Incremental Slicing Based on Data-Dependences Types*

Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold
College of Computing, Georgia Institute of Technology
{orso,sinha,harrold }@cc.gatech.edu

Abstract

Program slicing s wuseful for assisting with
software-maintenance tasks, such as program under-
standing, debugging, impact analysis, and regression
testing. The presence and frequent usage of point-
ers, in languages such as C, causes complex data
dependences. To function effectively on such pro-
grams, slicing techniques must account for pointer-
induced data dependences. Although many existing
slicing techniques function in the presence of point-
ers, none of those techniques distinguishes data de-
pendences based on their types. This paper presents
a new slicing technique, in which slices are computed
based on types of data dependences. This new slic-
ing technique offers several benefits and can be ex-
ploited in different ways, such as identifying subtle
data dependences for debugging purposes, computing
reduced-size slices quickly for complex programs, and
performing incremental slicing. In particular, this
paper describes an algorithm for incremental slicing
that increases the scope of a slice in steps, by incor-
porating different types of data dependences at each
step. The paper also presents empirical results to
illustrate the performance of the technique in prac-
tice. The experimental results show how the sizes
of the slices grow for different small- and medium-
sized subjects. Finally, the paper presents a case
study that explores a possible application of the slic-
ing technique for debugging.

1 Introduction

A program slice of a program P, computed with
respect to a slicing criterion < s,V >, where s is
a program point and V is a set of program vari-
ables, includes statements in P that may influence,
or be influenced by, the values of the variables in
V at s [23]. A program slice identifies statements

*This work was supported in part by grants to Geor-
gia Tech from Boeing Commercial Airplanes and NSF under
awards CCR-9707792, CCR-~9988294, and CCR-~0096321, by
the ESPRIT Project TWO, and by the Italian MURST in
the framework of the MOSAICO project.

that are related to the slicing criterion through tran-
sitive data and control dependences. A slice pro-
vides information that is useful for several software-
maintenance tasks, such as identifying the cause
of a software failure, evaluating the effects of pro-
posed modifications to the software, and determin-
ing parts of the software that should be retested
after modifications.

To function effectively on programs that use
pointers, slicing techniques must accommodate the
effects of these pointers on data-dependence rela-
tionships; pointers are used frequently in programs
written in widely-used languages such as C. The
presence of pointers causes subtle data dependences
in these programs. Much research has addressed the
problem of computing slices in the presence of point-
ers (e.g. [1, 3, 5, 14]). None of that research, how-
ever, has considered classifying data dependences
into different types and investigating how these
types affect the computation of slices. In recent
work, we introduced a fine-grained classification of
data dependences that arise in the presence of point-
ers [16]. The classification distinguishes data depen-
dence based on their “strength” and on the certainty
with which the data dependences occur along var-
ious execution paths. We also presented empirical
results that illustrate the distribution of such de-
pendences for a set of C subjects and introduced
a new slicing paradigm that computes slices based
on types of data dependences. The main benefit of
this paradigm is that it lets us compute slices by
considering only a subset of the types of data de-
pendences. By ignoring certain data dependences,
the paradigm provides a way of controlling the sizes
of slices, thus making the slices more manageable
and usable.

In this paper, we illustrate a technique for incre-
mental slicing, based on the new slicing paradigm.
We present an algorithm that computes a slice in
several steps, by incorporating additional types of
data dependences at each step. This technique can
be exploited in different ways, depending on the

int i, j;
main() { int add(int val,
int j, sum; int sum) {
1 read i; 7 if (sum > 100) {
2 read j; 8 i=9;
3 sum = 0; }
4 while (i< 10) { 9 sum = sum + j;
5 sum = add(sum); 10 read j;
} 11 i =1i+ 1;
6 print sum; 12 return sum; }
}

Figure 1. Program Sum1.

specific application of slicing. As an example, con-
sider the use of slicing for program comprehension:
when we are trying to understand just the overall
structure of the program, we can ignore very weak
data-dependences and focus on only stronger data-
dependence types. To this end, we can use the in-
cremental slicing technique to start the analysis by
considering only “strong” data dependences, and
then augment the slice incrementally by incorpo-
rating additional “weaker” data dependences. This
approach lets us focus initially on a smaller, and
thus easier to understand, subset of the program
and then consider increasingly larger parts of the
program. Alternatively, for applications such as de-
bugging, we may want to start focusing on weak,
and therefore not obvious, data dependences. By
doing this, we can identify subtle pointer-related
dependences that may cause unforeseen behavior in
the program.

In this paper, we also present empirical results
that illustrate the performance of the incremental
slicing technique in practice. We also present a case
study in which we investigate the usefulness of the
incremental slicing technique for debugging.

The main contributions of the paper are:
e An incremental slicing technique that computes

a slice in steps, by incorporating additional
types of data dependences at each step.

e Empirical studies that illustrate the perfor-
mance of the incremental slicing technique in
practice.

e A case study that illustrates the use of the in-
cremental slicing technique for debugging.

2 Background

There are two alternative approaches to comput-
ing program slices: one approach propagates solu-
tions of data-flow equations using a control-flow rep-
resentation [10, 23], the other approach performs
graph reachability on dependence graphs [11, 21].
For this work, we extend the dependence-graph ap-
proach; the approach based on data-flow equations
could be extended similarly.

A system-dependence graph (SDG) [11] is a col-
lection of procedure-dependence graphs (PDG) [7]—

one for each procedure—in which vertices are state-
ments or predicate expressions. Data-dependence
edges represent flow of data between statements
or expressions; control-dependence edges represent
control conditions on which the execution of a state-
ment or expression depends. A data dependence is
a triple (d, u,v) where d and u are statements and v
is a variable, d defines v, u uses v, and there exists
a path from d to u along which v is not redefined.
For example, (1, 4, i) is a data dependence in Sum1.

Each PDG contains an entry vertex that repre-
sents entry into the procedure. To model parameter
passing,! an SDG associates formal parameter ver-
tices with each procedure-entry vertex: a formal-in
vertex is created for each formal parameter of the
procedure; a formal-out vertex is created for each
formal parameter that may be modified [12] by the
procedure. The SDG also contains a formal-out ver-
tex for the return value of a function. An SDG as-
sociates a call vertex and a set of actual parameter
vertices with each call site in a procedure: an actual-
in vertex for each actual parameter at the call site;
an actual-out vertex for each actual parameter that
may be modified by the called procedure.

An SDG connects PDGs at call sites. A call
edge connects a call vertex to the entry vertex
of the called procedure’s PDG. Parameter-in and
parameter-out edges represent parameter passing:
parameter-in edges connect actual-in and formal-in
vertices, and parameter-out edges connect formal-
out and actual-out vertices.

Figure 2 shows the SDG for program Suml of
Figure 1. In the figure, ellipses represent program
statements (labeled by statement numbers), param-
eter vertices, entry points, and call sites; various
types of edges (shown by the key) represent depen-
dences and bindings. The parameter vertices are
labeled by the variable name to which they corre-
spond; the formal-out vertex for the return value is
labeled ‘ret’.

Horwitz, Reps, and Binkley [11] compute in-
terprocedural slices by solving a graph-reachability
problem on an SDG. To restrict the computation
of interprocedural slices to paths that correspond
to legal call/return sequences, an SDG uses sum-
mary edges to represent the transitive flow of depen-
dence across call sites caused by data dependences
or control dependences. A summary edge connects
an actual-in vertex and an actual-out vertex if the
value associated with the actual-in vertex may affect
the value associated with the actual-out vertex.

The interprocedural backward slicing algorithm
consists of two phases. The first phase traverses

LGlobal variables are treated as parameters.

— control dependence

"""" = flow dependence
————— > parameter—in/—out

— call
—— summary

Figure 2. System-dependence graph for Sum1.

backwards from the vertex in the SDG that rep-
resents the slicing criterion along all edges except
parameter-out edges, and marks those vertices that
are reached. The second phase traverses backwards
from all vertices marked during the first phase along
all edges except call and parameter-in edges, and
marks reached vertices. The slice is the union of
the marked vertices.

For example, consider the computation of a slice
for < 5, {i} >; this slicing criterion is represented in
the SDG of Figure 2 by the actual-out vertex for ¢
at the call site to add. In its first phase, the algo-
rithm adds to the slice the vertices shaded darkly in
Figure 2. In its second phase, the algorithm adds to
the slice the vertices that are backwards reachable
(backwards) from those added in the first phase;
these vertices are shaded lightly in the figure.

The presence of pointer dereferences gives rise to
complex data dependences in a program. In such
programs, when analyzing a definition or a use, it
may not be possible to identify unambiguously the
variable that is defined or used; such a definition or
use could modify or use one of several variables. For
example, consider program Sum2 (Figure 3).2 The
definition in statement 8 can modify either sumi

25um?2 is an extension of Sum1 with the addition of pointers;
it is overly complicated to illustrate our technique and the
complex dependences that can be introduced by pointers.

int i;

main() { int add(int val,
int *p; int sum) {
int j, suml, sum2; int *q, k;
1 suml = 0; 12 read k;
2 sum2 = 0; 13 if (sum > 100) {
3 read i, j; 14 i=9;
4 while (i <10) { }
5 if (j<0) A 16 sum = sum + i;
6 p = &sumi; 16 if (i <k) {
} 17 q = &val;
else { }
7 p = &sum2; else {
} 18 q = &k;
8 *p = add(j, *p); }
9 read j; 19 sum = sum + *q;
} 20 i =1+ 1;
10 suml = add(j, suml); 21 return sum;
11 print suml, sum2; }
}

Figure 3. Program Sum2.

Table 1. Classification of data dependences into

24 types [16].
Ddef- Ddef- Pdef- Pdef-
Duse Puse Duse Puse
DRD-K type 1 type 7 | type 13 | type 19
DPRD-K type 2 type 8 type 14 | type 20
DRD+K type 3 | type9 | type 15 | type 21
DPRD+K || type4 | type 10 | type 16 | type 22
PRD-K type 5 | type 11 | type 17 | type 23
PRD+K type 6 | type 12 | type 18 | type 24

or sum?2 depending on how the predicate in state-
ment 5 evaluates. To distinguish such definitions
from those in which the variable can be identified
unambiguously—for example, the definition of sum1
in statement 1—we classify the definition of sumi
(and of Sum2) in statement 8 as possible definition
and the definition of Suml in statement 1 as def-
inite definition. Like definitions, we also classify
uses as definite or possible. Finally, based on the
occurrence types of the definitions along a path, we
classify paths from the definition to the use into one
of six types.

Table 1 lists the types of data dependences that
result from combining the types of definitions, uses,
and paths [16]. The first column in the table lists
the types of paths; these paths are distinguished
based on whether they contain definite or possible
redefinitions of the relevant variable. The naming
convention for the paths reflects the types of re-
definitions that occur along the paths. The letters
preceding “RD” in the name indicate the type of
reaching definition: a “D” indicates a definite reach-
ing definition, whereas a “P” indicates a possible
reaching definition. A “4+K” or a “-K” indicates
the presence or absence, respectively, of a definite

kill of the relevant variable. For example, the set of
paths II from a definition of variable v to a use of
v is classified as DPRD+K if (1) at least one path
in IT contains no definite redefinition of v, (2) at
least one path in II contains a possible redefinition
of v, and (3) and at least one path in IT contains a
definite redefinition of v. For further example, II is
is classified as DPRD-K if previously defined condi-
tions (1) and (2) hold, but condition (3) does not.
To illustrate some of the types of data dependences
that occur in Sum2, (1, 8, suml) is a type 8 data
dependence: node 1 contains a definite definition of
suml; node 8 contains a possible use of sum1; the set
of paths from node 1 to 8 is DPRD-K because the
set includes a path that satisfies condition (1) (this
path does not iterate the loop in statement 4) and a
path that satisfies condition (2) (this path iterates
the loop in statement 4 at least once). Similarly,
(8, 11, sum?2) is a type 14 data dependence. Refer-
ence [16] provides further details of the classification
scheme and describes the algorithm for computing
the types of data dependences.

3 Incremental Slicing in the Pres-
ence of Pointers

The classification of data dependences into dis-
tinct types leads to a new slicing paradigm, in which
only statements that are related to the slicing crite-
rion by one or more specified types of data depen-
dence are included in the slice. In the next subsec-
tion, we describe this paradigm. Based on the new
paradigm, we then describe an incremental slicing
technique for computing a slice.

3.1 New slicing paradigm

Traditional slicing techniques (e.g., [10, 11, 23])
include in the slice all statements that affect the slic-
ing criterion through direct or transitive control and
data dependences. Such techniques compute a slice
by computing the transitive closure of all control de-
pendences and all data dependences starting at the
slicing criterion. The classification of data depen-
dences into different types leads to a new paradigm
for slicing, in which the transitive closure is per-
formed over only the specified types of data depen-
dences, rather than over all data dependences. In
this slicing paradigm, a slicing criterion is a triple
< s, V,T >, where s is a program point, V is a set of
program variables referenced at s, and 7' is a set of
types of data dependences. A program slice contains
those statements that may affect, or be affected by,
the values of the variables in V' at s through transi-
tive control or specified types of data dependences.

To compute slices in the new paradigm using
the SDG-based approach, we extend the SDG in

two ways. First, we annotate each data-dependence
edge with the type of the corresponding data de-
pendence. The traditional SDG does not distin-
guish data dependences based on their types and,
therefore, does not contain such annotations. To il-
lustrate, Figure 4 presents the SDG for Sum2. Each
data-dependence edge in the figure is labeled with
the type of that data dependence. For example, the
data-dependence edge from node 1 to the actual-in
node for *p at call node 8 is labeled ‘t8’; similarly,
the data-dependence edge from the actual-out node
for *p at that call node to node 11 is labeled ‘t14°.

Because the SDG introduces placeholder defini-
tions and uses at formal-in and formal-out nodes,
the data-dependence edges that are incident from or
incident to such nodes have dummy definition and
use types associated with them: such definitions or
uses are always definite. In Figure 4, such data-
dependence edges—whose source contains a dummy
definition type or whose sink contains a dummy use
type—are distinguished. For example, the data-
dependence edge from the formal-in node for sum
at call node 8 to node 13 has a dummy definition
type associated with it.

Second, unlike in the traditional SDG, we as-
sociate a type with each summary edge. Because
data-dependence edges have types associated with
them, the summary edges computed using those
data dependences also have types associated with
them—these types are the types of data depen-
dences that are followed while computing the sum-
mary edges. For example, the SDG in Figure 4
contains the summary edges that are created by
traversing only type 1 data dependences; thus, the
summary edges have the same type associated with
them and are labeled ‘t1’ in the figure. Associating
data-dependence types with summary edges lets us
use the two-phase slicing algorithm [11] with mini-
mal changes.

To compute a slice for criterion < s, V,T >, the
SDG must traverse the summary edges for data-
dependence types T'. After the summary edges are
computed, the slicing algorithm proceeds like the
two-phase slicing algorithm [11]. During the first
phase, the algorithm traverses backward along con-
trol, flow, call, parameter-in, and summary edges.
During the second phase, the algorithm traverses
backward along control, flow, parameter-out, and
summary edges. However, the algorithm traverses
backward along a flow-dependence or a summary
edge only if the data-dependence types associated
with that edge appear in the data-dependence types
T mentioned in the slicing criterion. If an edge has
place-holder definition or use type associated with

control dependence

flow dependence

flow dependence
(dummy def/use type)

parameter—in/—out
call

summary

Figure 4. System-dependence graph for Sum2 to support slicing using types of data dependences. The lightly
shaded nodes are included in the slice for < 10, {sum1}, {¢1} >. The darkly shaded nodes are the additional

nodes included in the slice for < 10, {sum1}, {t1,¢2,t3} >.

Figure 5. Summary edges, with the associated
data-dependence types, required at call node 8 in
the SDG for Sum2.

it, the algorithm extracts the other components of
the data-dependence type—for example, in case of
a dummy definition, the algorithm extracts the use
type and the path type—and matches them with
the types specified in the slicing criterion.

The nodes included in the slice for criterion
< 10, {sum1}, {¢t1} > are shaded lightly in Figure 4.

3.2 Incremental slicing technique

Using the new slicing paradigm, we define an in-
cremental slicing technique. The incremental slic-

ing technique computes a slice in steps, by incor-
porating additional types of data dependences at
each step; the technique thus increases the scope of
a slice in an incremental manner. In a typical us-
age scenario, the technique starts by considering the
stronger types of data dependences and computes a
slice based on those data dependences. Then, it in-
crements the slice by considering additional types
of (weaker) data dependences and adding to the
slice statements that affect the criterion through the
weaker data dependences.

For example, the lightly shaded nodes in Figure
4 are included in the slice for < 10, {sum1}, {¢t1} >.
Using the incremental technique, when type 2 and
type 3 data dependences are also considered, the
darkly shaded nodes are added to the slice. Figure
5 shows all summary edges that are required at call
node 8.

To support incremental slicing using the SDG,
we need to compute summary edges not only for
the different types of data dependences (24 in our
classification scheme), but also for the various com-

algorithm ComputeSlice

input < s,V,T > slicing criterion

output slice slice for < s, V,T >

global G SDG for program P

begin ComputeSlice

1. m = node in G corresponding to s

2. slice = GetReachableNodes({n}, T, {call, param-in})
3. slice = GetReachableNodes(slice, T, {param-out})

4. return slice

end ComputeSlice

function GetReachableNodes
input N set of SDG nodes

T data-dependence types
edgeTypes interprocedural edges to follow
output slice nodes for a slicing phase
declare worklist nodes traversed in the SDG
begin GetReachableNodes
5. worklist = N; slice = ¢
6. while worklist # ¢ do

7. remove node n from worklist

8. case n is actual-out vertex:

9. foreach m s.t. (m—n) € control do

10. add m to worklist and slice

11. endfor

12. if Am s.t (m—n) € summary(7T) then

13. z = formal-out vertex corresponding to n

14. ComputeSummaryEdges(z, T)

15. endif

16. foreach m s.t. (m—n) € summary(T") do

17. add m to worklist and slice

18. endfor

19. default:

20. foreach m s.t. (m—n) € flow(T'), control,
edgeTypes do

21. add m to worklist and slice

22. endfor

23. endcase

24. endwhile
25. return slice
end GetReachableNodes

Figure 6. Algorithm for computing a slice that
computes summary edges on demand.

binations of data-dependence types (224 — 1 combi-
nations in our scheme). Clearly, it is not practical
to precompute summary edges for all possible com-
binations of data-dependence types, even if all the
data-dependence types do not occur in programs.
An alternative is to compute the summary edges
on demand, as and when they are required while
computing a slice. Although, in the worst case, the
demand approach can compute as many summary
edges as the precompute approach, our empirical ev-
idence indicates that this may not occur in practice.
We discuss this further in Section 4.

We modified the SDG-based slicing algorithm
to compute summary edges on demand; Figure 6
presents the modified algorithm, ComputeSlice.

Like Horwitz, Reps, and Binkley’s slicing al-
gorithm, ComputeSlice proceeds in two phases.
To identify nodes that are included in the

function ComputeSummaryEdges
input =z a formal-out vertex in G

T data-dependence types
declare worklist nodes traversed in the SDG

begin ComputeSummaryEdges

1. worklist = x

2. while worklist # ¢ do

3 remove node n from worklist

4. case n is actual-out vertex:

5. foreach m s.t. (m—n) € control do

6 add m to worklist

7 endfor

8 if Am s.t (m—n) € summary(7T) then

9. z = formal-out vertex corresponding to n
10. ComputeSummaryEdges(z, T')

11. endif

12. foreach m s.t. (m—n) € summary(T) do
13. add m to worklist

14. endfor

15. case n is formal-in vertex:

16. foreach m s.t (m—n) € param-in edge do
17. y = corresponding actual-out

18. create summary(T) (m—vy)

19. endfor
20. default:
21. foreach m s.t. (m—n) € flow(T), control do
22. add m to worklist
23. endfor
24. endcase

25. endwhile
end ComputeSummaryEdges

Figure 7. Algorithm for computing summary
edges on demand.

slice in each phase, ComputeSlice calls function
GetReachableNodes() (lines 2, 3). During the first
call, GetReachableNodes() computes reachability
starting at the slicing criterion; during the second
call, GetReachableNodes() computes reachability
starting at the nodes traversed during the first call.

GetReachableNodes () uses a worklist to traverse
backward along matching flow-dependence edges,
control edges, and the specified types of interpro-
cedural edges: call and param-in edges during the
first phase, and param-out edges during the sec-
ond phase (lines 19-22). On reaching an actual-out
node n (line 8), first, the function traverses back-
ward along control edges incident on n (lines 9-11).
Next, the algorithm checks whether summary edges
for the relevant data-dependence types T have been
computed for n (line 12).If the summary edges for
T have not been computed, the function computes
them on demand, starting at the formal-out node
that is connected to n (lines 13-14). After com-
puting the summary edges, the function traverses
backward along those edges (lines 16-18).

ComputeSummaryEdges (), shown in Figure 7, is
a recursive function that takes as inputs a formal-
out node = and a set of data-dependence types
T. It identifies those formal-in nodes (in the PDG

that contains x) that are reachable from z back-
ward along control edges and flow edges of type
T (lines 20-23). On reaching an actual-out node
(line 4), the function performs actions similar to
GetReachableNodes(): it traverses backward along
control edges (lines 5-7) and, if required, invokes it-
self recursively to compute summary edges for type
T (lines 8-10) and to traverse along those edges
(lines 12-14). On reaching a formal-in node n (line
15), the function has identified a summary depen-
dence from n to x. Therefore, the function ascends
along each param-in edge connected to m, and cre-
ates a summary edge for type T at each such call
site (lines 16-19).

ComputeSlice involves two traversals of the
SDG@G, both of which are linear in the size of the SDG;
therefore, the time complexity of ComputeSlice is
linear in the size of the SDG. The more signifi-
cant cost element is the space complexity because of
the exponential worst-case theoretical bound on the
number of summary edges. In practice, we do not
expect this worst case to occur. However, if this
cost is realized, it makes the storage of summary
edges infeasible. A more practical approach would
be to discard and recompute the summary edges for
each slice. Such an approach retains the linear time
complexity of ComputeSlice, while avoiding its ex-
ponential space complexity. This approach trades
the exponential complexity of the algorithm for the
number of slices that is may need to be computed:
in the worst case, a slice for each combination of
the data-dependence types may be computed. Our
empirical evidence, presented in the next section,
suggests that considering all combinations of data-
dependence types is not required in practice.

4 Empirical Results

To investigate the performance of the incremen-
tal slicing technique in practice, we implemented a
prototype and performed empirical studies with a
set of C subjects. We implemented the reaching-
definitions algorithm, the SDG construction algo-
rithm, and the SDG-based slicing algorithm using
the ARISTOTLE analysis system [2]. To account for
the effects of aliases, we replaced the ARISTOTLE
front-end with the PROLANGS Analysis Frame-
work (PAF) [18]. We used PAF to gather control-
flow, local data-flow, alias, and symbol-table infor-
mation; we then used this information to interface
with the ARISTOTLE tools. We used the programs
listed in Table 2 for the empirical studies. Due
to the computational cost of the alias analysis per-
formed by PAF, we were constrained to select pro-
grams of small to medium sizes.

Table 2. Programs used for the empirical studies.

[Subject | Description | LOC |
armenu | Aristotle Analysis system interface 11320
dejavu Regression test selector 3166
lharc Compress/extract utility 2550
replace Search-and-replace utility 551
space> Parser for antenna array description | 6201

language
tot_info | Statistical information combiner 477
unzip Compress/extract utility 2906

Table 3. Data-dependence types for which slices
were computed.

Subject | Slices Computed |

armenu | S1{t1l} S2{t1-t3} S3{t1-t24
dejavu | SI{t1} S2{t1t3} S3{t1t19} SA{t1t20}
S5{t1-t24}
Tharc ST{t1} S2{t1t3} S3{t1_t10} SA{t1—t20}
S5{t1-t24}
replace | S1{t1} S2{t1-t3} S3{t1-t20} S4{t1-t24}
space S1{t1} S2{t1-t3} S3{t1-t19} S4{t1-t20}
S5{t1-t24}

totinfo | SI{t1} S2{t1t3} S3{t1t14} SA{t1t24}
Unzip | SI{t1} S2{t1t3} S3{t1-t20} SA{t1_t24}

The goal of the study was to evaluate how the
sizes of slices increase as additional types of data-
dependences are considered during the computa-
tion of the slices. For each subject, we computed
intraprocedural data dependences, and classified
them into the types listed in Table 1. Then, based
on the distribution of the data-dependence types,
we selected the slices to compute; Table 3 lists the
slices that were computed for each subject. The ta-
ble lists the data-dependence types that were con-
sidered for each slice for a subject. For example, for
unzip, we computed four sets of slices; the slices in
the first set were based only on data-dependence
type 1, whereas those in the second, third, and
fourth sets were based on data-dependence types
1 through 3, 1 through 20, and 1 through 24, re-
spectively. The last set of slices—those based on all
types of data dependences—are the same as would
be computed by a slicer that ignores the distinctions
among data dependences. The data-dependence
types for each successive set of slices are inclusive of
the types for the previous set of slices. Thus, each
slice from a set is a superset of the corresponding
slice from the previous set, which lets us study the
growth in the sizes of the slices.

We envision that such usage of the incremen-
tal slicing technique would be typical and the
most beneficial when the technique is incorporated
into a software-maintenance tool. The tool would
present the distribution of the data-dependence

10U 100

Il s Il s2 s3] s4

Slice sizes 1n percentage

SN R 2 2] R 30
a0 d@a\“} W ﬁe‘?\’ac S@Cnob)(\io o®

Figure 8. Increase in the sizes of the slices for the
types of data dependences listed in Table 3; the
first bar is the average over all slices, whereas the
second bar is the maximum increase in the slice
sizes over the first slice for each subject.

types, whose computation is far less expensive than
the computation of slices, to the user. The user
then, based on the distributions, would be able to
specify to the tool the types for which to compute
the slices.

The data distribution that we observed for our
subjects suggest that the worst-case exponential
complexity of the summary-edge computation may
not occur in practice. For all subjects, only four or
five types of data dependences appeared predomi-
nantly. Although other types of data dependences
occurred, they were insignificant in number. There-
fore, for each subject, we identified only three to
five meaningful slices—those for which we expected
significant differences in the slices. We expect such
a trend even for larger programs because the occur-
rence of different types of data dependences is in-
dependent of the program size; it would be unlikely
for all data-dependence types to occur in equally
significant numbers even in large programs.

For each subject, we computed slices starting at
each program statement (for variables that are used
at that statement)—one such set of slices for each
combination of data-dependence types listed in Ta-
ble 3. Figure 8 presents data about the growth in
the sizes of the slices. The vertical axis represents
the sizes of the slices as percentages of the program
sizes. The figure contains two segmented bars for
each subject. The first segmented bar represents
the average of all slices computed for a subject. The
second segmented bar represents the slice that ex-
hibited the maximum growth in the final set over
the first set. The segments in each bar represent
slices from the sets listed in Table 3. For some sub-
jects, the last set of slices caused no increases in the

sizes of the slices;* these sets are marked in bold
in Table 3 and have no corresponding segments in
Figure 8. For example, Table 3 shows that four sets
of slices were computed for unzip; however, the fi-
nal set of slice S4 caused no differences in the slices;
therefore, the segmented bars for unzip in Figure 8
have only three segments, one each for slice sets S1,
S2, and S3.

The increases in the sizes of the slices vary across
the subjects as additional data-dependence types
are considered. For example, on average, the slice
sizes for dejavu increase only by 2% when data-
dependence types 2 and 3 and considered in addition
to data-dependence type 1; however, for unzip, the
slice sizes for the same types increase by over 25%.
The addition of data-dependences caused by point-
ers, which occurs starting in slice set S3 for each
subject, also causes increases in slice sizes that vary
across subjects. On average, pointer-related data-
dependences cause the slices to increase by only a
little over 1% for armenu, 9% for space, but 17%
for lharc and over 19% for replace. The second
segmented bar illustrates growth in the slice size for
the slice that had the largest increase caused by the
additional data-dependence types for each subject.
Such slices grew by over 60% (of the program size)
from S1 to S3 for unzip, and by over 51% from S1 to
S3 for replace. The data in Figures 8 illustrate the
usefulness of the new slicing paradigm in controlling
the sizes of the slices.

5 Application of the Incremental
Slicing Technique

We performed a case study to investigate the
usefulness of incremental slices for debugging. The
goal of the study was to determine how incremental
approximations to dynamic slices succeed in isolat-
ing the fault. For the study, we chose a version
of space that contains a known fault, and a test
case that exposed the fault. To simulate a typ-
ical debugging scenario, we examined the output
of the fault-revealing test case and selected a suit-
able slicing criterion at an output statement in the
program. Next, we examined the distribution of
data-dependence types for space and, based on the
occurrences of various types, selected eight com-
binations of data-dependence types for computing
the slices: {t1}, {t1-t3}, {t1-t7}, {t1-t13}, {t1-
t14}, {t1-t19}, {t1-t20}, and {t1-t24}. Using the
types, we computed incremental slices and inter-

4This occurs because the statements related through the
additional types of data-dependences were already included
in the slices in the previous set through control dependences
or other types of data dependences.

100 T T T T T T

static slice -----

80 -

60 [

40 -

20 |

Sizes of incremental slices as percentages of the final static slice

Figure 9. Dynamic slices computed for space to
locate the fault.

sected them with the statement trace of the fault-
revealing test case to obtain approximations to the
corresponding dynamic slices.

Figure 9 presents a plot of the sizes of the
eight static and dynamic slices computed for space.
The sixth incremental slice, which includes data-
dependence types 1 through 19, contains the fault.
The static-slice increment that contains the fault is
70% of the final static slice, whereas the dynamic-
slice increment that contains the fault is 25% of
the final static slice. The distribution of data-
dependence types for space were such that inclu-
sion of the additional data dependences in the third,
fourth, and fifth slices caused no increases in the
slices, whereas the additional data dependences in
the sixth slice caused a significant increase in the
slice size. It is difficult to speculate whether such
behavior would persist across larger and more var-
ied subjects. Nonetheless, the case study does sug-
gest the benefits of incremental slices in narrowing
the search space for faults during debugging, and
could thus be usefully incorporated into a software-
maintenance tool.

6 Related Work

Several researchers have considered the effects of
pointers on program slicing and have presented re-
sults to perform slicing more effectively in the pres-
ence of pointers (e.g., [1, 3, 5, 14]). Some researchers
have also evaluated the effects of the precision of the
pointer analysis on subsequent analyses, such as the
computation of def-use associations (e.g. [22]) and
program slicing (e.g. [4, 13, 20]). However, none of
that research distinguishes data dependences based
on types of the definition, the use, and the paths
between the definition and the use—they view uni-
formly each data dependence that arises in the pres-

ence of pointers.

Other researchers (e.g. [6, 9]) have investigated
various ways to reduce the sizes of slices. How-
ever, they have not considered classifying data de-
pendences and computing slices based on different
types of data dependences as a means of reducing
the sizes of slices.

Ostrand and Weyuker [17] extend the traditional
data-flow testing techniques [8, 19] to programs that
contain pointers and aliasing. To define testing cri-
teria that adequately test the data-flow relation-
ships in programs with pointers, they consider the
effects of pointers and aliasing on definitions and
uses. They classify definitions, uses, and def-clear
paths depending on the occurrences of pointer deref-
erences in those entities. Based on these classifica-
tions, they identify four types of data dependences:
strong, firm, weak, and very weak. The classifica-
tion proposed by Ostrand and Weyuker, however, is
coarser grained with respect to the one that we are
using. The strong data dependence corresponds to
data-dependence types 1 and 3 in our classification;
the firm data dependence corresponds to types 2
and and 4; the weak data dependence corresponds
to types 5 and 6; and finally, the very weak data
dependence corresponds to the remaining 18 types
of data dependences. Furthermore, Ostrand and
Weyuker do not investigate how such classification
affects the computation of program slices.

Merlo and Antoniol [15] present techniques to
identify implications among data dependences in
the presence of pointers. They also distinguish def-
inite and possible definitions and uses and, based
on these, identify definite and possible data depen-
dences. The definite data dependence corresponds
to data-dependence types 1 and 3 in our classifi-
cation, whereas the possible data dependence cor-
responds to types 2, 4-6, 8, 10-12, 14, 16-18, 20,
and 22-24; the remaining types in our classification
fall in neither the definite nor the possible data-
dependence category in Merlo and Antoniol’s clas-
sification.

7 Summary and Future Work

In this paper, we presented a new incremental
slicing technique, in which slices are computed by
considering subsets of data dependences based on
their types. By using this technique we can increase
the scope of a slice in steps, by incorporating addi-
tional types of data dependences at each step. The
technique is based on the use of an extended system-
dependence graph and extends the SDG-based slic-
ing technique. We presented empirical results to
illustrate the performance of the technique in prac-

tice. The results show that computing slices in
steps can be useful for software-maintenance tools
because each increment to the slice can be signifi-
cantly smaller than the complete slice.

We also presented the results of a case study that
shows how the new technique can be used for de-
bugging purposes. We computed slices for a sub-
ject containing a known, subtle pointer-related fault
and showed how incremental slicing can be used to
narrow the search space for faults during debug-
ging. More generally, by decreasing the amount
of information that is presented to software main-
tainers and by focusing on specific types of depen-
dences, incremental slices can reduce the complexity
of software-maintenance tasks, such as debugging.

Our future work includes extensions to our tool
to use different, and more efficient, kinds of alias-
analysis algorithms. This improvement will enable
us (1) to perform experiments on subjects of big-
ger sizes, and (2) to study the relation between the
distribution of data dependences and the precision
of the underlying alias analysis. We will also study
the source code of the subjects to try to identify
patterns in that code that can cause specific types
of data dependences. We believe that such patterns
could be of great help to tune analysis algorithms
and provide guidelines for the programmers. Fi-
nally, we plan to further investigate the practicality
and usefulness of our slicing paradigm for various
applications.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford.
Dynamic slicing in the presence of unconstrained
pointers. In Proc. of the symp. on Testing, Analy-
sis, and Verification, pages 60-73, Oct. 1991.
Aristotle Research Group.

TOTLE: Software engineering
http://www.cc.gatech.edu/aristotle/, 2000.
D. C. Atkinson and W. G. Griswold. Effective
whole-program analysis in the presence of point-
ers. In Proc. of ACM SIGSOFT 6™ Intl. Symp.
on the Found. of Softw. Engg., pages 46-55, Nov.
1998.

L. Bent, D. C. Atkinson, and W. G. Griswold. A
comparative study of two whole-program slicers for
C. Technical Report UCSD TR, CS2000-0643, Uni-
versity of California at San Diego, May 2000.

D. W. Binkley and J. R. Lyle. Application of the
pointer state subgraph to static program slicing.
The Journal of Systems and Softw., 40(1):17-27,
Jan. 1998.

G. Canfora, A. Cimitile, and A. D. Lucia. Con-
ditioned program slicing. Information and Softw.
Technology, 40(11-12):595-608, November 1998.

J. Ferrante, K. J. Ottenstein, and J. D. Warren.
The program dependence graph and its use in opti-

ARIs-
tools.

2]

(3]

(4]

(5]

10

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

mization. ACM Trans. Prog. Lang. Syst., 9(3):319-

349, July 1987.
P. G. Frankl and E. J. Weyuker. An applicable

family of data flow testing criteria. IEEE Trans.

Softw. Eng., 14(10):1483-1498, Oct. 1988.
M. Harman and S. Danicic. Amorphous program

slicing. In Proc. of the 5 Intl. Workshop on
Program Comprehension. IEEE Computer Society

Press, 1997.
M. J. Harrold and N. Ci. Reuse-driven interproce-

dural slicing. In Proc. of the 20" Intl. Conf. on

So{tlw. Engg., pages 74-83, Apr. 1998.
S. Horwitz, T. Reps, and D. Binkley. Interprocedu-

ral slicing using dependence graphs. ACM Trans.

Prog. Lang. Syst., 12(1):26-60, Jan. 1990.
W. Landi, B. G. Ryder, and S. Zhang. Inter-

procedural modification side effect analysis with
pointer aliasing. In Proc. of the ACM SIGPLAN
93 Conf. on Prog. Language Design and Imple-

mentation, pages 56—67, June 1993.
D. Liang and M. J. Harrold. Efficient points-to

analysis for whole-program analysis. In Proc. of
ESEC/FSE 799, vol. 1687 of LNCS, pages 199-215.

Springer—\/erl?\%, Sept. 1999.
D. Liang and M. J. Harrold. Reuse-driven interpro-

cedural slicing in the presence of pointers and recur-
sion. In Proc. of the Intl. Conf. on Softw. Maint.,

pages 421-432, August—September 1999.
E. Merlo and G. Altoniol. Pointer sensitive

def-use pre-dominance, post-dominance and syn-
chronous dominance relations for unconstrained
def-use intraprocedural computation. Technical
Report EPM/RT-00/01, Ecole Polytechnique of

Montreal, Mar. 2000.
A. Orso, S. Sinha, and M. J. Harrold. Effects

of pointers on data dependences. In Proc. of the
9" Intl. Workshop on Prog. Comprehension, May

2001. (To appear).
T. J. Ostrand and E. J. Weyuker. Data flow-based

test adequacy analysis for lang. with pointers. In
Proc. of the Symp. on Testing, Analysis, and Ver-
iiﬁcation, pages 74-86, Oct. 1991.

rogramming Language Research Group.
PROLANGS Analysis Framework.
http://www.prolangs.rutgers.edu/, Rutgers

University, 1998.
S. Rapps and E. J. Weyuker. Selecting software

test data using data flow information. IEFEFE Trans.

Softw. Eng., SE-11(4):367-375, Apr. 1985.
M. Shapiro and S. Horwitz. The effects of the preci-

sion of pointer analysis. In 4" Intl. Static Analysis

Symp., vol. 1302 of LNCS, pages 16-34, Sept. 1997.
S. Sinha, M. J. Harrold, and G. Rothermel. System-

dependence-graph-based slicing of programs with
arbitrary interprocedural control flow. In Proc. of
the 21°" Intl. Conf. on Softw. Engg., pages 432-441,

May 1999.
P. Tonella. Effects of different flow insensitive

points-to analyses on DEF/USE sets. In Proc.
of the 3rd European Conf. on Softw. Maint. and

Reengg., pages 62-69, Mar. 1999.
M. Vgeiser. Program slicing. IEEE Trans. Softw.

Eng., 10(4):352-357, July 1984.

