
Ada and Software Maintenance

Major Patricia K. Lawlis, USAF

Computer Science Department
Arizona State University
Tempe, Arizona 85287

A b s t r a c t

The Ada language was developed to answer problems
which were seen as the root of the high cost of so f tware
within the DoD. Ada is not the perfect language, but it
is the best currently available. And the Ada
Programming Support Environment (APSE) makes it
more than just a language, but rather a technology
capable of complete software engineering life-cycle
support. All in all, Ada technology far surpasses the
capabilities of any isolated language in providing f o r
both effective system development and its s u b s e q u e n t
ma in tenance .

I n t r o d u c t i o n

Over the years, software projects have had a reputation
for being delivered late and over budget. At the same
time, the cost of software maintenance on these
projects subsequent to delivery has been found to be
running 3 or 4 times the cost of development (by itself
this is not necessarily bad, but on most systems it has
made a bad situation worse). In the mid-l970s, the U. S.
Department of Defense (DoD) recognized the need to d o
something to make software life-cycle costs more
manageable. As a result, the DoD sponsored t h e
development of a new computer language, eventually
called Ada. The expectation was that in producing a
common language which also supported the software
engineer ing pr inciples known at the time. that
software quality could be improved at the same time a s
its overall costs could be reduced. A large portion of t h e
expected cost savings was in the area of s o f t w a r e
ma in tenance .

This paper will explore the various life-cycle activities
which have an impact on software maintenance, and
discuss the effect that Ada can have on these activities,
This discussion will include a look at the concept of the
Ada Programming Support Environment (APSE) and t h e
anticipated impact of the APSE on software development
and maintenance. It is impossible to quote dollars and
cents figures about the effects of Ada on maintenance
until more systems have been developed in Ada and
then have experienced some years of subsequent
maintenance. However, it is possible to make some
reasonable analyses about those aspects of Ada w h i c h
can support significant changes in both maintenance
practices and costs.

Section I is a brief historical background on the
development of Ada and the APSE concept. Section I1

U.S. Government Work. Not protected by
U.S. copyright.

focuses on the management activities of software
development which will have an impact on software
maintenance, and Section 111 looks at technical
development activities affecting maintenance. Ea:h
section also discusses how Ada's contributions in the
deve lopmen t p rocess can a f f ec t subsequen t
maintenance. Then Section IV summarizes the act1 a1
impact Ada should have on software maintenance
activities.

I. Ada Technology

In the mid-1970s. when the Department of Deferse
(DoD) began looking for ways to stem the tide of
skyrocketing software expenses, it started at the he art
of the software development process by examining
programming languages. However, through a series of
calculated steps, the entire software engineering
process was eventually addressed in this quest Tor
reduced expenses.

The Ada language was developed to answer two specific
problems which were seen as the root of the high c x t
of software within the DoD: the use of too many
languages and the lack of support for softwitre
engineering principles in system development. 'I he
use of too many languages was solved by developing a
language which supports all the features needed in DJD
software and then standardizing the language
definition to prevent differing versions. The Ada
language contains numerous features made to
specifically solve the second problem, supporting he
known principles of software engineering.

The APSE concept was developed to solve a differmt
level of problems than those addressed by the Ada
language. It aims at the roots of productivity by
providing both technical and management support :or
the entire life cycle of a project. In so doing, it directly
addresses many issues of maintenance.

of the Pr-

When the DoD began to examine programming
languages, it had been using literally hundreds of them
because of all the special purpose computer systems
embedded in various weapons systems. Most of th,:se
"embedded systems" were programmed in assembly
languages. Yet even those that were not used numerous
versions of various "old" high order languages. It

I52

seemed that each DoD system was developed as a one-
time special purpose system, and both the languages
and the methods being used were "archaic" when
measured in terms of technological advances. It would
have been inconceivable to have continued to use
vacuum tube technology for computer hardware, yet
computer software development had not advanced from
its state of the vacuum tube days. [5]

Because of the one-time nature of system development,
few, if any, software tools were being developed to
improve programming productivity. Software
maintenance was hardly considered at all. Each new
system development had neither the time nor the funds
to spend much on developing tools up front. And tools
from previous systems were specific to those systems,
and thus could not be reused in the new development.
Hence, programmers plugged away, using the little
they had to work with, and continually "reinvented the
wheel", over and over again. [5]

These problems were viewed as the roots of the
"software crisis", and the DoD set out to do something to
bring it under control. The natural direction seemed to
be to look for a common programming language. With
it, reusability could become a reality, and a tool base
could be developed which would support known
software engineering principles. This would not only
result in fewer new software requirements but also in
improved productivity in producing the new software
that was still required. It would also improve the
maintainability of the systems developed. [5]

The DoD began its search for a common language by
comparing existing languages against a set o f
requirements for supporting embedded software. When
no existing language was found to be suitable, the
decision was made to develop a new one which would
not only meet the requirements but would also embody
the known principles of this newly emerging
discipline of software engineering. After four
contractors developed designs for the new language
(each given a color as a code name), the green
language proposed by HoneyweWHoneywell Bull was
selected for further development. [5]

It was about this time that the language was also given
the name Ada, in honor of Augusta Ada Byron, the
Countess of Lovelace. Ada Lovelace (1815-1851), an
associate of Charles Babbage, has been credited with
being the world's first programmer because of her
insights into how Babbage's machines might be'
programmed. [5]

By 1980 the Ada language design had been completed
and standardized by the DoD, and in 1983 it was
standardized by the American National Standards
Institute (ANSI). In 1987 it was also recognized by the
Internatignal Standards Organization (1.50). The
language definition has been published in a document
known as the Language Reference Manual (LRM), MIL-
STD-1815A [l l] . The DoD also copyrighted the name of
Ada so it could not be used except for an implementation
of the language that conforms to the standard defined
in the LRM. An implementation which conforms must
go through a validation process, and, as of 1 March
1988, 175 Ada compilation systems have passed this

validation process [l] . The Ada Joint Program Office
(AJPO) was established by the DoD to oversee the
process of Ada technology insenion. [9, 51

A deep technical discussion of the features of Ada is
beyond the scope of this paper. However, it is pertinent
to examine the principles behind the language features
which address maintenance concerns.

Ada is a procedural high level language. Its design was
based on Pascal, so it contains structures similar in
nature to those found in many of the popular
procedural languages. It contains a number of
additional mechanisms, however, which provide
specific support for various aspects of software
engineering. [5]

One of the important features provided by Ada is the
ability to work with various levels of abstraction. This
is an important part of dealing effectively with
complex systems. As a part of this ability, Ada provides
encapsu la t ion mechan i sms which make t h e
development of software libraries easy and natural. But
in addition to encouraging the development of new
libraries, for a new language to be attractive to old
programmers, it must also have a way to immediately
make libraries available which are at least as good as
the mature ones currently available in o ther
languages. For example, the scientific work currently
done in FORTRAN would be impossible without the
valuable, mature math libraries available with almost
any FORTRAN implementation. Ada has an answer for
that with its ability to define interfaces to other
languages. With this ability, existing libraries from
virtually any language can be made available to Ada
programs, thus providing for the needed transition
period from older languages to Ada. [5 , 111

The encapsulation of features in libraries is an
important concept for system maintenance, as it
isolates system features with well-defined interfaces
from other parts of the system. Also, as more mature
Ada libraries become available to replace older
libraries in other languages, the insertion of the new
libraries could become a part of maintenance activities.
S u c h r e p l a c e m e n t s s h o u l d b e r e l a t i v e l y
straightforward for the maintainer since a library has
well-defined interfaces.

In addition to being able to work with high levels of
abstraction, it is also necessary at times for embedded
software to be able to access machine details. Features
built into Ada provide this capability. However,
because of Ada's emphasis on readability, even machine
level programming details can be understandable to
anyone reading an Ada program. This is an especially
important feature to provide for maintainability of the
software. [5 , 111

In this time of increasing performance demands on
software, it is also important for many embedded
systems to be able to do concurrent processing. This is
one area in which Ada has gone far beyond most other
languages. Ada has built in structures for dealing with
concurrent processes, along with a sophisticated
mechanism for communication among these processes.
Although concurrency is by no means an easy concept

153

for either development or maintenance, handling it at
a relatively high level of abstraction is much easier for
any human to deal with than the more common method
of using the lowest level of machine instructions. [21. 5 ,
111

Finally, it is well-known that computer systems do
sometimes fail. Sometimes the hardware is at fault and
sometimes the software, but more importantly,
sometimes the system supports critical functions which
just must not fail. The Ada designers recognized that
fault-tolerance is an important issue, and so the
language provides a specific mechanism, exceptions,
for dealing with "unusual" or exceptional cenditions
which can cause system failure. This is an important
feature for corrective maintenance because it makes
problems easier to track. It is just as important,
however, that exceptional conditions be considered and
"covered" any time modifications are made during
maintenance. [5 , 111

By the time the development of the Ada language was
well underway in the late 1970s, it was already
recognized that the magnitude of the DoD's software
problems was enormous. A programming language
alone would mot be sufficient to solve all of these
problems. The entire life cycle process had to be
improved. Thus began the effort to define a
programming support environmeat to go along with
the language and provide it with quality support tools
to support the entire development life cycle. [5] This
initial effort ended with a requirements document for
an Ada Programming Support Environment (APSE), and
the document k a m e known as "STONEMAN [lo].

As stated in STONEMAN. "The purpose of an APSE is to
support the development and maintenance of Ada
applications software throughout its life cycle, with
particular emphasis on software for embedded
computer applications." [l o] The basic concept of the
APSE is to provide an integrated set of portable tools
which can be improved and extended as time goes on.
These tools would not only be able to support the
technical aspects of software development, but the

These tools would not only be able to support the
technical aspects of software development, but the
management aspects as well. And because embedded
systems are typically so sm&l that they may not be able
to support the entire APSE during development, an
important part of the APSE concept is to have both a
host and a target system. The host is the system on
which the software is developed, and the target is the
system on which it will eventually run. Of course, any
given system may be both. But the important thing is
to provide a good development environment for the
software which will eventually run on the embedded
target. [5]

Portability is a key issue in the development of an APSE.
If tools can be made portable, then once developed they
can be used in any APSE, even if implemented on
different hardware. Of course, such a powerful concept
is not easy to achieve, but the APSE framework laid out
in STONEMAN provides a basis for achieving it. The idea
is to encapsulate the system hardware and system-

dependent software by a common set of interfaces. Tnis
provides a way for any APSE tool to access the facilities
provided by the system in a standard way. Thus, h e
tool does not have to be dependent on a particular
system in any way, just on the set of interfaces. What is
necessary is for a standard set of interfaces to be
defined and for the actions defined by these interfaces
to be essentially the same on every implementation. [IO,
51

Such a set of interfaces has been defined by the DoD.
The first official version of the Common APSE Interface
Set (CAIS) was published in October of 1986 1121 with the
intention that it be used in the beginning for research
and development purposes. It i s expected that
experience will help this standard to develop i Dto
something that is acceptable to both implementors and
users. Meanwhile, the DoD already has a validation
capability for the CAIS under development. I141 Herce,
once the CAN standard is mandated by the DoD, a
mechanism will be available to determine conformaice
to this standard in much the same way conformance to
the Ada language standard is determined.

In addition to promoting portability, the APSE concept
also calls for the entire set of tools to be integraied.
This concept permits tools to use other tools. keeping
continuity in the software development activit es,
rather than requiring the programmer (designer,
project manager, etc.) to explicitly stop one activity and
start another every time a different action is required.
[lo] It also permits an underlying structure to keep
track of the activities of many working on the same, or
even multiple, projects without disturbing those
activities. This allows for both information gatheling
and project control activities. It can also protide
enforcement of certain procedures if this is deemed
desirable. [181

Because the APSE has been defined to be extended. i: is
not yet determined exactly what tools will be developed
for it beyond those tools standard in today's software
development organizations (compiler, editor, debugger,
linkernoader. etc). As booch indicates, this provides a
great potential for innovation. He divides the poterdial
tools into two classes: generic and methodology-spec ific
tools. Generic tools will support programming tasks in
general, without regard to specific disciplines.
Methodology-specific tools, on the other hand, will
support a particular programming or management
discipline. (51

Since maintenance activit ies depend upon the
management and technical activities involved in the
original development, the APSE will directly support
maintenance as well as software development. The
support for orderly development will provide more
pertinent system information to the maintainer, md,
perhaps even more importantly, that information can
be consistent and complete. Tool portability will
perhaps even put the maintenance organization in
be t te r shape than the typ ica l development
organization, for the maintenance APSE can consist of a
conglomeration of all tools which have been used on
numerous developments. These APSE tools can provide
the maintainer with tremendous productivity benef ts.

A discussion of Ada with respect to software
maintenance would be incomplete if it only included
Ada's strengths and did not address some of its
criticisms. Language weaknesses may have some
bearing on the maintenance of systems implemented in
Ada. The weaknesses of any language must be
considered when determining what i s and is not
possible in an implementation of that language.

The two most notable criticisms of the Ada language at
present are i ts size and its concurrency model.
Whether the size of the Ada language definition is a
problem or not is a matter of current debate. Rather
than argue one way or the other, let's just look at a
potential maintenance problem. It is obvious that a
larger language requires more time for a software
professional of any type to learn than a smaller one.
However, to be fair to Ada, it should also be noted that
Ada requires more time to learn for another reason as
well. Ada was developed to be more than "just another
language". In order to use Ada as intended, a software
professional must also understand and use the
principles of software engineering. Hence, to learn
the "Ada technology". one must not only learn a large
language, but also how the principles of software
engineering can be applied with that language.

Additionally, though Ada may take longer to learn, it
could turn out to be one of a very few languages, or
possibly even the only language, a maintainer needs to
know. This could mean a smaller amount of learning
time spent in the long run, since the learning process
would not have to be repeated numerous times for other
l anguages .

As for the concurrency model, the concern is that it
may not be adequate to permit the necessary
performance required of some real-time systems. This
is a legitimate concern, and it is already being
addressed at the Software Engineering Institute [15]. As
noted above, concurrency is no small problem for any
software system to deal with. However, the use of a
higher level of abstraction, where possible, when
dealing with concurrency is still a plus for the
maintainer, One of the most significant parts of the
maintenance task is to understand the system and how
it works. This is facilitated by the ability to see the
system at the high level of abstraction.

Many other common criticisms of Ada are actually
criticisms of specific implementations rather than
language criticisms. Since the state of most Ada systems
software is less mature than that of other languages
which have been around longer, criticisms such as
language inefficiency have been common. However,
the inefficiencies have been in the implementations,
and they are not inherent in the language definition.
In fact, the efficiency of most implementations is
improving at a rapid rate.

Probably the most common implementation criticism
still blamed on the Ada language is that of its
input/output (I/O) capabilities. The 1/0 was purposely
defined by the language in terms of very basic building
blocks, effectively permitting limitless possibilities for
the development of very sophisticated 1/0 libraries.
Unfortunately, vendors have yet to take much
advantage of the building blocks available. This could

mean additional requirements for system development,
or it could also mean enhancements required as a part
of system maintenance.

This brings us back to system development activities.
But development activities include management as well
as technical activities, and both types have significant
impact on the maintenance of a system. The following
sections will look at both types of activities, how they
are supported by Ada, and how that support affects
software maintenance.

11. Management of Development Activit ies

Management of a software development project
includes numerous activities, many of which have
significant impact on future maintenance of the
software developed. Specific management concerns
include project control , quali ty control , and
configuration management. Ada can provide support
in each of these areas, and this support can have a
positive effect on software maintenance. The basis for
this is the automated support provided by the Ada
environment, the APSE.

Unlike computer languages which are simply
implementation tools, Ada can provide numerous
management benefits which support the technical
work. The APSE can be a powerful management tool,
permit t ing most management functions to be
automated. This will not only cut the time required for
performing certain functions, but in many cases it will
also provide for better results [22].

To begin with, an integrated environment such as we
find in the APSE concept (it is not a part of the state of
the practice in most APSEs yet), has ultimate control
over all software development activities taking place.
Although a manager must be very careful about the
psychological effects of how this control is perceived
by the software developers [18], this permits the
automatic collection and structuring of data for many
purposes .

The concept of an integrated environment is not
unique to the APSE. In Europe, there has been much
interest recently in the integrated project support
environment (IPSE), a concept which is not language
specific. It
is unfortunate that the "P" in APSE stands for
"programming" rather than "project", for an Ada
project support environment is really a better
description of an APSE. Nevertheless, the Europeans
are applying their IPSE concepts to developing APSEs,
just as we are in the U.S. Ada has become a standard in
a number of European countries, in addition to being a
standard for the North Atlantic Treaty Organization
(NATO). [S, 91

In fact, an APSE is just an IPSE for Ada [19].

An important part of project control is knowing the
current status of the project. This is often very
difficult information to obtain when the subject is a
software project, but an APSE can change that
completely. If the project uses automated tools for all
parts of the life-cycle, and these tools are. a part of an
integrated APSE, then the APSE can collect data on
every aspect of the project automatically. Although

I55

knowing what type of data to collect, how to collect it, 111. Technical Development Activities
and what to do with it afterward is an important area
needing more study, i t is clear that the right type of
data collection could provide the project manager with
far better data than can be obtained just by asking for
subjective information from the people working on the
project. And the automatic collection of data has
several important side benefits. It will improve
productivity because people will not have to spend time
providing status information to management, and it
will also improve the historical database of information
which will be important for both maintenance of the
current project and for planning future projects. [18,
221

The potential importance of the information which can
be automatically and systematically collected by an
APSE cannot be understated when considering the
maintenance function. Current maintenance
difficulties are mostly a result of poor software
engineering practices, much of which are manifested
in poor or missing documentation. One of the
capabilities of the APSE, given the right integrated
tools, is the automatic and systematic collection and
modification of system documentation.

litv Control

The data collected by the APSE can also be of great
benefit to the software quality assurance (SQA)
function of a project. Any SQA program requires the
development of standards. One of the biggest
difficulties with SQA is determining if these standards
are being followed. Once established, appropriate
automated functions can check against these standards
very easily, providing a major step toward SQA
effectiveness. [8, 71

An effective SQA function is another basic ingredient
required for maintaining good software engineering
practices in a software project. The standardization of
practices is what makes systematic system
documentation possible.

Conflpyrat ion M w m e n t (CMJ

Another area which can benefit greatly from the APSE
is configuration management (CM). This is an
important area for assisting with project control, yet i t
is often not very effective in practice. One of the
reasons for this is probably that doing CM without
automation requires a major effort, and it is also
difficult to keep the CM current with the ongoing
progress of the software development. An automated
process integrated into an APSE can change this,
making CM an effective part of project management. [4,
221

With such consistent automated control over the system
configuration, maintenance is once again affected.
Without good CM, module changes can impact
unexpected areas and even different version releases.
However, automated CM can prevent this. Together
with effective software engineering practices, as
discussed below, CM automated via an APSE can turn
maintenance into a systematic discipline of software
modification.

The management activities of software development,
described above, are complemented by the technical
activities, described in this section. Any software
development project requires both, and both types of
activities have important effects on maintenance.
Technical activities are supported both by features of
the Ada language and features of the APSE.

The APSE Interactive Monitor (AIM) project developed
for the Naval Ocean Systems Center is an example of a
project benefiting from Ada's software engineering
features. The design of the AIM project took longer
than would be expected, based on representative life-
cycle models. However, testing time was much lower
than expected. AIM was successfully ported from the
system on which it was developed to another entirely
different hardware/operating system pair with
minimum effort. And it was delivered both under
budget and ahead of schedule. Its success was largely
attributed to the use of Ada. [3]

The various software engineering features of Ada
which contribute to such successes include reliability,
reusability, portability (also called transportability),
and methodology and life-cycle support. Each of these
is discussed below, along with its effect on
maintenance.

For software to be considered reliable, its user expects it
to work "correctly" virtually all the time. But even
"correct" has different meanings in different
situations. Sometimes it just means that the software
will never "blow up" or cause the user to lose valuable
time or information. Other times it means that the
software will meet certain stringent conditions and/or
it will never permit an unsafe or life-threatening
situation to occur. [5]

Experiences with systems such as AIM give credence to
Ada's claims to support reliability as well as
maintainability. The fact that AIM system testing
required so little time, when compared with other
similar projects done in other languages, was
attributable to the relatively small number of errors
found during testing [3]. This is a good indication that
those software engineering features are doing their job
in making errors easier to spot and correct early in
development. As a result, better software reliability is
believable.

The sheer readability of Ada code, combined with the
fact that Ada supports expression at the "proper" level
of abstraction throughout a program (because it
supports all levels), also supports reliability and
maintainability. For if a program can be understood,
then it can be safely modified. Of course, ease of
modification is also greatly aided by modularization.
Just as modifying the workings of a machine is easier
when the machine has distinctly identifiable parts
which interact in well-known ways, modifying
software is also easier when the software has distinctly
identifiable modules which interact in well-known
ways. This type of structuring is greatly facilitated by
the features of Ada. [5]

156

This is not to say that poor code cannot be written in
Ada. A good tool in the wrong hands or used for the
wrong purpose can certainly result in a poor product,
and the same , is true for Ada. But if software engineers
are truly making progress in their relatively young
discipline. then the features built into Ada should make
a s ign i f i can t d i f f e rence in re l iabi l i ty and
maintainability. The key is for Ada to be used by those
who understand the pr inciples of sof tware
e n g i n e e r i n g .

Another important software engineering feature of
Ada is the potential for reusability [5]. Because of the
ease with which libraries may be created in Ada and
the fact that the Ada structure most often used to create
them is called a package, they are often referred to as
packages rather than libraries. But the terminology
doesn't matter. The important thing is that any unit
which can be put into an Ada library has the potential
for reusability, and putting units into a library is an
automatic part of Ada development. Hence, the
potential is tremendous.

Once again, just because the potential is there doesn't
mean it will be used. And many issues must be
considered in order to write software which can be
reused easily. However, much has been written on how
to create reusable software, and many are specifically
detailing how this can be done in Ada. Gargaro and
Pappas, for example, demonstrate the differences
among weak reusabili ty, strong reusability, and
effective reusability. They emphasize that many
factors must be considered, but they also illustrate that
Ada is a good tool to use for writing reusable software
[16]. Booch discusses three "levels" of reusability --
packages, tools, and subsystems. Subsystems are
typically 20,000 - 30,000 lines of documented Ada
software developed in an object-oriented manner [6].

The importance of reusability to maintainability
depends on the amount and type of software which is
reused. In general, the reused software would usually
be expected LO be more mature software, which would
theoretically require less maintenance. However,
reusability has not become enough of a reality yet to
make such clear-cut statements. Certain attempts at
reuse could be incorrect uses of the software, and this
could result in additional maintenance problems.

If reuse is accomplished via Ada libraries of package
structures or Ada subsystems, then much of, the
potential maintenance difficulty of software reuse can
be avoided. Proper packaging provides for
encapsulation of abstractions and avoids undesirable
module coupling. This in turn provides for much easier
maintenance, free of undesirable side-effects on other
parts of a software system.

. . v. the w b i l i t v nf APSE P w

Other software engineering benefits of Ada can be
realized with the use of an APSE. The APSE structure is
built on the concept of portability, a high level form of
reusability [101. Portability implies that entire
programs can be reused on different systems. For an
APSE, this means that entire tools or even tool sets can

be reused. This is a powerful concept. It means that
instead of having at most a few tools available for a new
project, entire tool sets can be available for every new
project. Hence, every project can have the benefit of a
set of mature, established tools. The implications this
has for productivity are tremendous, but it's just a
b e g i n n i n g .

Imagine a large organization developing a set of APSE
tools which can be ported to any of numerous types of
computer systems. Once developed, they can be used on
virtually any project. Not only is the potential cost
savings for the organization tremendous, but it frees
the ingenuity of software engineers and designers to
consider higher level, more powerful tools. These could
be built on the base of the established tools. With such
powerful tools, the productivity implications begin to
multiply. And the only limit is in the imagination of
those developing the tools.

As for maintainability, a good set of tools is as important
to the maintainer as it i s to the developer.
Furthermore, the ability to use the same set of tools on
numerous systems provides a continuity among
systems. This can be very important to the maintainer
who is responsible for several systems at the same time.
It not only provides for a more effective tool set, but it
also saves considerable time usually spent in adjusting
to a new tool set every time a system switch is made.
And even if the tool set is not exactly the same on each
system, just using the same language and software
engineering concepts throughout i s an important
continuity. The importance of life-cycle continuity is
discussed below.

ies a n d Life-Cvcle S-

Further software engineering benefits of the APSE
concept are the ability to build in complete life-cycle
support for any software development methodology and
the ability to define the life-cycle in many ways. Many
different methodologies are used today, but few, if any,
have automated support throughout the life-cycle. Yet
the use of a methodology is an important software
engineering feature 1.51.

Although no one methodology is universally used today,
some particular application areas and methods are
beginning to get a lot of attention. For example,
sequential methods don't typically work well with
concurrent applications, so many new methods have
been developed recent ly f o r working with
concurrency [21]. Also, many see object-oriented
design as the way of the future of software
engineering, a fundamental requirement for fostering
software reusability and being able to handle large,
complex systems [20]. Duff believes the object-oriented
model will be a unifying force. He states, "The object-
oriented model will assimilate many of the specialty
areas that are now discrete, including data bases,
financial modeling, logic programming and other areas
of AI, graphics, text formatting, and computer-aided
design." [131 The object-oriented design method has
also won considerable support in Ada circles [5] .

The traditional life cycle is defined by a "waterfall"
model based on strictly top-down hierarchical
decomposition. It is recognized that this is a good
method for developing software i f the solution is
known, but many believe it to be a poor way to develop

157

new types of software for new applications. A number
of new paradigms are now being used for software
development , including rapid prototyping and
operational .specification. [23, 21

The advantage to the APSE approach to tools is that the
tools can provide support for any desired life-cycle
model in combination with a desired methodology. Or,
an APSE can even contain several sets of tools
supporting multiple methodologies and life-cycle
models, and a project can choose the best combination
for a particular application.

In any case, the continuity of complete life-cycle
support is important for system maintenance. Many
modifications require changes to the original system
requirements, and then the effects of the change
ripple through the entire life-cycle. Such changes
would be greatly facilitated by automated support for
following the ripples all the way from documentation
changes to actual source code modifications.

IV. Conclusion

Now that we have examined the match between Ada and
the needs of software maintenance, it has become clear
that Ada has much to offer both in language features
and life-cycle support. The APSE concept provides just
the right framework for supporting all of the basic
management activities. It provides the capabilities for
automated monitoring, configuring, and data collection
to support the many activities involved with project
control. It also answers the needs for enhanced
productivity and system reliability. All of these
features not only make a system easier to develop, but
also to maintain.

As far as technical issues, perhaps Jean Ichbiah, Ada's
chief designer, best summarizes the future expectations
of the language in this area:

"Ada has all the right facilities. The package
concept embodies the software engineering
principles needed for organizing and building
large systems. The tasking features allow you to
express an application's inherent parallelism
directly in your program. The program library
concept maps well t o dis t r ibuted host
env i ronmen t s , a l l owing networked team
members to share common libraries. Regarding
the sof tware development proce,ss i tself ,
programs will be constructed much more by
composition out of existing components than by
developing them from scratch. On-line data
bases of Ada packages will be accessible for this
purpose." [17]

All of these software engineering features supporting
technical development activities provide a solid basis
for software maintenance. Ada is not the perfect
language, but it is the best currently available. And the
APSE makes it more than just a language, but rather a
technology capable of complete software engineering
life-cycle support. All in all. Ada technology far
surpasses the capabilities of any isolated language in
providing for both effective system development and
its subsequent maintenance.

References

Ada Information Clearinghouse. List of Validated Ada Compiles,
Ada I#brmation ClCOringhouse Newsletter, Vol VI No 1. h b r J
1988.
William W. Agresti, "What Are the New Pardgms?", in Nvw
Parad ips for Software Development, edited by William 'U.
Agresti, IEEE Compum Society Press, 1986.
Jerry Baskem, T i e Cycle Analysis of an Ada Project", IElSE
S~tware , Vol4 No 1, January 1987.
Rudy Bazelmans, "Evolution of Configuration Management",
Sojhvare Engineering Notes, Vol 10 No 5, Octo& 1985.
G d y Booch, Software Engineering with Ada. 2nd edition,
Benjamin/Cu"ings. 1987.
Grady Booch. Software Components with Atfa,
Benjamin/Cu"ings. 1987.
Martha Branstad and Patricia B. Powell, "Software Engineerng
Project Stanciards", IEEE Transactions on Software Enginembag.
Vol SE-IO No 1, January 1984.
Fletcher J. Buckley and Robert Poston, "Software Q y i t y
Assurance". IEEE Transactions on Software Engincerhg. to1

Virginia L. Castor. "hamatic Progress", Defense Science &
Elecrronics, Vol5 No 3, March 1986.
Department of Defense, Requirements for Ada Programming
Support Environments, "STONEMAN". February 1980.
Department of Defense. Ada Programming Language, Ab SI/

D e m e n t of Defense. Common Ada Progranming SupForr
Environment (APSE) Interface Set (CMS), DOD-STD-18311, 9
October 1986.
Charles Duff. "programming in the 1990s". Computer Lungrige,
Vo14 No 12. Decem& 1987.
APSE Evaluation & Validation (EBV) Team, IbfU.NET elecmsic
mail communications, 1987.
Robert Firth. "A Pragmatic Approach to Ada Insertion",
Pmcedngs of the International Workshop on Real-Time \da
Issues. Ada Letters, Vol W No 6 (Special edition), Fall 1987.
Anthony Gargam. "Reusability Issues and Ada", IEEE Sofrtwire,
Vo14 No 4, July 1987.
Jean Ichbiah. "programming in the 199Os", Computer Language.
Vol4 No 12, December 1987.
B. A. Kitcknham and J. A. McDermid, "Software Metrics and
Integrated Project Support Environments". Software Engineeing
Journal. January 1986.
John McDermid. Introduction by the editor. Integrated Prc ject
Support Environments. Peter Pengrinus Ltd.. 1985.
Bertrand Meyer, "Reusability: The Case for Object-Orieited
Design", IEEE Software, Vo14 No 2, Nuch 1987.
Kjell W. Nielsen afid Ken Shumate. "Designing Large Real-Time
Systems with Ada", Communications of the ACM, Vol U) bo 8,
August 1987.
Paul Rook, "Controlling Software Projects", Sofin are
Engineering JOWM~, January 1986.
Yu Wang. "A Distributed Specification Model and Its
Prototyping", Proceedings of COMPSAC'86, October 1986.

SE-10 NO 1, Jan~ary 1984.

MIL-STD-1815A 22 1983.

IS8

http://IbfU.NET

