
-/
l

") "_"

Towards Automated Support for Extraction of Reusable

Components /_ _ /_.1

S. K. Abd-E1-Hafiz V.R. Basili G. Caldiera

Institute for Advanced Computer Studies,

Department of Computer Science,

University of Maryland, College Park, MD 20742, U.S.A.

Abstract

A cost effective introduction of software reuse tech-

niques requires the reuse of existing software developed
in many cases without aiming at reusability. This pa-

per discusses the problems related to the analysis and

reengineermg of ezisting software in order to reuse it.

We introduce a process model for component extrac-

tion and focua on the problem of analyzing and qual-

ifying software components which are candidates for

reuse. A prototype tool for supporting the e_raction

of reusable components is presented. One of the com-

ponents of this tool aids in understanding programs

and is based on the functional model of correctness.

It can assisl software engineers in the process of find-

ing correct formal specifications for programs. A de-

tailed description of this component and an example to

demonstrate a possible operational scenario are given.

1 Introduction

Successful reuse of software resources can in-

crease the overall quality and productivity in software

projects by a large factor. Some of the problems that
still limit software reuse are:

1. The difficulty of understanding a given software

product in the absence of its original developers.

2. The scarce availability of reusable objects, even

though there is a tremendous amount of available
software.

3. The difficulty of retrieving, from a large data
base,software components which can best match

the given semantics requirements.

4. The lack ofextractionand adaptation techniques

that facilitate the reuse process.

New process models for software development

should substitutethe existingones that ate not de-

fined to benefitfrom or support reuse. These new

models should take advantage ofreuse,introducemore

reusable resources,and overcome the existingprob-
lems that limitreuse.

Developing reusablecomponents isgenerallymore

expensive than developing specializedcode, because

of the overhead ofdesigningforreusabilityand main-

taining the component repository.A rich and well-

organized catalog of reusablecomponents isthe key

to a successfulcomponent repositoryand a long term

economic gain. Moreover, such a catalogwillnot be

available to an organization unless it can reuse the

same code it developed in the past. Mature applica-
tion domains, where most of the functions that need to

be used already exist in some form in earlier systems,

should provide enough components for code reuse. For

example, Lanergan and Grasso found rates of reuse of

about 60% in business applications[l]. A technique

for extracting reusable components can improve pro-
ductivity since it provides the software developer with

components that are ready for reuse or need minor

adaptation. Moreover, it can improve the software

quality as it helps in better understanding these com-

ponents during the extraction process.

In this paper, we use a process model[2] that serves
not only to enhance the development of the project

under consideration but also to organize and plan for
better reuse technology in future projects. This model

splits the traditional life-cycle model into two separate

organizations, the project organization and the expe-

rience factory. In this framework we introduce a pro-

cess model for component extraction and focus on the

problem of qualifying candidate software components
forreuse.

A prototype tool constitutingone of the elements

ofan integratedsystem forextractingreusablecompo-

I000$71mi.

3-3

PRECEOI','_'(_ ?AC_E _LANK NC7 F;LNR';)

nents is described. This prototype tool helps in under-

standing programs by deriving their specifications and

is based on the functional model of correctness[:], 4].

The tool could be applied to program fragments as

well as to complete programs and it helps in simul-

taneously checking syntax, static semantics, and gen-

erating specifications. We conclude the paper with

an example to demonstrate a possible operational sce-
nario of the tool.

2 Organizing the component extrac-
tion

Currently, all reuse occurs in the project develop-

ment, where there is a completion deadline and the

top priority is to deliver tile system on time. This
makes the objective of developing reusable software,

at best, a secondary concern. Besides, project person-

nel cannot recognize the pieces of software appropriate

for other projects.
We make use of a reuse-oriented model based on

two separate organizations[2]:

The project organization: Its goal is to deliver

tile systems required by tile customer. The pro-
cess model can be chosen based upon the charac-

teristics of the application domain, taking advan-

tage of prior software products and experience.

The experience factory: It supports project

development by analyzing and synthesizing all

kinds of experience, acting as a repository for such

experience, and supplying that experience to var-
ious projects on demand. Within the experience

factory, we can identify various sub-organizations.

One of them is the component factory which

develops reusable components, extracts reusable

components from existing systems, and general-

izes or remodels any previously produced compo-
nent.

Different conceptual architectures can be used for

the component factory[5]. At one extreme there is the

clustered architecture in which all software develop-

ment activities are concentrated in the project organi-

zation and the component factory is dedicated only to

processing already existing software. At the other ex-
treme there is tile detached architecture in which tile

deve!opment activities are concentrated in tile com-

ponent factory and the project organization performs

only high-level design and integration. The clustered

architecture is much closer to the way software is cur-

rently implemented. The development of the compo-

nents is probably faster in the project organization
since there is less communication overhead and more

direct pressure for their delivery. On the other hand,

the components developed are more context depen-
dent. In the detached architecture, there is more em-

phasis on developing general purpose components in

order to serve several project organizations more ef-

ficiently. On the other hand, there are more chances

for bottlenecks and for periods of inactivity due to the

lack of requests from the projects. The detached ar-

chitecture is probably better suited for environments
where the practice of reuse is formalized and mature.

An organization that is just starting with reuse should
probably instantiate its component factory using the
clustered architecture and then, when it reaches a suf-

ficient level of maturity and improvement with this

architecture, start implementing the detached archi-

tecture in order to continue the improvement.

In any case, the extraction of reusable components

is a characteristic activity of the component factory.

The next section will present in detail the features of

this activity, in the framework of a component fac-

tory. Caldiera and Basili[6] have proposed a process

model for the extraction of reusable components in

two phases: the identification phase and the quali-

fication phase (see figure 1). Tile necessary human
intervention in the second phase is the main reason

for splitting the process in two steps. The first phase,
which can be fully automated, reduces the amount of

expensive human analysis needed in the second phase

by limiting analysis only to components that really
look worth considering.

3 The extraction process

3.1 Identification

Program units are automatically extracted and
made to be independent compilation units. These in-

dependent units are measured according to observable

properties related to their potential for reuse in three
steps. These steps are summarized here:

1. Definition of the reusability attribute model:

A set of automatable measures that captures the char-

acteristics of potentially reusable components is de-

fined along with acceptable ranges of values for these
metrics.

2. Extraction of components: Modular units (e.g.

C functions. Ada subprograms or blocks, or Fortran

subroutines) are extracted from existing software and

10006_L

3-4

completed so that they have allthe externalreferences

needed to retisethem independently.

3. Application of the model: The currentreusabil-

ity attributemodel isapplied to the extracted,com-

pletedcomponents. Components whose measures are

within the model's range of acceptablevaluesbecome

candidate reusable components to be analyzed in the

qualificationphase.

A detaileddescriptionof the component identifica-

tion phase, a definitionofa basicreusabilityattribute

model, and an applicationof this model on several

case studiesusing a computer-based "system have al-

ready been discussed inthe literature[6].

Components

Repository

F......fl l

J

(_mUli"A !

_,abW_Comp_mam.t !

L..............t..............! F--,b,_

FigureI:Component extraction.

3.2 Qualification

The extracted components are analyzed in order

to understand them and record theirmeaning. The

components are packaged by associatingwith them a

reusespecification,a significantsetof testcases,a set

of attributesbased on a reuse classificationscheme,

and a set of procedures for reusing the component.

This phase consistsoffollowingsteps:

1. Formal specification: A precisedescriptionof

what the component does isgenerated and some as-

surance isobtained that the component meets the re-

quirements.

Since formal specificationsare based on mathemat-

icalnotations,they help in understanding the soft-

ware by removing the ambiguitieswhich might be in-

troduced by any informal notation. Formal specifi-

cations are differentfrom the programs they specify

since they only express the behavior of the program

without statinghow the program derivesthis behav-

ior.So, formal specificationsare the basisforselecting

and storingsoftware components as they improve un-

derstandabilityand assistin producing more reliable

and higher qualitysoftware.Since the specificationof

complex tasks may in itselfbe complex, the process

of specificationconstructionmust be formalizedand

supported by automated tools.In the next section,we

willdescribea prototype toolthat aidsinunderstand-

ing programs. This tool provides automated support

forderiving the functionalspecificationsof programs

and proving theirpartialcorrectness.In other words,

ithelps inproving that the program isconsistentwith

itsspecificationbut does not prove itstermination.

Formally specifying a software component and

proving itspartialcorrectnessdo not mean that the

component willpass thisstep.There areseveralother

propertiesthat should existin the candidate compo-

nents for the sake of understandability.We must not

ignoreother important featuressuch as proper docu-

mentation, use of meaningful variablenames, and the

structuredstyleof programming. The informal infor-

mation that thesoftwareengineerdealswith cannot be

ignored relyingon the fact that the automated spec-

ificationstools willsupplement those features. The

informal information isimportant in explainingsome

intuitiveideas that are hard to explain using formal

specifications.

Since we need both formal and informal informa-

tion,a domain expert isneeded to perform the specifi-

cationstep.This expert extractsthe formal specifica-

tionofeach candidate reusablecomponent, assistedby

the automated toolsavailable,and examines the other

informal featuresthat cannot be judged using auto-

mated tools.Components that are not relevant,not

correct,or whose functionalspecificationisnot easy

to extract are discarded.The expert reportsreasons

fordiscardingcandidates and other insightsthat will

be used to improve the reusabilityattributesmodel.

2. Testing: Test cases are generated, executed and

associatedwith components. Deriving the functional

specificationand proving the correctnessof a pro-

gram do not mean that itwillnot failwhen compiled

and/or executed. This might simply be due to the

fact that termination of the program has not been

proven. Moreover, in most verificationand specifica-

tionsystems, arithmeticoperationsignorethingssuch

as overflow,underflow,and round-offerrors.

Testing can take advantage of the functionalspec-

ificationgenerated by performing functionaltesting.

Also, structuraltestingcan be done using a cover-

age analyzer. If,as islikely,the component needs a

I00_788L

3-5

'wrapping' to be executed, the testing step generates

this wrapping. If a component passes the testing then

test cases, wrapping, and test results are stored in the

component repository. Components that do not sat-

isfy the test are discarded. Again, the reasons for dis-

carding candidates axe recorded and used to improve

the reusability attributes model and possibly the pro-

cess for extracting the functional specification. This

is most likely the last step at which a component will
be discarded.

3. Packaging: The extracted candidates are stored
in the component repository along with their func-

tional specifications and test cases. The component

repository is actually a data base of experience in
which information on software products, processes,

and measures of aspects of them isstored. That is

why we organize thisdata base by classifyingboth the

reusablecomponents and theirdevelopment histories

according to several domain dependent criteria.

Information for the future reuser is provided in a

manual that contains a description of the component's

function and interfaces as identified during generation

of its functional specification, directions on how to in-

stall and use it, information about its procurement

and support, and information for component mainte-
nance.

At the end of each processcyclethe reusabilityat-

tributemodel isupdated by drawing on information

from the qualificationphase to add more measures,

modify or remove measures that proved ineffective,or

alterthe range ofacceptablevalues.This step requires

analysis and possibly even furtherexperimentation.

The taxonomy isupdated by adding new attributes

or modifying the existingones according to problems

reported by the experts who classifythe components.

4 The CARE system

4.1 Overview

The CARE[6] system(CAREl: Computer Aided

Reuse Engineering) has been designed to support the

proposed process model for extracting reusable com-

ponents. As shown in figure 2, it consists of two main

subparts: the component identifier and the component

qualifier. The component identifier consists of the

model editor, which helps in defining and moc}ifying
the reusability attributes model, and the component

extractor which applies such model to the programs.

1 The CARE system is under development at the Computer

Science Department of the University of Maryland

The component qualifierconsistsof the specifier,the

tester,and the packager. The current versionof the

CARE system consistsofthe component extractorand

the specifier.Itruns on a Sun Workstation and sup-

ports ANSI C and Ada. In the restof thissectionwe

focus on the descriptionofthe specifier.

1

IDENTIFnER

1.2
COMPOt_-.NT

EXTRACTOR

2

QUAL,II_

2.1
SI_C_I_..K

2.2

2.3
PACKAG_

Figure2:CARE system architecture.

4.2 The component specification tool

The prototype specifier included in the CARE tool

is the second in a series of prototype tools developed at

the Computer Science Department of the University of

Maryland under the general name FSQ, for Functional

Specification Qualifier. This prototype supports the

derivation of programs specifications and the verifica-

tion of whether or not the programs meet those spec-

ifications. It does not only help to specify and check

the partial correctness of finished programs, but it also

works on unfinished programs and program fragments.

It isa program understanding tool that isbased on

a formal specificationtechnique. CARE-FSQ2 uses

Mills'functionalmodel ofcorrectness[3,4] inorder to

derivethe specifications.This model requiresthe user

to provideonly the loop functionand then a technique

isprovided to derivethe program specification.Other

techniques[7,8]requirethe userto providean entry as-

sertion,an exitassertion,and a loop assertion.Those

techniquesare more usefulin verifyingthat the pro-

gram isconsistentwith itsspecification.The process

of derivingspecificationshelps more in understanding

the software. Moreover, the functionalmethod pro-

10G0STlml.

3-6

rides simple and intuitive notations that can be easily
understood.

The CARE-FSQ2 prototype helps in checking syn-

tax, static semantics, and generating specifications at

the same time. CARE-FSQ2 also provides the capa-

bility of carrying out some algebraic simplifications
and enables the user to make use of some well defined

mathematical functions in the specification of the loop
function.

4.2.1 Formal foundation: Each statement S is

given a meaning as a function from a program state

to another state.A state isa mapping from the vari-

ablenames to theircurrentvalues.The square bracket

notation isused to denote the functionrepresentedby

the program construct contained insidethe brackets,

i.e.[S]representsthe functioncomputed by the state-

ment S. We use four basic structures[3, 4]:

1. Assignment

The meaning of the assignment v := e, where v is

a variable and e is an expression, is:

[v:=e] = {(S,T): T=Sexceptthat

[vl(T)= [el(T)}

We can define the meaning of variables and expres-

sions as a mapping from a state to a value.

2. Composition

If A and B are statements and o is functional com-

position, we have:

[A;S] = [A] o [B]

3. ALternation

[if B then S fi] - {(U,[S]U): [B](U) = true}t.)
{(U, U): [B](U) = false}

[if B the. S, e_se S_/i] = {(U,[S,]U) : [B](U)
= tr_e} u (U, [S2]U): [B](U)= fatse}

4. Iteratiqn

[whileBdoSod] = {(T,U): 9k>0 :V0<i<k(

([BI([S]'(T)) = true ^ {Bi([S]k(T)) = false

^ [S]_(T) = o')}

In other words, the loop function is undefined for a
state T unless there is a natural number k which de-

notes the number of iterations after which the test first

fails. T is then transformed to the k-fold composition

of S on T. In order to carry out practical proofs, the

following characterizing theorem is needed[9].
Theorem

Let W be the program fragment while B do Sod,

Then f = [W] if and only if:

1. domain(f) -- domain([W])

2. ([B](T)" false) =:_ f(T) - T

3. f = [if B then S fi]o f

This theorem provides a method for deriving the
correct loop function f:

1. Guess or work out a trial function f.

2. Use the three conditions of the theorem to check
that the trial function is correct.

A trace table can be used to organize the derivation

of program meanings (by a symbolic execution of the

program)J4, 9].

The strength and weakness of the functional

method, in comparison with other specification tech-

niques, originate from the fact that even though exact

functions state accurately the meaning of a loop, they
are harder to work with than the weak assertions that

suffice when there is a loop initialization providing a

precondition.

4.2.2 The implementation: CARE-FSQ._ is im-

plemented using the Synthesize_ Generator[10] and

Maple, an interactive algebraic symbolic executor[l 1].

An overview of the tool is shown in figure 3. The
Synthesizer Generator requires as an input a descrip-

tion of an attribute grammar and generates from it

a hybrid language-based editor that allows a combi-

nation of text editing and structure editing. As the

user edits program text and annotations, the system

creates and edits abstract syntax trees that represent

vieces of programs and their specifications. The at-

tributes of the nodes of this tree carry information

about the static semantics of the program as well as

its specifications, and they are evaluated incremen-
tally. The basic feature of Maple is its ability to sim-

plify expressions involving unevaluated elements. As

each complete statement is entered by the user, it is
evaluated and the results are printed on the output

device. Maple enables carrying out algebraic simpli-
fications during the symbolic execution. In order to

overcome the limitations of Maple in the evaliaation

of boolean expressions, CARE-FSQ_ has an interac-

tive feature that allows the user, before writing the

specifications, to simplify boolean expressions and the

expressions containing array notations.

10006_t

3-7

I, user 1

Functions Based Editor

(SE) I (LE)

I
Maple

Maple Procedurt$

Figure 3: Overview of CARE-FSQ2.

In a typicalCARE-FSQ2 session,the user derives

the specificationsof the program using step-wiseab-

stractions.[n other words, the user startsby tryingto

find the correctspecificationofevery loop in the pro-

gram as a separate entity.After succeeding in this,

the correctspecificationof the whole program can be

found. This methodology ofstep-wiseabstractionen-

ables the software engineer to concentrate on small

piecesof code, one at a time, and to mitigate in this

way the difficultyofspecifyingthe whole program.

Currently,CARE-FSQ2 supports a subset of Ada

with modificationson the input/output mechanism.

The data types supported are integer,boolean, char-

acter,a restrictedform of floatingpoint,constrained

arrays,and user defineddata types.The basiccontrol

structuresof Ada are supported except unconditional

'go to' statements, and case statements. Staticse-

mantic checking isalsoincluded. A briefdescription

of the input/outpuL mechanism and the specification

language isgiven inthe restofthissubsection.

Input and output is done through atomic and

stream ports[12].A subprogram, calledan elementary

process,acceptsinput data from input ports,performs

computation specifiedwith an Ada-like notation,and

returns resultsthrough output ports.The input and

output ofsingledata items can be carriedout through

atomic ports. Stream ports are used as schemes for

data types whose elements can be accessedin a linear

order.The stream ports of one processcan be bound

to particulardata types to produce the implementa-

tion. Input and output ports can be bound to files

to communicate with the system. This form of data

abstractionhelps in making the specificationprocess

more generaland easier.The followingseven opera-

tionsare definedforatomic and stream ports:

I. Receive(p):To Receive a valuevia the input port

p from the source associatedwith the port.

2. Send(p): To Send a value via the output port p

to the destinationassociatedwith the port.

3. Initialize(p):To open the stream associatedwith

the stream port p for reading.

4. Receive(p,v): To receivea value into a variable

v from the stream associatedwith the input port

p.

5. Send(p,v): To send the valueofvariablev to the

stream associatedwith the output port p.

6. isEOS(p): A boolean function to check ifend of

stream isreached in the input stream port p.

7. Finalize(p):To closethe stream associatedwith

the port p. The effectoffinalizationforan output

stream port isthat the functionisEOS becomes

true at the consumer process.

The specificationsforCARE-FSQ_. are writtenus-

ing guarded command setswhose syntax is:

< guarded command set > ::=

< guarded command >

{ I < guarded command >}

< guarded command > ::=

< boolean ezpr > --

< concurrent assignment >

< concurrent assignment > ::--

< vat > := < expr > [< var > ,
< concurrent assignment > , < ezpr >

A concurrent assignment is an extension of the assign-
ment statement where a number of different variables

can be substituted simultaneously. The concurrent

assignment statement is denoted by a list of differ-
ent variables to be substituted at the left hand side

of the assignment operator and an equally long list of

expressions as its right hand side. The ith variable
from the left hand list is to be replaced by the ith ex-

pression from the right hand list. The expressions can
include calls to some mathematical functions such as

min, max, product, sum, factorial, igcd (greatest com-

mon divisor), irem (remainder), and iquo (quotient).

100_71NIt

3-8

An array is considered to be a partial function from

subscript values to the type of array elements. The

command a(i) :- e assigns a new function to a, a
function that is the same as the old one except that at

the argument i its value is e. The notation (a, i, e) is
used to denote the array that is the same as a except

when applied to the value i yields e. The notation

(a, indez - m..n, e) is used to denote the array that
is the same as a except when applied to index values

between m and n, i.e. m < indez <_ n, it yields e. The

expression e can be a function of the bound variable
index. To make the two notations consistent, (a, i, e)

is written (a, index - i,e) where inde:: is a bound
variable. The notation defined for arrays are used for

stream ports as well. A stream port is treated as an

array whose subscript is of type integer with the first

element subscript being one.

_,rocam _ (x: In inmler atolldc

; y: in t_ncmSm" mcoanJ,c; z: ,a,uc ln_ m¢omJ©) is l_

xl: In tmlW;
yl: in tmll_r; _"
a: in t.Olgm¢;
b: lntegm',

b_R
Receive(x);
_d,,,'eO,);
xl :-x;
yIL :-y;
(true --> xl,)'1 :-- iuJn(x 1. yl). anin(X 1. yl))

•whl|e x 1 l--y1 loop
Ifxl >yl ch_

_Jse
yl :-yl -- 1;

p_nd If;
e_"l d loop;

b:--l;
• :wXl;
(a > O --> 1, b :-O, b " _toatad(a)
l a <--0-_. I)

'_4xlle • _- 0 loop

em, d loop;
z :--b;
S_ndCz);

c_t.d;

,0

Q

mc)•ltl o_ea o_ _e

Figure 4: The program to be specified.

4.2.3 Example: We describe a short example, due

to the space limitation, to demonstrate a sample re-

sult obtained using CARE-FSQ_. In order to find the

correct specification of a while loop, the user should

annotate it with a trial loop function enclosed between

two curly braces. CARE-FSQ2 assists the user in ver-

ifying the correctness of the loop specification by cal-

culating the composition [if B then S fi] o f. The
user, on the otimr hand, must ensure that the three

while loop verification conditions are satisfed. After

verifying all the while loops in the program, the user

expr : (xZ-yZ < 0 or _1-xl < O) and 91-xl < 0

Mould 9ou like to simpliP9 this expression? [9/n]: 9

Enter the simplified expressly: 91 < xl

expr : (x2-_j1 < 0 or 91-xI < O) end not 91-xi < 0

Would 9ou llke to $impliP9 this expression? [B/n]: 9

Enter the simplified expv-ession: 91 > xZ

expr" : not (xl-_jX < 0 or yl-xi < O)

Would you like to simpliF 9 this expression? [B/n]: 9

Enter the simplified expression: 91 = xl

The eb_bolic executi_ re:-It is :

yl < xl ->

xl. yl :=
min(x1-1.yl), mln(xl-1,91)

_I > xl ->

xl. 91 :=

min(x_.91-1}, min(xi,91-1)

91 = xl ->

xl, 91 :=

.in(xl,91), min(xl,Bl)

Figure 5: Finding the specification of the first loop.

expr : -e

Would _ou

Enter the

< 0 and -a+l < 0

like to slmplI?9 this expression? [B/n]: 9

simplified expression: a > I

expr : -a

Would
Enter the

< 0 and e-I <= 0

like to si_liF9 this expression? [_/n]:

simplified expr_ion: a = i

expr- : not we < 0 _._ a <= 0

idould Bou like to simpliP_j this expression? [B/n]: 9

Enter the simplified expression: a <= 0

The s_mbolic execution result is :

a>1->

a, b :=

O, baGAI_IA(a* I)

I

a= i ->

a, b ::
m-i, b*a

I

a <= 0 ->

a, b :=

Figure 6: Finding the specification of the second loop.

can proceed to find the functional meaning of the

whole program.
Figure 4 shows a program that receives two integers

as input, finds their minimum, calculates its factorial

1001_?_8L

3-9

ifitispositive,and then saves the resultin z. First,

the verification-conditionsof the two while loop have

to be checked. Hence, we letCARE-FSQ2 print the

composition [if B then S f:] o f to assist us in this

process. Before printing the results of the composi-

tion, the user is prompted to enter his simplifications
for some expressions if he/she desires(see figures 5 and

6).
Since the three verificationconditionsare satisfied

for both loops,we can thereforeproceed to find the

functional meaning of the whole program which is

shown in figure7.

The symbolic executlon result is :

-min(x. B) < 0 ->

x. _. z. xl. _1. a. b :=

x. _. GAHMA<min(xo_)_I). min(x.w).

mln(x.B). O. C_¢_It_A(mln(x._)+l)

min(x.y) <= 0 ->

x. B. z. xl. W1. a. b :=

X. y. 1. mln(x.B), mln(x._), m|n(x.y). 1

Figure 7: Specification of the whole progrzm.

5 Conclusion

In this paper, we have presented a process mode]

for extracting reusablecomponents. It firstidentifies

thesecomponents usingsoftwaremetrics,then itqual-

ifiesthem. We have focusedon the qualificationphase

which generates their formal specifications, generates

a significant set of test cases, and packages them for

future reuse. We have then described the specifica-

tion tool of the qualification phase, CARE-FSQ2, that

helps in understanding programs by generating their
correct formal specifications. Further research needs

to be done in order to be able to qualify and tailor

large programs for reuse.

Acknowledgement

Research for thisstudy was supported in part by

NASA (Grant NSG-5123), ONR (Grant NOOO14-87-

k-0307),and Italsie]S.p.A. (IAP Grant).

[21

[3]

[4]

[s]

[6]

[7]

V. R. Basili, "Software Development: A

Paradigm for the Future", Proc. Compsac'89,

IEEE Computer Soc. Press, Los Alamitos, Calif.,

Order No. 1964, pp. 471-485.

H. D. Mills, "The New Math of Computer Pro-

gramming", Communications of ACM, vol. 18,
no. 1, Jan. 1975, pp. 43-48.

J. D. Cannon, R. B. Hamlet and H. D. Mills,

"Theory of Modules", IEEE Trans. on Software

Engineering, vol. SE-13, no. 7, July 1987, pp. 820-
829.

V. R. Basili,G. Caldiera,G. Cantone, "A Ref-

erenceArchitecturefor the Component Factory",

Technica/Report CS-TR-2607, Institutefor Ad-

vanced Computer Studiesand Dept. ofComputer

Science, Univ. of Maryland, College Park, MD

20742, March 1991.

G. Caldiera and V. R. Basili, "Identifying

and Qualifying Reusable Software Components",

IEEE Computer, Feb. 1991,pp. 61-70.

C. A. R. Hoare, "An Axiomatic Basis for Com-

puter Programming", Communications of ACM,

vol. 12, no. 10, Oct. 1969, pp. 576-580,583.

[8] E. W. Dijkstra, "A Discipline of Programming",
Prentice Hall, 1976.

[9]

[10]

H. D. Mills, V. R. Basili, J. D. Gannon, and R. G.

Hamlet, "Principles of Computer Programming:
A Mathematical Approach", Boston, MA, Allyn
and Bacon, 1987.

T. W. Reps and T. Teitelbaum, The Synthesizer

Generator Reference Manual, Springer-Verlag,
1989.

[11] B. W. Char et al, Maple User's Guide, Watcom

Publication Limited, Waterloo, Ontario, 1985.

[12] B. Joo, "Adaptation and Composition of Pro-

gram Components", Ph.D. Dissertation, Dept. of

Computer Science, Univ. of Maryland, College

Park, Maryland, 1990.

References

[1] R. G. Lanergan and C. A. Grasso, "Software En-

gineering with Reusable Design and Code", IEEE

Trans. on Software Engineering, vol. SE-10, no. 5,
Sept. 1984, pp. 498-501.

1000671_L

3-10

