A legitimate idea would be to consider the joint dis-

tribution over F features, PFA(µ1, . . . , µF ) = P (X1 >
µ1, . . . , XF > µF ). In this situation, the ε-meaningfulness of
the detector it is not guaranted, since proving that P (P (X1 >
µ1, . . . , XF > µF ) < ε) ≤ ε is not straightforward.

An easy way to use several features in a a contrario
approach consists in using a fusion operator Ξ, such that
Ξ (PFA1(E), . . . , PFAF (E)) ≥ maxf=1,...,F PFAf (E).
Then, an edgelet E is said ε-meaningful if it follows the
inequality:

NFA(E) = NE × Ξ (PFA1(E), . . . , PFAF (E)) < ε (4)

The proof of this proposition is straightforward. Let
NFAj(E) the number of false alarm of an event E accord-
ing to the feature j, and NE the number of events. Since
∀j, P (maxi=1,...,F NFAi(E) < ε) ≤ P (NFAj(E) < ε),
then P (maxi=1,...,F NFAi(E) < ε) ≤ ε/NE , and hence
P (NFA(E) < ε) ≤ ε/NE , with NFA(E) = NE ×
Ξ (PFA1(E), . . . , PFAF (E)) [11]. Following that, it di-
rectly comes that the expected number of ε-meaningful edges
is less or equal than ε. Notice by adapting the threshold of
meaningfulness, less restrictive operators may also be used,
such as the min, as it has been proposed in [17]. The choice
of the fusion operator depends on the features. A min operator
may be adapated to complementary features, whereas with
Ξ = max, less candidates become meaningful, which is more
convenient for competing features. In this article, we consider
that all the features detect the good candidates, but produce
different false alarms. In this case, combining several features
with a max operator increases the sensitivity of the detector.
We set Ξ = max in all the considered experiments.

B. Edgelet features
Let E = (w1

E , . . . , w
kE

E ) be an edge of composed by kE
edgelets, and wiE ∈ Γ be the i-th edgelet, defined by a set of
connected pixels wiE = (wi,1E , . . . , wi,ME ), with wi,jE ∈ Ω. M
is the edgelet length, and is a parameter of our method. To
guarantee the independence assumption, consecutive edgelets
are separated by a distance of 2. Under the a contrario
hypothesis, an edgelet w follows P (w), with P (.) a uniform
discrete distribution on Γ. Γ is designed such that it excludes
self-crossing edgelets. We propose to model three features:
an edgelet prior, whose PFA distribution is estimated offline
by a Monte-Carlo simulation approach, and a gradient and a
textural features, estimated online, since they depend on the
image.

1) Prior: The first feature is a prior on edgelet shapes.
Intuitively, one could model it analytically by supporting
smooth curves [11]. However, this may not be robust to rough
contours, or corners. We propose to learn the a contrario prior
distribution of an edgelet using a shape database. The goal is to
learn a distribution P (w|{y1, . . . , yO}), with {y1, . . . , yO} a
set of O observed edgelets extracted from a database, and w an
edgelet from the a contrario hypothesis. The likelihood of the
edgelets from the database {y1, . . . , yO} conditionned by an
event edgelet w from the hypothesis a contrario is computed
using:

P 1
li(w) = P ({y1, . . . , yO}|w)

∝ 1
O

O∑
o=1

[dF (yo, w)]−1 (5)

with yo and w two centered edgelets of length M ,
[dF (yo, w)]−1 the matching score, and dF the discrete Fréchet
distance [18]:

dF (yo, w) = inf
α,β

max
t∈[0,1]

d(yo(α(t)), w(β(t))) (6)

with d the distance function in Ω, here the Euclidean one. The
Fréchet distance depends both on the location and the order of
the points along the curves, which makes it robust. However,
it is quite computationaly expensive and one could prefer the
Hausdorff or the Euclidean distance.

The offline estimation procedure of the posterior distribution
P (w|{y1, . . . , yO}) is presented in Algorithm 1. The PFAP
of the prior feature is then computed according to:

PFAP (E) = Prior

(
min

i=1..kE

P 1
li

(
wiE
))kE

(7)

with the distribution Prior such that

Prior(µ) =
1
U

#{z(u), P 1
li(z

(u)) > µ} (8)

with z(u) ∼ P (w|{y1, . . . , yO}) according to the Algorithm 1.
Observed edgelets are obtained from the Berkeley Segmenta-
tion DataSet [19]. In each human segmented images from the
learning database, we collected a fix number of edgelets by a
random selection.

Introducing prior information in a a contrario detector may
seem conflicting with the spirit of the method. Indeed, a
contrario method models the randomness to underline Gestalt
structures. However, modeling the noise instead of a reference
model is not the only one advantage of using the a contrario
framework: it also gives a mathematical structure to detect
meaningful events without any parameter.

Most of a contrario works model a contrario distributions
in a closed form. Among the exceptions, we can cite for
example [10], in which the PFA distribution is learned
from a database. In [14], random simulations are used to
estimate a joint PFA distribution. For the two following
features, we propose to learn their PFA online, using the
weighted sampling procedure described in Algorithm 1. This
methodology is different from the ones proposed before, and



Algorithm 1: Weigthed sampling Monte-Carlo procedure
Input: Likelihood distribution Pli(w), Γ
Output: Empiric posterior distribution PU (w)
begin

for u = 1, . . . , U do
- z(u) ∼ U(Γ).
- Compute q(u) ∝ Pli(z(u)) such that∑U
v=1 q

(v) = 1.

return PU (w) =
∑U
u=1 q

(u)δz(u)(w)

is a part of our contribution. This allows us to model more
complex features than in the closed form case.

2) Gradient: The second feature uses gradient norm of
the image |∇u|. Unlike the Desolneux et al. framework [6],
gradient is computed along an edgelet, which allows more
flexibility in its formulation. The probability of false alarm is:

PFAG(E) = Gradient

(
min

i=1..kE

∣∣g (wiE)∣∣)kE

(9)

with g(w) the gradient computation along the edgelet w:

g(wiE) = Φ
(∣∣∣∇u(wi,1E )∣∣∣ , . . . , ∣∣∣∇u(wi,ME )∣∣∣) (10)

The flexibility comes from the fusion function Φ. One can
set Φ = min, or Φ = max or again a ponderate mean
Φ(v1, . . . , vM ) =

∑M
j=1W (j) vj , with W : {1, . . . ,M} →

[0, 1] a weighting function. In our experiments, we set W (j) =
1/M,∀j. This is less drastic than taking the minimum value
over the whole edge (Section II). Since the gradient depends
on the image, the distribution Gradient needs to be estimated
online. We use the same estimation procedure as the prior one
(Algorithm 1), with g the likelihood distribution:

Gradient(µ) =
1
U

#{z(u), g(z(u)) > µ} (11)

3) Textural: The last feature aims at minimizing response
on texture locations, while conserving high response values on
object contours. The PFAT for the texural feature is:

PFAT (E) = Textural

(
min

i=1..kE

t
(
wiE
))kE

(12)

Now, for a point wi,jE of an edgelet wiE , we consider its normal
segment. The two sides of the normal segment of a point wi,jE
are noted s1(wi,jE ) and s2(wi,jE ). In a texture, the intuition is
that value points along the first segment should not really differ
from the other one. Let h[a] = {hr[a]}Rr=1 be the histogram
of a set of pixels a, and where r is the index of a bin of a
histogram of length R. Distances between pairs of histograms
along normal of the curves are combined to form the texture
feature:

t(wiE) = Ψ
(
dB
(
h[s1(wi,1E )], h[s2(wi,1E )]

)
, . . . ,

dB
(
h[s1(wi,ME )], h[s2(wi,ME )]

))
(13)

with Ψ the fusion operator. In our experiments, we set
Φ(v1, . . . , vM ) = 1/M

∑M
j=1 v

j . dB is the Bhattacharyya
distance between two histograms:

dB(h[a], h[b]) =

[
1−

R∑
r=1

√
hr[a]hr[b]

]1/2

(14)

Like for the gradient, the texture information depends on the
image, then the distribution Textural is estimated online.
Using the Algorithm 1, Textural is given by:

Textural(µ) =
1
U

#{z(u), t(z(u)) > µ} (15)

For color, as for grey level images, we set in our experiments
R = 125, the number of bins.

IV. EXPERIMENTS

The first serie of experiments concerns the results obtained
by each feature, and by setting the length of edgelets to M = 7
and M = 15 (Figure 2). Ideally, each feature should detect
the true contours, and provide different false alarms. Then,
overdetection may not be a problem there are different enough
to the ones provided by other features.

As we could imagine, prior feature (first column) detects
mainly the smooth contours, and the effect is even more
obvious when the length of the edgelet is large (Figures 2(d)).
This also detects smoothes level lines in the sky, which come
from low gradations and quantification. The second column
presents the results obtained by the gradient feature. Compared
to the classical approach (Figure 3), the feature detects more
edges. This may be explained by the fact that computing
the mean value along an edgelet smoothes the a contrario
distribution and then makes the detection less radical. The last
column is about the textural feature. As expected, stones are
not detected, since information along the normal of an edgelet
is redundant. We can observe that the detection is quite rough.
This is also explained by the nature of the feature, which has
a tendancy to have to high response on curves parallel to the
true contours.

Final results, obtained by combining the features, are pre-
sented in Figure 3, and compared to the classical approach by
Desolneux et al. . Our approach detects less edges but keep
the relevant ones. As we claimed before, this result is due
to the combination of different competitive features, which
provide the true contours, but different false alarms. Using a
higher M seems to reduce the number of false alarm, but at
the expense of a missing detection (trees at the right on the
image, Figure 3(c)). Then, in the rest of our experiments, we
set M = 7 the length of edgelets.

Figure 4 presents various edge detection results obtained by
our approach, on grey level and color images. We can observe
that in images with smooth backgrounds (tools and telephone
images), the algorithm overdetects the objects. This is called
by Desolneux et al. the “blue sky effect” [6]. It happens when
the background obtains very low responses to the features.
Then, conditionned by the a contrario distributions, many
parallel level lines become meaningful.



(a) (b) (c)

(d) (e) (f)

Fig. 2. Results obtained on Valbonne church image, using the features independently, and different length of edgelets. First row: length M = 7, second
row: length M = 15. (a,d): prior, (b,e): gradient, and (c,f): textural.

(a) (b) (c)

Fig. 3. Final detection results with (a) the classical approach [6], and our approach with a length of edgelets of (b) M = 7, and (c) M = 15.

V. CONCLUSION

In this paper, we propose some improvements to the a
contrario edge detector proposed by Desolneux et al. in [6].
Our approach aims at introducing higher level information
features, by handling edgelets instead of single pixels. The
first feature is an edgelet shape prior, learned using human
segmentations over the Berkeley Segmentation DataSet [19].
The a contrario distributions of the two other features are
the gradient and the texture, and are estimated online using a
Monte-Carlo simulation procedure, which is another novelty
of our approach. Experiments processed on classical images
show that our approach reduces the number of false alarm,
while keeping the most relevant object contours.

A contrario methods start with a set of possible candidates,
and filter it to keep the most meaningful ones. As we saw, in
the context of edge detection, using level lines have nice prop-
erties but possess the drawback to consider grey level images,
which not be relevant for all images. A possible interesting
field of investigation would be to propose more relevant edges,
for example using more sophisticated preprocesses.
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