
HAL Id: hal-01894094
https://hal.science/hal-01894094

Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Change Propagation Model and Platform For
Multi-Database Applications

L Deruelle, Mourad Bouneffa, N. Melab, Henri Basson

To cite this version:
L Deruelle, Mourad Bouneffa, N. Melab, Henri Basson. A Change Propagation Model and Platform
For Multi-Database Applications. International Conference on Software Maintenance (ICSM), 2001,
Florence, Italy. �hal-01894094�

https://hal.science/hal-01894094
https://hal.archives-ouvertes.fr

A Change Propagation Model and Platform
For Multi-Database Applications

L. Deruelle, M. Bouneffa, N. Melab, and H. Basson
Laboratoire d’Informatique du Littoral
Maison de la Recherche Blaise Pascal
50, rue Ferdinand Buisson - BP 719

62228, Calais Cedex, France
fderuelle, bouneffa, melab, bassong@lil.univ-littoral.fr

Abstract

In this paper, we propose a formal model and a plat-
form for software change management. The model is based
on graphs rewriting, and deal with both multi-language
source codes and heterogeneous database schemas. These
are represented by software components linked by meaning-
ful relationships. The change impact analysis is done, us-
ing a Knowledge-Based System, that includes impact prop-
agation rules preserving the software consistency. This is
implemented by an integrated platform including a multi-
language parsing tool, and a software change management
module.

Keywords : Source Code Analysis, Software maintenance,
Distributed database applications, Change Propagation,
Knowledge-Based Systems.

1. Introduction

Nowadays, observing their information systems, enter-
prises are confronted with two main problems. The first one
concerns the multiplicity of the used languages, database
systems, operating systems and software environments.
This leads to complex applications based on the cooperation
of different subsystems. The second problem concerns the
frontiers of the information system. Supply chain manage-
ment and e-business challenges lead the information sys-
tems to deal with suppliers and customers ones. Strictly
internal information systems will not be sufficient for such
application areas. So, distributed and complex applica-
tions strongly emerge. These require complex object mod-
eling, scalability, integration of large-scale databases and
programming facilities. For that, distributed system middle-
ware solutions like CORBA [22][12], DCOM [9] and Java
RMI may be used, as shown in figure 1.

Regarding such applications, design and implementation
seem to be critical tasks. On the other hand, the evolution
and the maintenance of these applications is not obvious.
Without tools and methodologies to control it, the software
change may cause serious damages to the information sys-
tem.

The quality standard ISO 9126 defines four components
for the maintenability : analyzability, testability, stability
and changeability [6]. In this work, we focus on the soft-
ware analyzability and changeability. The challenge is to
analyze and to manage the changeability of real size appli-
cations, based on multi-language programs, and heteroge-
neous databases, within a CORBA-based distributed frame-
work. One of the ways to manage software changeability is
to assess the change impacts, and to re-establish the system
consistency, using a change propagation process.

Many efforts have been addressed to deal with software
change management issues, such as identifying the need for
change, assessing the impact of the proposed [1][4], devel-
oping methods for the change process [3][16][17], manag-
ing the versions of the modified software artifacts, collect-
ing change-related data. In comparison with some mod-
els [2][20][21], the major advantage of our approach con-
cerns the deal with multi-language program source codes
and heterogeneous databases, in both centralized and dis-
tributed environments.

The paper is organized as follows : Section 2 presents
our model, called Software Components Structural Model
(SCSM). It represents the software components and their
relationships by means of graphs. Section 3 provides a
taxonomy of the considered software changes. Section
4 describes the change propagation process, based on a
knowledge-based system. Section 5 explains the global ar-
chitecture of our platform, that implements the formal mod-
els and includes parsing tool for multi-language source code
analysis. In section 6, we illustrate the global mechanism

ORB
Interface

CustomerBank
Server

Application
Database
Schema

Customer
Relational
Database

SQL/JDBC

Basic Object
Adapter

Cash Dispenser
Client Application

Basic Object
Adapter

Agency Server
Application Database

Schema

Agency
Object

Database

ODMG

Basic Object
Adapter

Object Database
Adapter

Object Database
Adapter

Object Database
Adapter

AccountBank
Server

Application
Database
Schema

Account
Object

Database

ODMG

Common Object Request Broker Architecture

Figure 1. Representation of a Bank Application based on the CORBA middleware

with an example. Finally, section 7 gives some concluding
remarks.

2. SCSM : a Formal Model for the Change
Propagation

The Software Components Structural Model (SCSM) is
the core element of our approach [18]. It represents the var-
ious and may be heterogeneous software components and
their relationships. Such components may be classes, meth-
ods, relational tables, persistent objects, etc. Relationships
may be inheritance function or method calls, etc. V. Ra-
jlich [21], D.Kung [15], and R. Keller [6] have formalized
programs by graphs, in which the nodes are the software
components, and the edges are the dependency relationships
between them. We adopt a similar approach with the fol-
lowing refinements :

� The nodes are typed. This allows a partition of the
nodes and a dynamic construction of derived partitions
during the change impact analysis.

� The edges are induced by the various relationships and
every relationship type may define a partial software
graph.

� The software graphs are constrained. The constraints
represent the invariant properties of the software. Such
properties define the software consistency and must al-
ways be preserved.

The main advantage of these refinements is to make the
change impact analysis more flexible. For instance, it will
be possible to analyze the impact of deleting a class method
on only the inheritance and method call relationships. The
constraints may represent language dependent properties or
more specialized ones like enterprise specific programming
standards. So, the change analysis may be customized for
the specific requirements.

Figure 2 shows a set of persistent Java classes used for a
bank agency management. The persistence is achieved by
inheriting the class Ipersistent that is provided by the Ob-
ject Oriented Database Management System ObjectStore.
The corresponding software components graph is G =<
V; E; Constr > defined as follows :

� the set of nodes or vertices V may be partitioned into
two sets : classes and methods.

� the set of edges E � V XV is induced by the inheri-
tance, composition, call and use relationships.

� the constraints contains those related to the construc-
tion of inheritance graph, functions or methods call,
etc. For instance, the inheritance graph must be a con-
nected tree.

Let us consider the partial graph induced by the inheri-
tance relationship.
This graph is Gh =< Cl; Eh; Constr >.

� Cl = fIpersistent, Paccount, Pcustomer,PAgencyg

Attribute
the_name

Attribute
the_balance

Method
Debit

Method
PAccount

Method
Credit

PAccount Class

IPersistent Class

Method
CreateAccount

Method
PCustomer

PCustomer Class PAgency Class

Attribute
the_name

Attribute
accountList

Method
CreateCustomer

Method
PAgency

Attribute
the_name

Attribute
customerList

call

use

call

use

use
use

use

use

use use

Legend

specific relationship
between components (call, use)

aggregate relationship between
components

inheritance relationship between
components

software components

Agency SchemaAccount Schema

Customer Schema

Person Table

Customer Table

call

Account Table
(Sequence)

AccountReference
StoredProcedure

use

Figure 2. UML-based representation of the bank application

� Eh = f< Paccount; Ipersistent >,
< PCustomer; Ipersistent >,
< PAgency; Ipersistent >g.

� Let E�

h be the transitive closure of Eh.

� The set of constraints includes the following expres-
sions meaning that the Java inheritance graph must be
a connected tree :

– 8 n 2 Cl; n = Ipersistent or 9 ni 2 Cl

such that < n; ni > 2 Eh

– 8 n1; n2 2 Cl; < n1; n2 > 2 E�

h and

< n2; n1 > 2 E�

h �! n1 = n2.

In the rest of the paper we especially focus the software
components related to source codes (imperative and object-
oriented) and database schemas (both relational and object-
oriented databases).

3. Software Change Identification

The software system is in constant evolution, that leads
to changes performed by several persons. One of the major

difficulties in software evolution is to automatically identify
the changes and their impacts.

In this section, we first classify and formalize the differ-
ent change types.

The tables 3 and 4 summarize a change taxonomy of
source Codes and database schemas (both object-oriented
and relational ones). This is an extended classification of
the proposed one in [15]. Our taxonomy is based on three
granularity levels, defined as follows:̃1) the coarse granular-
ity level that provides a global view of the application. This
level includes components like files, libraries, packages,
database schemas. 2) the medium granularity level repre-
senting components like classes, functions, global variables,
relational tables, stored procedures, etc. 3) the fine granu-
larity level that describes statements, queries, control struc-
tures, etc. For every component type, we define two main
change operations that rae add and delete. Such operations
may then be combined to define more complex ones. For
instance, modify the body of a method may be composed
of deleting the old body and adding the new one. Let us
explain some change operation and especially those con-
cerning database schemas :

� Name Change. A name (persistent root) is an entry

Sub-components Relationships
Changes

File, Module,
Package,
Library

Type

Class

Atomic

Structure,
Union,
Enumerate

Function/
Method

Prototype

Body

Variable

Statement

add/delete a file, module, package, library

add/delete a class declaration

add/delete the prototype declaration
add/delete a parameter declaration
add/delete the return type

add/delete the body

add/delete a structure/ union/
enumerate declaration

inheritance

instantiation
add/delete an inheritance link
add/delete an object instantiation link

add/delete a field declaration

importation add/delete an importation link

add/redefine an atomic type

add/delete the variable declaration
add/delete the type of the variable

override

add/delete/redefine the access attribute

add/delete an override link of a method

call add/delete a call to the function/method

add/delete/redefine inheritance restriction
implementation add/delete an implementation link

use add/delete a variable use link with
 a statement

add/delete a statement

Object, Member, Parameter
Local/Global Variable

add/delete a symbol inside the statement

Interface

Software Components

Figure 3. Source code changes identification

point to store or retrieve a set of persistent objects in an
object oriented database [5]. The name deletion causes
the deletion of all persistent objects, that are not stored
in another name, and disturbs the queries, that perform
operations on it.

� Stored Procedure/Method Change. A stored procedure
defined in a relational database schema, or a method
defined in a persistent class can be changed, in the
same way than the function and method change.

� Transaction Change. Database applications that uses
persistent data are organized in transactions. The Ob-
ject Model, defined by Object Database Management
Group, supports a nested transaction model. The trans-
action can be changed by adding/deleting it, by re-
defining the level of a nested transaction or by modify-
ing the transaction operations (commit, abort, check-
point, abort-to-top-level)[5].

� Query Change. A query is a statement that manipu-
lates simple or complex data, stored in a database. The
query can be changed by updating the entry point (ta-
ble, name, etc.), the collection structure returned by the
query, or the data selected clause.

3.1. Software Change Formalization

Let Gsc =< Vsc; Esc; Constr > be the graph for soft-
ware components sc, and G0

sc =< V 0

sc; E
0

sc; Constr > be
the graph for the modified version sc0 of the software com-
ponent sc. We consider two ways to modify the version of
the software component sc :

� the structural modification is expressed by V 0

sc =
Change(ModificationType; Vsc),

� the relationships modification is expressed by E 0

sc =
Change(ModificationType; Esc).

� the set of constraints Constr must always be satisfied.

Formally, a change may then be expressed by a
graph morphism f defined by the expression G0

sc =<
V 0

sc; E
0

sc; Constr >= f(< Vsc; Esc; Constr >). The
graph morphism f is composed of two functions de-
noted fnode and fedge such that fnode(Vsc) = V 0

sc and
fedge(Esc) = E0

sc. Preserving the set of constraints is not
obvious. This may lead to reapply other morhphisms as
side effects or impacts of the original one. The recursive
application of morphisms denotes the impact propagation
process. For instance, let Change(deleteclass; C) be the

Schema

Table

Persistent Class

Stored Procedure/
Method

Prototype

Body

Variable

Query

add/delete a schema

add/delete a peristent class declaration

add/delete the prototype declaration
add/delete a parameter declaration
add/delete the return type

add/delete the body

add/delete a table

inheritance

instanciation

add/delete a persistent superclass link

add/delete a persistent object instantiation link

importation add/delete an imported schema

add/delete the variable declaration
add/delete the type of the variable

override

add/delete/redefine the access attribute

add/delete an override link of a method

call add/delete a call to the function/method

add/delete/redefine inheritance restriction

implementation add/delete an implementation link

use
add/delete a variable use link with
 a statement

add/delete a query

Persistent Object, Member,
Parameter

add/delete a clause inside the query

cardinality add/delete a cardinality link between tables

Name
(persistent root)

add/delete a name
add/delete the type of the name

Transaction
add/delete a transaction
redefine the level (nested transaction)
add/delete a transaction operation

Sub-components Relationships
Changes

Database Software Components

Figure 4. Relational and Object Oriented Database changes identification

class deletion operation. The corresponding morphism is
defined by :

� fnode(Vsc) = V 0

sc=Vsc � C.

� fedge(Esc) = E0

sc=Esc-outedges(C) [inedges(C)
(outedges(C) and inedges(C) are two functions re-
turning the edges coming from C or entering to C).

Such a morphism causes a violation of inheritance graph
constraints. Assume that the class C is a Java class, so the
inheritance graph will become a not connected one. In the
following section we show how we propagate the impact to
fire the recursive execution of the other morphisms.

4. Change Propagation Process

The change propagation process refers to the process
of actually carrying out a set of initial modifications to
the software components, and to re-establish the system
consistency, by making a set of estimated consequent
changes [13]. This process would involve advising the user
with the software components to be changed and the types
of the changes. V. Rajlich has proposed an algorithm based
on graph rewriting, called Change-and-fix [21].

The change-and-fix algorithm allows to perform a
change on a selected graph node a 2 ent(P), the set of the
entities or components of a program P , and computes the
modified program, referred to as P 0. This permits to mark
the nodes and dependency relationships that are inconsistent
in the program. The process iterates until the set of marked
nodes becomes empty. In this algorithm the expressions
P (a) and P 0(a) represent the neighborhood (incoming and
outgoing nodes) of a component or entity a.

The change-and-fix algorithm is :

Given a consistent program P

Select a 2 ent(P)

Change(a)
P = (P � P (a)) [P 0(a) ;
do f

Select a 2 (mark(P) ;
Change(a) ;
P = (P � P (a)) [P 0(a) ;

g
while (mark(P) 6= ;) ;

We can identify two problems with the previous algo-
rithm :

� the entities of a program are visited several times,

� an infinite process may occur when a change is propa-
gated in a cycle (loops).

� when a node is affected by the change, this leads to
mark all the neighbors of this node or no one of them.
This is a consequence of considering all the relation-
ship types as a unique one called dependency relation-
ship. However, if we take into account the different se-
mantics of relationships we can refine the impact prop-
agation to the direct neighbors by marking those really
affected by the change.

We propose a change propagation algorithm based on an
expert system that provides solutions to the quoted prob-
lems.

4.1. Solution based on an Expert System

We propose a hybrid implementation of the change-and-
fix process with combining a graph rewriting algorithm and
a knowledge-based system. So, the impact of changing a
node is propagated by a change and fix algorithm depending
on both the neighborhoods of this node and the constraints
that are represented by a set of rules. The knowledge-based
system is built using the RETE algorithm [10]. This algo-
rithm is widely recognized as by far the most efficient al-
gorithm for the implementation of rule-based systems. The
RETE algorithm efficiency is asymptotically independent of
the number of rules. The hybrid implementation provides a
change propagation, provided by the change-and-fix algo-
rithm and deals with more explicit knowledge represented
by rules and facts. As an example of such rules, the follow-
ing marks a modified class and propagates the change to its
related components, such as the methods :

(defrule ClassImpactRule
(Delete (OBJECT ?Class))
=>
(set ?Class marked TRUE)

(bind ?Methods (get ?Class methodList))
(while (call ?Methods hasMoreElements)
(definstance Method
(bind ?Method (call ?Methods nextElement)

)))
...

)

This rule means when a class is deleted, the system
marks it and explores its related components like methods
and the classes that effectively call these methods.

The change-expert-system algorithm is :

given a graph of a consistent
program G =< V;E >

select a 2 E

/* change the node or the edge a */
a0 = Change(ModificationType; a);
/* expert system features */
insert fact (ModificationType, a0);
/* compute the modified graph G 0 by using
/* the corresponding morphism of
/* ModificationType*/
G0

sc = (V 0

sc; E
0

sc)

do f
do f

/* Rete inference process */
Select a rule r in fired rules set,
using RETE;
/* insert new facts */
Trigger r � actionSet;

g while (fired rule set 6= ;)
/* change-and-fix features */
select a 2 (mark(G) ;
a0 = Change(ModificationType; a);
insert fact (ModificationType, a0);
G0

sc = (V 0

sc; E
0

sc)

g while (mark(G) 6= ;) ;

The change-expert-system algorithm deals with the
change-and-fix problems, by inserting only new facts in the
factual database. This avoids to revisit the software com-
ponents. The system inference provided by the RETE al-
gorithm is based on rules management and pattern match-
ing, dealing with the infinite graph loops. In contrast with
the strictly procedural change-and-fix algorithm [21], only
the affected components are visited. The set of active rules
may be customized by the user. For instance, it is possible
to consider only one relationship type like inheritance with-
out considering the others like call one. This leads to an
incremental impact analysis process.

The formal model and the knowledge-based system are
implemented by a distributed platform, providing change
propagation. Doing this, we deal with the distributed het-
erogeneous software, including database systems.

5. IFSEM : Integrated Framework for Soft-
ware Evolution and Maintenance

In complex distributed applications, the program source
codes and the database schemas are distributed over many
computers and networks. For the change impact analysis,
the software components are distributed, in the same way.

Browser

Database
Schemas

Source
codes (C,
C++,Java,
IDL, etc.)

Multi-language
Javacc
Parser

Software
Components
Repository

KBS reasoning engine (Jess)

Facts builder

G
r
a
p
h

V
i
s
u
a
l
i
z
e
r

T
e
x
t
u
a
l

D
i
a
l
o
g

B
o
x
e
s

q
u
e
r
y

m
a
n
a
g
e
r

Input and results
 of the user’s
 queries

Change propagation
 rules

XML files

Change propagation engine

Distributed
Agent

Figure 5. The Distributed Framework Architecture for Change Impact Propagation

In order to take into account the distributed relationships be-
tween software components, especially database schemas,
we need to distribute our graphs, following the distributed
architecture of the software. The distributed graphs are con-
nected by the way of distributed agents.

The model have been implemented by a framework,
called Integrated Framework for Software Evolution and
Maintenance. This provides change impact propagation
for both centralized and distributed software. The figure
5 shows the framework architecture, for distributed change
impact propagation. It provides incremental and multi-
language source code files and distributed database schema
files parsing to extract structural information, using Javacc
parser [19]. The structural information represents the soft-
ware components and their relationships, which are de-
scribed by XML files (eXtensible Markup Language). The
XML files are used to construct the software multigraph
representation, which is stored in a distributed component
repository. The component repository is implemented with
ObjectStore Database [8] , allowing to store complex object
graphs. The query manager allows the programmer to simu-
late its change. The change impact propagation is computed
by the Change Propagation Engine, using the expert sys-
tem, implemented using Jess[11] [7]. This propagates the
change impact locally, using propagation rules, and marks
the graph nodes, with the affected label. In a distributed
environment, the Expert System propagates the change im-
pact, using the distributed agent. This broadcasts the af-
fected components set to other distributed agents. These

insert the new facts in their local Change Propagation En-
gine, in order to perform the change impact analysis, in the
distributed level. The distributed agents broadcast the re-
sult of the change impact analysis, in order to inform the
programmer of the change effects, in the distributed level.

We present, here after, an example of a change impact
analysis, performed on a CORBA-based bank application.

6. Application : Evolution of a CORBA-based
bank Multi-Databases

Figure 1 shows a global view of the bank application.
This is composed of three distributed and heterogeneous
database schemas :

� The Agency schema, is an ObjectStore ODMG-
compliant database, that stores all transactions related
to the customers and their accounts. The Agency
database system is running on a Pentium II 350MHz
with a Linux Operating System.

� The Customer schema, is an Oracle 8i relational-object
database, that stores the bank customers, related to
an agency. The Customer schema defines tables and
stored procedures to store information related to con-
sumers and bank account references. The Oracle
database is running on a Pentium II 450MHz with the
Linux operating system.

Figure 6. Result of the change impact propagation at the distributed level

� The Accounts schema, is an ObjectStore ODMG-
compliant database, that stores all bank accounts re-
lated to an agency. This database is running on a Sili-
con Graphics workstation with IRIX5.3 operating sys-
tem.

These database schemas are connected by the Object Re-
quest Broker, called ORBACUS[14].

The Agency Server Application manages agencies, the
customers and the bank accounts, in a distributed man-
ner. The Agency Application provides customers related
operations, using the Customer Server Application, like
customers registration, and accounts operations like cre-
ation, deletion, debit and credit, using the Account Server
Application. The Cash Dispenser allows the customer to
query the Agency Server Application to perform debit or
credit operations.

In this example, we propose to perform a change, related
to the Account schema. The considered change is the dele-
tion of the schema Account (figure 2). The schema Account
is implemented with a persistent class PAccount, using the
ObjectStore database system, which is used by the Account
Server Application. The Change Propagation Engine

computes the change impact propagation locally. So, the
local impact propagation engine marks the class PAcount
and its methods as inconsistent ones. Considering the
Connection Relationship between the Account Server
Application and the Account Object Database, the change
propagation engine propagates the change to the software
components belonged to the Account Server Application.
Inserting the following fact, which fires change propagation
rules performs the change propagation,:

/* insert the fact representing */
/* the account schema deletion */
(Delete Account)

(defrule SchemaImpactRule
(Delete (OBJECT ?Schema))

=>
/* the rule marks the schema component */
/* as affected by the change, */
(set ?Schema affected TRUE)

/* and propagates the impact, */
/* using the Connection relationship. */
/* The rule retrieves all components, */

/* connected to the deleted schema component, */
(bind ?Connections (get ?Schema ConnectedTo))
(while (call ?Connections hasMoreElements)

/* and inserts the Connection fact, */
/* to propagates the change impact. */
(definstance Connection (bind ?Connect

(call ?Connections nextElement))
)

)
...)

The SchemaImpactRule propagates the change impact,
using the connection relationship, and marks affected soft-
ware components, belonged to the Account Schema and
to the Account Server Application, such as the PAccount
method.

The Customer Server Application is connected to the Ac-
count Server Application to retrieve account information’s
related to the bank customers. Considering the “affected”
software components belonged to the Account Server Ap-
plication, the agent propagates the change impact to the
distributed agents, using the CORBA middleware. The dis-
tributed agents insert the facts, representing the software
components, in their change propagation engine.

Regarding the PCustomer class and the fact (Delete
PAccount), the call relationship between the methods
PAccount (PAccount class) and CreateAccount (PCus-
tomer class) generates new facts, which are used to fire
change propagation rules and to mark the CreateAccount
method. In the same way, the call relationship between
the CreateAccount method and the AccountReference
stored procedure, which is defined in the Oracle Customer
Schema, leads to propagate the change impact in the Cus-
tomer Schema and in the Customer Server Application.

The figure 6 shows the change propagation on the Cus-
tomer Relational database schema, at the distributed level.
In this figure the marked nodes are labeled with the symbol
“affected” and are colored with the red color.

7. Conclusion

We have proposed and implemented an approach for the
change impact analysis of the distributed database appli-
cations. This has been applied to propagate the database
schema change impact to the application programs that may
be a part of a distributed software. We consider the soft-
ware as distributed and heterogeneous databases and multi-
language source codes.

The multi-database schemas and program source codes
are represented by graphs, that implement our proposed
Software Components Structural Model (SCSM). This
leads to propagate the change impact by navigating through
the paths of graphs. The SCSM takes into account all

kind of software components even if they represent large
ones like files and database schemas or more fine ones like
statements, queries and individual symbols. This makes
the analysis more exhaustive. We are refining the relation-
ships between the distributed components within the frame-
work of databases interoperability, provided by the standard
services of the Object Management Group and the Object
Database Management Group (CORBA).

The prototype, called Integrated Framework for Soft-
ware Evolution and Maintenance that implements our ap-
proach is based on a knowledge based system (KBS), that
makes it more flexible. We deal with the distributed change
impact propagation, using distributed agents, that provides
the graphs interconnection and change impact broadcasting
to other distributed agents.

Our model and the platform are being extended along
three areas,

� Firstly, the KBS is extended to provide a semi-
automatic programs restructuring tool.

� Secondly, we are experimenting our platform to deal
with the evolution and maintenance of web based ap-
plications.

� Finally, we are planning to integrate our platform with
architecture definition languages. So, we expect to
propagate a change at architectural level to the imple-
mentation one and vice-versa.

References

[1] R. Arnald and S. Bohner. Impact analysis - towards a frame-
work for comparison. Proc. of the International Conference
on Software Maintenance (ICSM’93), Montreal, Canada,
pages 292–301, Sep. 1993.

[2] D. Atkinson and W. Griswold. The Design of Whole-
Program Analysis Tools. In I. C. Society, editor, The proc. of
the 18th International Conference on Software Engineering,
Berlin, March 1999.

[3] D. Avrilionis, P.-Y. Cuin, and C. Fernstrm. Opsis: A view
mechanism for software processes which supports their evo-
lution and reuse.

[4] S. Barros. Analyse a priori des consquences de la modifi-
cation de systmes logiciels : de la thorie la pratique. PhD
thesis, Universit Paul Sabatier Toulouse, 1997.

[5] R. G. G. Cattel. ODMG-93 Object-Oriented Databases
Standard. International Thomson Publishing, 1995.

[6] M. Chaumun, H. Kabaili, R. Keller, and F. Lustman. A
Change Impact Model for Changeability Assessment in Ob-
ject Oriented Software Systems. Proc. of the Third IEEE Eu-
romicro Working Conference on Software Maintenance and
Reengineering, Amsterdam, The Netherlands, pages 130–
138, Mar. 1999.

[7] L. Deruelle, M. Bouneffa, J. Nicolas, and G. Goncalves. Lo-
cal and Federated Database Schemas Evolution: An Impact

propagation Model. In L. N. in Computer Science, editor,
The proc. of the Database and Expert Systems Applications,
1999.

[8] O. Design. Bookshelf for ObjectStore PSE Pro Release 3.0
for Java. http://www.objectdesign.com/, January 1998.

[9] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft
Press, 1999.

[10] C. L. Forgy. Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial Intelligence
19, Addison-Wesley:17–37, 1982.

[11] E. J. Friedman-Hill. Jess 4.3 User’s Manual. Sandia Na-
tional Laboratories, December 1998.

[12] J. Geib, C. Gransart, and P. Merle. Corba des Concepts la
Pratique. InterEditions, 1997.

[13] J. Han. Supporting impact analysis and change propaga-
tion in software engineering environments. Technical report,
Peninsula School of Computing and Information Technol-
ogy, oct. 1996.

[14] http://www.ooc.com/. ORBACUS : user guide, December
1999.

[15] D. Kung, J. Gao, P. Hsia, and F. Wen. Change Impact Iden-
tification in Object Oriented Software Maintenance. Proc.
of the International Conference on Software Maintenance
(ICSM’94), Victoria, B.C., Canada, pages 202–214, sept
1994.

[16] M. Lehman. Process models, process programs, program-
ming support. In Proceedings of the Ninth International
Conference On Software Engineering, March 1987.

[17] J. Lonchamp. Supporting Social Interaction Activities of
Software Processe s. In J.-C. Derniame, editor, Proceed-
ings Second European Workshop Software Process Tech nol-
ogy, pages 34–54, Trondheim (Norway), September 1992.
Springer Verlag. Lecture Notes in Computer Science, 635.

[18] N. Melab, H. Basson, M. Bouneffa, and L. Deruelle. Perfor-
mance of Object-oriented Code: Profiling and Instrumenta-
tion. Proc. of the IEEE Intl. Conf. on Software Maintenance
(ICSM’99), Oxford, UK., Aug. 30 - Sep. 3 1999.

[19] S. Microsystems. The Java Compiler Compiler Documen-
tation. http://www.sun.com/suntest/products/JavaCC/, Jan-
uary 1999.

[20] G. Murphy. Lightweight Structural Summarization as an Aid
to Software Evolution. PhD thesis, University of Washing-
ton, July, 1996.

[21] V. Rajlich. A Model for Change Propagation Based on
Graph Rewriting. Proc. of IEEE-ICSM’97, Bari, Italy, pages
84–91, Oct. 1–3 1997.

[22] R. Zahavi and T. Mowbray. The Essential CORBA-Systems
Integration Using Distributed Objects. John Wiley and
Sons, Inc, 1996.

