
The Role of Independent Verification and Validation in
Maintaining a Safety Critical Evolutionary Software in a
Complex Environment: The NASA Space Shuttle Program1

Marvin V. Zelkowitz
Fraunhofer Center for Experimental

Software Engineering, Maryland
and University of Maryland,

College Park, Maryland
mvz@fc-md.umd.edu

+1-301-403-8935

Ioana Rus
Fraunhofer Center for Experimental

Software Engineering, Maryland
4321 Hartwick Road, Suite 500
College Park, Maryland 20740

irus@fc-md.umd.edu
+1-301-403-8971

1 This work has been performed as NASA Subcontract No. 93-393B-FUSA from the NASA/IVV facility in Fairmont, WV to
the Fraunhofer Center, Maryland.

ABSTRACT

The National Aeronautics and Space Administration Space
(NASA) Shuttle program is a multi-billion dollar activity
scheduled to span over 40 years. Maintaining such software
with requirements for high reliability and mission safety
taxes current development methods. In this paper we
present how Independent Verification and Validation
(IV&V) activities have evolved in order to provide for
these requirements. We also show how the IV&V activities
for this program differ from those of more traditional
software developments.

KEYWORDS
Evolutionary software, Life and mission critical software,
Metrics, Maintenance, Process characterization, Space
Shuttle program, Software independent verification and
validation, Software safety and reliability

1 INTRODUCTION

The use of an independent group to provide verification
and validation (IV&V) on a software system is often cited
as a means to ensure a high quality software product. The
most common approach is to develop a product and then
give it to an independent group, which will determine the
correctness and reliability of the system. However, such an
approach is suboptimal when multiple releases of a system
are in concurrent development. If a traditional IV&V
approach were used, then tracking issues across multiple
releases would be almost impossible.

We present here an overview of the process used to ensure
mission safety and reliability for NASA Space Shuttle
software. The software has undergone over 22 releases
since 1981 and is expected to evolve for at least another 20
years. Since releases occur on the order of once per year,

and a release generally takes over two years to develop,
multiple releases are almost always under concurrent
development. We looked at the data collected by the
Shuttle development organization and the Shuttle IV&V
contractor in order to demonstrate that the process is under
control and allows for concurrent developments, such as
would occur in a product line architecture.

The NASA IV&V program for the Space Shuttle was
instituted in 1988 and in 1997 management for IV&V was
transferred to the NASA/IVV facility in Fairmont, WV.
The NASA Center Initiative which funded this research,
began in 1999 as a comprehensive look at understanding
the economic impact that the IV&V process has had on the
Shuttle program.

In Section 2 of this paper we look at the software
development process model used for the Shuttle, given the
specifics of the system, software, and development
environment and constraints. We then discuss the purpose
of IV&V, and the roles, activities, and interactions with the
development environment of IV&V for Shuttle
development. The analysis in Section 3 shows how IV&V
plays an important role in maintaining this system, being
used across multiple releases.

2 SHUTTLE SOFTWARE DEVELOPMENT

Space Shuttle Software Characteristics
The NASA Space Shuttle program uses four orbiter
spacecraft. Software releases, called operational increments
(OIs), are used for repeated missions on all four orbiters.
There have been over 22 operational increments developed
between 1981 and 1999.

The software is written in High-order Software Language
for Shuttle (HAL/S), and executes on legacy hardware with
limited memory: General Purpose Computers (GPCs) with

2

a semiconductor memory of 256K 32-bit words. For each
OI, new functionality is carefully weighed against the
memory requirements of the existing functionality.

The Shuttle has two main flight control software
subsystems: the Primary Avionics Software System (PASS)
and Back-up Flight System (BFS), which provides backup
capabilities for the critical phases of a mission. PASS and
BFS have been developed independently by different
contractors. A third contractor built the Space Shuttle Main
Engine Controller (SSMEC), but that system was outside of
the scope of our study.

The Shuttle uses five on-board computers - four running
the PASS software for redundancy and one running the
BFS version. In this complex environment, IV&V acts as a
pair of extra eyes, to objectively ensure that the required
functionality is implemented, given inherent hardware
constraints, with minimum risk, preserving the architectural
integrity and safety of this life and mission critical
software.

Software OIs enjoy reuse across all four orbiters as well as
repeated use for each orbiter. The core functionality of
Shuttle software (common for all OIs) consists of 765
software modules with a total of 450K DSLOC (Delivered
Source Line of Code). Each new release requires on
average 18K DSLOC in modified mission-specific
functionality and 26K DSLOC of new or modified core
functionality. (See Table 1.) This represents an average of
approximately 4% of new or modified system code (core
functionality) with each release, thus providing for a stable
base software system [1] [7] [8].

PASS
Rel.

Total
Modified
KSLOC / OI

Modified
functions
KSLOC/OI

Modified
core
KSLOC/
OI

% Modified
of Total
KSLOC

I 55.7 29.4 26.3 12.4%
J 44.3 21.3 23.0 9.8%
K 44.0 34.4 9.6 9.8%
L 47.3 24.0 23.3 10.5%
M 50.7 10.4 40.3 11.3%
N 50.4 15.3 35.1 11.2%
O 21.9 7.3 14.6 4.9%
P 32.1 11.0 21.1 7.1%
Q 57.2 12.1 45.1 12.7%
Total 403.6 165.2 238.4
Avg. 44.84 18.36 26.49 9.97%
StdDev 11.36 9.41 11.67 0.03

Table 1. Size of Modifications per OI

This is not a simple example of staged product evolution,
where each new version of the product completely replaces
the previous version. Rather there is a base system of core
functionality that is reused and enhanced by extensions that
differ from mission to mission. The Shuttle software could
be viewed as a horizontal product line as it primarily enjoys

forward interoperability of the software, but has been also
applied with backward interoperability on a limited basis
(e.g., an earlier increment could be used instead of a newer
one in a coming mission).

Figure 1. Lifecycle for each OI

Figure 1 shows the overlapping lifecycle for the 10 OIs
completed since IV&V was instituted in 1988. Four phases
are indicated for each OI: an initial development phase, a
testing phase which includes an IV&V activity, a mission
preparation phase which includes additional IV&V
processes, and an operational lifetime executing on one or
more Shuttle missions. As Figure 1 demonstrates, during
most of this period, about 3 releases were in various phases
of development (development, V&V or mission
preparation), and up to four releases were active (either in
execution or in development) during this period.

Because mission safety and reliability are the most
important criteria for all missions and for each new
software release, changes to either the software or hardware
are made with great care such that they do not alter the
achieved safety and the architectural integrity of the
system. As we later show, not-modifying source modules
(because of the possible introduction of new defects) is a
high priority requirement, which causes many non-critical
changes to be delayed until absolutely necessary. Keeping
track of these changes, as well as the underlying database
to manage this process reliably, is at the heart of the IV&V
process that has been developed.

Standard Models for IV&V
Verification and Validation (V&V) is a process common to
all software development where the developer applies
various processes (usually testing) to ensure that the new
software agrees with its specification. Independent
verification and validation (IV&V) is a V&V process
where the V&V is performed by a group independent of the
developer. The IEEE Standard for Software Verification
and Validation [3] identifies three parameters that define
the independence of IV&V: technical, managerial, and
financial. Depending on the independence along these three

I

J

K

L

M

N

O

P

Q

R

O
I R

el
ea

se

Development IV&V Mission Preparation Operational lifetime

1990 19941992 1996 1998 2000

3

Customer

“Prime Integrator”

Software

development

contractor(s)

IV&V

contractor

Close relationship between
developers and IV&V

dimensions, there are many forms of IV&V, most prevalent
being: classical, modified, internal, and embedded.

Classical independence embodies all three parameters.
Modified preserves technical and financial independence,
while the managerial parameter is compromised. Internal
and embedded IV&V are performed by personnel from the
developer’s organization. Therefore, all three independence
aspects are compromised, the difference between the two
being that for internal, the IV&V team reports to a different
management level than does the development team.

According to the definition by the NASA Safety and
Mission Quality Office, IV&V is “a process whereby the
products of the software development life cycle phases are
independently reviewed, verified, and validated by an
organization that is neither the developer nor the acquirer
of the software, IV&V differs from V&V only in that it is
performed by an independent organization." [6]

An overall guiding principle in OI development is that
changing any module, regardless of the reason, leaves the
code open to error. Thus non-critical changes (e.g., a
mistyped comment) are often not made until the module
must be changed for other more important programmatic
reasons. Thus pending changes often remain across
multiple releases of the software. In fact, some changes, as
we later show, have remained unresolved for over 3000
days (over 9 years).

Managing this set of pending changes over multiple
releases is a critical issue management problem whose
solution is needed to ensure reliability of the Shuttle code
base. The issue tracking management is one of the
important activities performed by the IV&V contractor.
They use a tracking and reporting system, the Issue
Tracking Reports (ITRs) as an eloquent mechanism for
handling these pending changes. From 1988 through mid-
1999 almost 800 such ITRs have been generated and are at
the heart of the IV&V process for the Shuttle.

Figure 2. Modified Shuttle IV&V

For the Space Shuttle software, IV&V is a modified type.
Figure 2 shows the modified model of IV&V. The prime
integrator (i.e., NASA) manages the entire software

development. Development and IV&V are performed by
separate companies that report to the prime integrator at the
same level. The IV&V personnel is collocated with the
developers and they have both informal and formal
communication.

Adapting IV&V for the Space Shuttle
NASA uses a complex development process, with
numerous verification checks, to assure reliable
development of each new OI. For the purposes of this
paper, this is briefly described in Figure 3. More complete
descriptions of this process are given in [2] and [4]. Briefly,
the overall process is as follows:

Once discovered, an issue is tracked until it is resolved and
the ITR is closed. Issues can be dispositioned in several
ways:

• After a discussion between the developer and the
IV&V team, the issue is deemed not to be an error and
the ITR is closed with no subsequent action. In some
cases the source code implements a correct, but
different, algorithm than what has been specified, and
a decision is made to accept what has been developed.

• If the problem is serious (e.g., mission safety is at
risk), a discrepancy report (DR) is created. At this
point the ITR is closed and the developer's DR tracking
mechanism assures that the problem will be tracked
and ultimately fixed.

• For a relatively minor error that will not affect the
safety of the current mission, a change request (CR) is
generated. CRs will be scheduled for implementation
for a subsequent OI. This represents almost half of the
ITRs that have been generated. With multiple OIs
under concurrent development, an ITR will often cause
a change to the requirements of the following OIs in
the schedule.

Approximately one third of the ITRs represent
documentation errors, e.g., the implemented software and
the documentation do not agree. As with minor coding
errors, documentation changes are not made to the software
until the module in question is later changed due to new
functional requirements. In such cases the ITR is kept open
until the module is later modified.

In Figure 3, rectangles represent the various processes for
building a new OI, whereas ovals represent the main data
that tracks the development. The shaded rectangles refer to
the major IV&V activities.

• Flight Software Needs are identified by the flight
software community.

• The flight software community, including the IV&V
contractor, perform an analysis and a risk assessment
on the needs, such that a set of requirements for a new
software release is developed. As stated above,
proposed changes are often strung out across several

4

OIs to minimize disruption of the software.

ig

Figure 3. Overview of Shuttle software development

• The Shuttle Avionics Software Control Board
(SASCB) approves these requirements and a new
operational increment is scheduled.

• The developer of the Shuttle software uses these
requirements and upgrades a previous Shuttle software
release to meet the new requirements. This typically
takes about 8 months for initial development.
Anomalies (i.e., Discrepancy Reports [DRs] and
Change Requests [CRs]) are tracked once each new
module becomes part of a software build. The key
point at this stage is that CRs and DRs are tracked by
the ITRs and become part of the traceability of defects
across multiple OIs.

• After the developer adds all new functionality to the
base software and makes the required corrections, the
milestone called the First Article Configuration
Inspection (FACI) is reached. At FACI the developers
hand the product over to the independent V&V
contractor and to developer’s own V&V team. The
development contractors have their V&V groups
separate and managerially independent from the
development groups. This is a more common form of
IV&V, an internal IV&V according to [3].

• At the Configuration Inspection (CI) milestone, about
8 months later, the software is released to NASA,
where it undergoes further evaluation before is ready
for use on a mission. The CI milestone is called the
release date for the software, even though the process
can take another year before the software actually flies
on the Shuttle.

• After mission preparation and undergoing more testing
(e.g., operational testing), the software is certified for
flight on the planned Shuttle mission at the Software
Readiness Review (SRR) milestone, about 8 months

after the previous CI milestone.

A new OI is released about once a year. Since a single OI
can take up to 28 months to build and validate, several OIs
are under simultaneous development, and the IV&V
process needs to keep track of potential problems that cross
OI boundaries. This is significant as CRs and DRs could be
intentionally delayed for implementation across multiple
releases until a more advantageous time.

The three shaded areas in Figure 3 represent IV&V
activities that extend across multiple OIs. These activities
occur during three phases in the development process:

é Requirements analysis: Risk analysis and risk
reduction activities such as Hazard analysis, and
Change impact analysis for safety, hardware and
development resources lead to problem detection in the
early development phases. The IV&V team represents
an historical record (in terms of previous issues raised
from earlier OIs) in judging the impact of any
proposed change. This is also supported by the
extensive domain expertise that the IV&V team
members have.

é Product evaluation: The IV&V team analyzes the
implemented code, evaluates the tests conducted by the
developer, and proposes changes where warranted. The
IV&V team generally does not test the software,
although it does in certain situations. Most of its
activity is in evaluating the results of the developer's
own testing process.

• Flight certification: At the end of an OI IV&V
reviews all the DRs and CRs and certify that they were
adequately implemented, corrected, and tested, that
there are no issues relevant to safety that remained
open, and there are no reactivated dormant code
anomalies.

Ideally, IV&V would be performed on the entire system. In
reality, due to budget and resource constraints, the IV&V
contractor concentrates on software components used
during the most critical phases of flight, e.g., ascent and
descent. Other components could also occasionally be
addressed if the program identifies them as critical issues.
When IV&V was first instituted in 1988, there were 15
functions covered by IV&V; in 1992 the set was reduced to
six functions (a subset of the initial 15). On these functions
the IV&V effort may vary. The scope of IV&V can be:
comprehensive, focused, or limited (limited is a subset of
focused that is a subset of comprehensive). Limited
addresses activities a-e, focused a-i, and comprehensive a-k
in the following list:

a) Problem/change description
b) System impact analysis
c) Requirements analysis
d) Risk assessment
e) Disposition analysis

5

f) Code analysis
g) Level 6 and 7 test verification analysis
h) Documentation assessment
i) Safety assessment
j) Analysis of other system implementations
k) Complete test/verification analysis

The scope is determined by the criticality of the
component, the risk and impact of the changes that have to
be made to it, and the budget allocated. The contractor uses
a tool named CARA [5] to help decide on the IV&V scope
to be applied.

 The IV&V contractor typically evaluates the CRs and DRs
that are submitted to cover changes in the software.
However they also often submit CRs and DRs themselves
and use their specialized tools and expertise to perform a
detailed evaluation of the software itself. Additional details
of the shuttle IV&V process and an analysis of the data is
given in [8].

3 MAINTAINING AN EVOLVING SOFTWARE
SYSTEM

The ITRs tracked for the Shuttle are classified according to
their criticality into one of the following five categories:

Severity 1. A problem can cause loss of control,
explosion, or other hazardous effect.

Severity 2. A problem can cause inability to achieve
mission objectives, e.g., launch, mission duration,
payload deployment.

Severity 3. A problem is visible to the user (crew), which
is not a safety or mission issue. It is usually waived
and a CR for a later OI is opened.

Severity 4. A problem is not visible to the user (crew). It
is an insignificant violation of the requirements. This
includes documentation and paperwork errors (e.g.
typo’s), intent of requirements met, insignificant
waivers.

Severity 5. An issue is not visible to user (crew) and is
not a flight, training, simulation or ground issue. This
includes programming standards, maintenance issues,
and philosophical issues (e.g. improper HAL/S
parameter name prefix, inefficient code that meets
requirements).

From 1988 until mid-1999 about 780 ITRs have been
entered in the issues tracking database. As Figure 4
demonstrates:

• Issues are found fairly uniformly across OIs, but

• The number of critical ITRs is quite low.

A total of 20 severity 1 and 2 ITRs were found attributable
to these 10 OIs. As explained previously, many of the

severity 3 through 5 ITRs are held until a later OI to avoid
changing source programs needlessly.

Figure 4. ITRs across OI releases

A measure of the complexity of issues tracking is the
number of days an ITR remains open. The distribution of
issues lifetime is given in Figure 5. Although most are
handled within 40-60 days, many remain open for over a
year.

In figure 6, we reproduce the lifecycle given in Figure 1
with the lifetime of the long-lived severity 1 and 2 ITRs.
Under each OI are the severity 1 and 2 ITRs attributed to
that OI. Those that precede Release I were attributed to OIs
that precede the introduction of IV&V in 1988.

Figure 6 indicates that 22 ITRs (18 severity 1 and four
severity 2) are attributed to these releases. Note that 10
were found in code added to OIs that precede release I with
three of the ITRs remaining open for up to 10 years.
However, with the introduction of IV&V for OI I, only 12
were found, and none remained open for more than one
additional OI.

0
10

20
30
40

50
60

70
80

I J K L M N O P Q R

OI release

N
u

m
b

er
 o

f
IT

R
s

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

0

5

10

15

20

25

30

35

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

Days ITR is open

N
u

m
b

er
 IT

R
s

Figure 0. Days an ITR remained openFigure 5. Days an ITR remained open

Figure 6. Severity 1 and 2 ITRs

Severity Open ITRs Closed ITRs

1 2 16

2 0 4

3 59 75

4 141 239

5 117 120

Total 319 454

Table 2. ITR summary

Note that an ITR doesn’t necessarily indicate an error.
Issues are often resolved with no changes. In the case of
severity 1 ITRs, as Figure 7 indicates, only 1 severity ITR
has ever flown on the shuttle since the introduction of
IV&V, and that ITR was in dormant code. Figure 8. Open ITRs

A more meaningful chart would be the set of still open
ITRs. This is given in Table 2 and graphed in Figure 8.
(several ITRs are not listed, being part of a still incomplete

1

2

3

4

5

Date ITR opened

S
ev

er
it

y
le

ve
l

1990 19941992 200019981996

7

OI.) Note that they are all relatively harmless severity 3
through 5 ITRs, except for the two severity 1s that are also
listed in Figure 6 above. (Both of these are in the BFS
system, were not considered critical for mission operations,
and have been closed after we obtained the data we have
analyzed.) As stated earlier, most of these ITRs will remain
open until the appropriate source module is edited because
of new requirements. These ITRs all refer to non-critical
issues and the danger of faulty corrections is taken very
seriously by NASA management. Appropriate managing of
this large list of issues across multiple releases is a major
value of the ITR process.

4 CONCLUSIONS

The value of this study resides in capturing and describing
a successfully implemented model for IV&V. It is a process
that carefully weighs the value of IV&V against the high
costs of providing verification to all work products in the
development. The ability to manage a large database of
issues across multiple releases of the software without
losing integrity of the product was a major goal of the
process. Shuttle software is highly reliable, and the number
of defects that manage to "slip through the cracks" is down
substantially from the pre-IV&V 1980s.

Recently the management of the NASA/IVV center was
moved from the Ames Research Center to the Goddard
Space Flight Center, with a goal of expanding IV&V
activities to additional NASA projects across the agency.
This data provides a baseline that is useful for setting up
additional IV&V-like activities at NASA and elsewhere.
We already know that absolute perfection in software is an
unrealizable goal. With data such as this from a well-
organized large complex development, we can set a
standard that other organizations can try to achieve.

In the Shuttle process, there are several competing players -
NASA as the customer, several vendors building the
software and other contractors evaluating the software. A
mechanism such as described here can be useful for
providing the right measurements for oversight of the
process without each organization losing its own
proprietary interests. This analysis is also applicable to
other organizations outsourcing software (especially critical
software), where IV&V can balance stakeholders’ interests,
mitigate risks, improve communication and visibility, track
changes and anomalies, and provide QA for both product
and contractor’s process.

5 ACKNOWLEDGEMENTS

We would like to acknowledge the cooperation of the
NASA IVV Center in Fairmont, WV, AverStar, Inc., and
United Space Alliance and their support in providing the
data that was used in this analysis.

REFERENCES

1. Nancy Eickelmann, I. Rus, and M. Zelkowitz.,
Preliminary Case Study Findings of the Space Shuttle
Software Evolution as a Product Line Process, ISAW-4
workshop at ICSE 2000, Limerick Ireland, June 2000.

2. William Florac, Anita Carlson and Julie Barnard,
Statistical process control: Analyzing a space Shuttle
onboard software process, IEEE Software (July, 2000) 97-
106.

3. IEEE Standard for Software Verification and Validation,
Std.1012-1998, Annex C.

4. Leveson, Nancy, et al., An Assessment of the Space
Shuttle Flight Software Development Process, National
Academy Press, Washington DC, 1993.

5. Dan McCaugherty, The criticality and risk assessment
(CARA) method, NASA Workshop on Risk Management,
Farmington, PA, October, 1998.

6. NASA headquarters Safety and Mission Quality Office
(Code Q) letter of 13 January 1992; Clarification of
NASA’s Independent Verification and Validation (IV&V)
Perspective.

7. Schneidewind, Norman F., How to evaluate legacy
system maintenance, IEEE Software, (July 1998) 34-42.

8. Schneidewind, Norman F., Measuring and evaluating
maintenance process using reliability, risk, and test metrics,
IEEE Trans. on Software Engineering 25, No. 6, (1999)
769-781.

9. M. Zelkowitz and I. Rus, Understanding IV&V in a
Safety Critical and Complex Evolutionary Environment:
The NASA Space Shuttle Program, ACM/IEEE
International Conference on Software Engineering,
Toronto, Canada, (May, 2001).

