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Abstract

When a software system enters the maintenance phase,
the availability of accurate and consistent information
about its organization can help alleviate the difficulties of
program understanding. Reverse engineering methods aim
at extracting such kind of information directly from the
code. While several tools support the recovery of the class
diagram from object oriented code, no work has insofar at-
tacked the problem of statically characterizing the behavior
of an object oriented system by means of diagrams which
represent the class instances (objects) and their mutual re-
lationships.

In this paper a novel static analysis algorithm is pro-
posed for the extraction of the object diagram from the code,
based on a program representation called the object flow
graph. Partial object diagrams can be associated dynami-
cally to the system by executing and tracing the program on
a set of test cases. The complementary nature of these two
views will be discussed, and a novel approach to object ori-
ented testing will be derived from such a comparison. The
usefulness of the proposed technique is illustrated on a real
world, public domain C++ system.

1 Introduction

During maintenance, the most reliable and accurate de-
scription of the behavior of a software system is its source
code. Such a valuable information repository cannot di-
rectly answer all questions about the system. Reverse en-
gineering techniques provide a way to extract higher level
views of the system, which summarize some relevant as-
pects of the computation performed by the program state-
ments. Reverse engineered diagrams can support program
understanding activities, as well as restructuring interven-
tions and traceability.

The class diagram [7] can be easily recovered from an
existing object oriented system, by means of a syntactic

analysis of the classes declared in the program and of the
type of the class fields. When a class field is another class
of the system, an association can be drawn between the two.
Although such a view is the basic one for program under-
standing, it is not much informative of the behavior that the
program will exhibit at run time, being focused on the static
relationships between classes. On the contrary, the object
diagram represents the instances of the classes that are cre-
ated dynamically, and the related inter-object relationships.
This program representation provides additional informa-
tion with respect to the class diagram on the way classes are
actually used. Further diagrams that can be derived from the
object diagram, such as the collaboration and the sequence
diagrams [7], characterize the identified objects in terms of
the messages that are exchanged.

In this paper two techniques for the automatic extraction
of the object diagram are investigated. The first technique is
based on a static analysis of the source program. It exploits
flow analysis to propagate information about the allocated
objects up to the object fields, so that the inter-object re-
lationships mediated by the object fields are approximated
statically in a conservative way. Consequently, this analysis
reports a safe superset of the relationships that are expected
to hold during any program execution. The second tech-
nique considered in this paper is based on the execution of
the program on a set of test cases. Each test case is asso-
ciated to the object diagram depicting the objects and the
relationships that are instantiated when the test case is run.
The diagram can be obtained as a postprocessing of the pro-
gram traces generated during each execution (following the
suggestions in [7] for the construction of the UML object
diagram). These two program views are complementary, in
that the first is safe with respect to the objects and the rela-
tionships represented, but cannot provide precise informa-
tion on their actual multiplicity, nor on the actual memory
shape associated with the objects that are allocated. The dy-
namic view is clearer about number of instances and mem-
ory layout, but is (by definition) partial. Therefore, it is
useful to contrast it with the static one to determine the por-
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tion of the overall view that was explored with the available
test suite. Such a comparison can be conducted for program
understanding purposes, as well as for testing purposes. As
a by product of our analysis, we propose two novel testing
criteria – object and inter-object relationship coverage – that
are well suited for object oriented systems.

The difficulties in reverse engineering and maintenance
of object oriented applications are discussed in [4] and [10].
Available commercial design tools (such as Rational Rose
and Together) allow the static extraction of the class di-
agram from the code, while information about class in-
stances is collected at run-time only by research proto-
types [3, 5, 6, 9]. In these works, creation of objects and
inter-object message exchange are captured by tracing the
execution of the program on a given set of scenarios. On
the contrary, to the best of the authors’ knowledge, no work
considered the problems related to reverse engineering of
the object diagram statically, from the code.

The core analysis algorithm we propose for the static in-
ference of the referenced objects is based on the type in-
ference techniques described in [2]. While in the original
formulation of the analysis, sets of types are attached to
variables, and are updated according to the statements en-
countered in a flow insensitive visit of the program, in our
approach, variables are associated to the objects they ref-
erence, and such information is propagated inside the ob-
ject flow graph, a novel program representation designed
specifically for the static analysis we propose. In a previous
paper [8], a similar flow analysis algorithm was proposed
for the recovery of the class diagram in presence of weakly
typed containers, which make the field types unusable for
reverse engineering, when fields are containers.

The paper is organized as follows: the next section
presents static and dynamic techniques for the extraction of
the object diagram, discusses their relationship, and derives
two object oriented testing criteria from them. Section 3
describes the experimental results obtained on the C++ ap-
plication Gutebrowser. The last section is devoted to con-
clusions and future work.

2 Recovery of the Object Diagram

The object diagram represents the set of objects created
by a given program and the relationships holding among
them. The elements in this diagram (objects and relation-
ships) are instances of the elements (classes and associa-
tions, resp.) in the class diagram. The difference between
object diagram and class diagram is that the former instan-
tiates the latter. As a consequence, the objects in the object
diagram represent specific cases of the related classes. Their
fields are expected to have well defined values and the rela-
tionships with other objects have a known multiplicity. For
each class in the class diagram there may be several objects

instantiating it in the object diagram. For each relationship
between classes in the class diagram there may be object
pairs instantiating it and pairs not related by it.

The usefulness of the object diagram as an abstract pro-
gram representation lies in the information specific to the
instantiation of the classes that it shows. While the class
diagram summarizes all properties that objects of a given
class may have, the object diagram provides more details on
the properties that specific instances of each class possess.
Different instances may play different roles and may be in-
volved in different relationships with other objects. While
this is not apparent in the class diagram, the object diagram
represents such kind of information explicitly. For exam-
ple, there may be one Node class in the class diagram for
a BinaryTree program, with two auto-associations named
left and right for the two children, while a possible in-
stance represented in an object diagram may include three
objects of type Node, playing three different roles (e.g., tree
root, left child and right child). The relationships between
these three elements are compliant with those in the class
diagram, but provide more information on the layout of the
related instances by showing a specific scenario (where the
root references two children which have no further descen-
dants). Moreover, the object diagram is the starting point
for the construction of the interaction (collaboration and se-
quence) diagrams, where information about the message ex-
change between objects is added to the class instances, thus
focusing the view on the dynamic behavior of a set of coop-
erating objects (a collaboration, in the UML terminology).

In the following, two techniques are described for the re-
covery of the object diagram. The first exploits only static
information and approximates the set of objects created in
the program by analyzing the allocation (new) statements
and propagating the resulting objects by means of a flow
analysis algorithm. The second considers a set of execution
traces, associated with the test cases available for a given
program, and computes the object diagram by analyzing the
actual memory areas allocated during execution, and the ad-
dresses of the pointer fields. These two techniques have ad-
vantages and disadvantages and it is therefore desirable to
be able to compute and integrate both of them.

2.1 Static analysis

The static computation of the object diagram we propose
exploits flow propagation to transmit information about the
objects that are created up to the fields that reference them.
The data structure on which flow propagation takes place is
called the Object Flow Graph (OFG) and contains as nodes
the program locations which may hold a reference to an ob-
ject, while its edges connect two locations when there is a
program statement through which an object referenced by
the first location can be assigned to the second.
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The OFG cannot be derived directly from the code.
Some of its nodes can be created only when (partial) re-
sults of the flow propagation are available. In fact, program
locations associated to fields of classes are mapped to OFG
nodes with the containing objects as prefixes. When a class
field is assigned a value, it is not known a priori the object
which the field belongs to, and, at the same time, the com-
putation of the objects referenced inside methods is done
while the analysis progresses. Consequently, an incremen-
tal construction of the OFG has to be conducted, intermixed
with the propagation of flow information about the allocated
objects.

objectAnalysis()
1 N  0, change  true, graph  ;
2 while change
3 graph  incrBuildObjectFlowGraph(graph)
4 change �xpoint(graph)
5 end while

incrBuildObjectFlowGraph(graph: Graph)
1 for eac hs: Statement in PROGRAM
2 addEdges(graph, s)
3 addGEN(graph, s)
4 end for

Figure 1. Main loops of object analyzer and object
flow graph builder.

Fig. 1 shows the main loop of the algorithm. It contains
two main steps (lines 3 and 4). In the first, the OFG is incre-
mentally built (i.e., at each step some edge may be added, if
not present), and in the second step the flow information is
propagated until the fixpoint is reached. Such steps are re-
peated as long as some information changes in the OFG (ei-
ther due to incremental graph construction or to flow prop-
agation). The procedure for the incremental construction
of the OFG (incrBuildObjectFlowGraph) examines in turn
each program statement and, if necessary, adds new edges
or new flow information (GEN sets of the OFG nodes) ac-
cording to the type of statement under consideration.

The flow information inserted into the GEN sets of the
OFG consists of class names (e.g., A) suffixed with a unique
object identifier (an integer value, in the following, as in
AN ). The equations used for flow propagation in the fixpoint
procedure are the usual flow analysis equations [1] (with
the union as meet operator and empty KILL set):

IN [n] =
[

p2pred(n)

OUT [p] (1)

OUT [n] = GEN [n] [ IN [n] (2)

where n is an OFG node and pred(n) is the set of its prede-
cessors in the OFG. GEN[n] contains the set of objects di-
rectly assigned to noden in an allocation statement (such as,

n = new A()), while IN[n] and OUT[n] contain incom-
ing and outgoing information computed dynamically by the
fixpoint routine according to the equations above.

addEdges(graph: Graph, stmt: 'lhs = rhs')
1 out1  expand(rhs)
2 out2  expand(lhs)
3 for each x in out1
4 for each y in out2
5 addEdge(graph, (x, y))
6 end for

7 end for

addGEN(graph: Graph, stmt: 'lhs = new A()')
1 out  expand(lhs)
2 N  N + 1
3 for each x in out
4 addGENToNode(x, fANg)
5 end for

Figure 2. Procedures to incrementally build the ob-
ject flow graph and fill-in the GEN sets of its nodes.

The incremental construction of the OFG is described by
the pseudocode of the procedure addEdges in Fig. 2, which
considers the case where the statement to be examined is an
assignment with right hand side rhs and left hand side lhs.
Since object references can be propagated from rhs to lhs
due to this statement, an edge has to be added in the OFG
between the location associated with rhs and the location
associated with lhs. In case rhs or lhs are class fields, the
related locations can be obtained by expanding their pre-
fix into the set of objects having them as fields (procedure
expand), as described in Fig. 3.

Statements different from assignments can be either re-
duced to the case of the assignment in Fig. 2, or require no
edge addition. For example, a method call such as
q = p->f(ac), where p is of type A* and class A con-
tains a method f, with formal parameter fm, can be pro-
cessed as equivalent to the following assignments:

D::g::q = A::f::return
A::f::fm = D::g::ac
A::f::this = D::g::p

That is, a return location, with A::f as scope, is intro-
duced to represent the returned value. Actual parameters are
assigned to formal parameters, and the object on which the
method invocation is issued is assigned to the this pointer
of the invoked method. Edges in the OFG are created for
each of these three assignments. Variables q, ac and p
have been assumed to be local to a method g of a class D.
When they are class fields, a preliminary expansion opera-
tion is required, similarly to lhs and rhs in Fig. 2.

Incremental generation of flow information is described
by procedure addGEN in Fig. 2 for an assignment statement
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whose right hand side is an allocation expression. An ob-
ject identifier AN is created and added to the GEN set of
the (possibly expanded) left hand side. AN represents the
object of type A instantiated at the line of code under ex-
amination (identified by N ). This implies that each line of
code containing an allocation expression is associated with
an object possibly created by the program during some of
its executions.

Statements different from assignments which involve an
allocation expression can be easily reduced to the assign-
ment. For example, the allocated object may be passed to
a method as an actual parameter, as in: p->f(new B).
If the formal parameter of method f, assumed to belong to
class A, is fm, this method invocation can be handled as
equivalent to the assignment:

A::f::fm = new B()

expand(x: V ar):Set<Location>
1 A  class(scope(x))
2 f  method(scope(x))
3 if x is a �eld of A
4 S  ;
5 for each y in OUT[A::f::this]
6 S  S [ fy.xg
7 end for

8 else

9 S  fxg
10 end if

11 return S

Figure 3. Class fields are expanded into locations
prefixed by the names of the objects they belong to.

Object identifiers are propagated along the OFG by the
fixpoint procedure, according to the flow equations given
before. The result is that the OUT set of each OFG node
contains the set of objects possibly referenced by that node.
Therefore, the expand procedure, aimed at prefixing a class
field with all objects that may own it as a field, exploits the
OUT set as the currently available set of objects referenced
by the this pointer (A::f::this in Fig. 3).

If, for example, the statement p = q is encountered in
the program inside method f of class A, and p is a class
field, while q is a local variable, the expand procedure will
take all objects in OUT[A::f::this], say B1 and B2, and
will generate the two locations B1.p and B2.p as expan-
sions of p. Then, edges from A::f::q to B1.p and B2.p
will be created.

Construction of the object diagram is a straightforward
post-processing of the computation described above. Every
node in the OFG associated to an object – i.e., having a pre-
fix AN , where A is a class andN an integer, and a suffix .p,

where p is a field of class A – generates a node in the object
diagram, identified by the location prefix (AN for AN.p).
The OUT set of the original OFG node (i.e., OUT[AN.p])
gives the set of objects reachable from the current one along
the association implemented through the field p. Such an
association can thus be given the name of the field, p.

Fig. 4 (left) shows the code of a program implementing
a binary search tree. It consists of a class Node, whose pri-
vate fields left and right reference left child node and
right child node respectively (if any). Its public methods al-
low inserting and retrieving child nodes. The second class
of this program, BinaryTree, declares a pointer to a tree
node, giving access to the tree root. Among the other public
methods of this class, method build has the responsibility
of constructing the tree. It first allocates the root (line 13)
and set it as the current node (variable curNode, line 14).
Then, after some computation (ellipsis at line 15), according
to some condition c (line 16) it appends a new node as left
or right child of the current node and it updates curNode.
The main function of the program creates a BinaryTree
object and builds a tree (lines 26, 27).

When the object analysis algorithm of Fig. 1 is ap-
plied to the code in Fig. 4, the main loop which invokes
the incremental OFG construction and the fixpoint pro-
cedures is traversed 4 times. The OFG produced during
such 4 iterations is depicted in Fig. 4 (right). During the
first iteration, an edge between main::bt and Bina-
ryTree::build::this is added to the initially empty
OFG, due to the method invocation at line 27. More-
over, an object, identified as BinaryTree-26 (the line
number was used as integer suffix for clarity), is added
to the GEN set of main::bt, because of the alloca-
tion performed at line 26. The method invocations at
lines 17, 18, 20, 21 are the reasons for the edges from
BinaryTree::build::curNode to the this point-
ers of the called methods, while the assignments involv-
ing the returned values at lines 18, 21 justify the edges
from the two related return locations to Binary-
Tree::build::curNode. Two GEN sets containing
respectively Node-17 and Node-20 are associated with
the formal parameter n of addLeft and addRight, due
to the allocations at lines 17 and 20.

During the first iteration, the expansion of left and
right to be performed when processing lines 4, 5, 6, 7
gives an empty set, since the OUT of the this pointer
associated with the respective methods is empty (the in-
dex of GEN and OUT sets gives the iteration when they
are filled-in). After flow propagation there is a change
of the OUT set of node BinaryTree::build::this,
which then contains BinaryTree-26. In the sec-
ond iteration, the field root of class BinaryTree
is expanded into BinaryTree-26.root when lines
13 and 14 are analyzed. Consequently a new node
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1 class Node {

2 Node *left, *right;

3 public:

4 void addLeft(Node *n) {left = n;}

5 void addRight(Node *n) {right = n;}

6 Node* getLeft() {return left;}

7 Node* getRight() {return right;}

8 };

9 class BinaryTree {

10 Node *root;

11 public:

12 void build() {

13 root = new Node();

14 Node* curNode = root;

15 ...

16 if (c) {

17 curNode->addLeft(new Node());

18 curNode = curNode->getLeft();

19 } else {

20 curNode->addRight(new Node());

21 curNode = curNode->getRight();

22 }

23 }

24 };

25 void main() {

26 BinaryTree *bt = new BinaryTree();

27 bt->build();

28 }

Node::getRight::return

Node::getLeft::return

Node::getLeft::this

OUT  = {Node−13}2

OUT  = {Node−13, Node−17, Node−20}3

BinaryTree::build::this

OUT  = {BinaryTree−26}1GEN  = {BinaryTree−26}1

main::bt

BinaryTree−26.root

GEN  = {Node−13}2

Node::addLeft::n

GEN  = {Node−17}1

GEN  = {Node−20}1

Node::addRight::n

OUT  = {Node−17}3

Node−13.left

OUT  = {Node−20}3

Node−13.right

OUT  = {Node−20}4

Node−17.right

OUT  = {Node−17}4

Node−17.left

OUT  = {Node−17}4

Node−20.left

OUT  = {Node−20}4

Node−20.right

Iteration 4

BinaryTree::build::curNode

Node::addRight::this

Node::addLeft::this

Node::getRight::this

Iteration 2

Iteration 1

It
er

at
io

n 
3

Figure 4. C++ code implementing a binary tree (left) and flow analysis iterations on the related OFG (right).

BinaryTree-26.root is added, linked to Binary-
Tree::build::curNode and with a GEN set contain-
ing Node-13, the object allocated at line 13. Such an ob-
ject reaches the this pointer of getLeft, getRight,
addLeft, addRight thanks to the fixpoint procedure
which propagates the flow information.

At the next iteration, the expansion of the fields
left and right at lines 4, 5, 6, 7 results in Node-
13.left and Node-13.right, giving rise to two
new nodes connected to the return of getLeft and
getRight respectively and reachable from the formal
parameter n of addLeft and addRight. These new
connections allow the objects Node-17 and Node-20
to be propagated during the fixpoint to the OUT sets
of respectively Node-13.left and Node-13.right
and to the OUT sets of Node::getLeft::this, ...,
Node::addRight::this.

In the last iteration, fields left and right are ex-
panded again during the analysis of lines 4, 5, 6, 7, originat-
ing four new nodes, Node-17.left, Node-17.right,
Node-20.left, Node-20.right, with similar con-
nections as Node-13.left and Node-13.right and,

after fixpoint computation, with similar OUT sets. Then,
any attempt to add new edges or generate new flow infor-
mation produces no change in the current situation, so that
the algorithm stops and the analysis is complete.

BinaryTree−26

Node−17 Node−20

Node−13

root

right

left

left

right

right

left

Figure 5. Static object diagram for the binary tree
program in Fig. 4 (left).

The postprocessing necessary to produce the object di-
agram from the OFG obtained after the completion of all
iterations involves determining the objects and the inter-
object relationships. The objects identified during OFG
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construction are in the OUT sets of the OFG nodes. In
our example, 4 objects are present: BinaryTree-26,
Node-13, Node-17, Node-20. They correspond to
the 4 lines of code where classes are instantiated (alloca-
tions at lines 13, 17, 20, 26). Inter-object relationships can
be recovered by considering the OUT set of the OFG nodes
which have an object name as prefix and a class field as suf-
fix (e.g., Node-17.right). The field name can be used
to label the relationship, while the objects in the OUT set
(e.g., Node-20 for Node-17.right) are the target of
an association starting at the object prefixing the OFG node.
The object diagram obtained after the analysis of the exam-
ple in Fig. 4 is shown in Fig. 5. The BinaryTree object
allocated at line 26 references a tree Node, allocated at line
13, through its field root. The root node in turn may ref-
erence a Node allocated at line 17 as left child, while the
right child is a node allocated at line 20. These two lat-
ter objects may in turn have left and right children, which
are still allocated at lines 17 and 20 respectively. It can be
noted that the associated class diagram is much less infor-
mative, in that the three elements Node-13, Node-17,
Node-20 are collapsed into a single element (Node) with
two auto-associations (left and right).

2.2 Dynamic analysis

The dynamic construction of the object diagram can be
achieved by executing the target program on a set of test
cases with a tracer program activated. The tracing facili-
ties required are basically the possibility to inspect the ad-
dress of the current object and the content of its fields each
time a method is invoked on an object and its statements are
executed. Available tracing and debugging tools typically
provide such kind of functions.

Each program execution is thus associated with an exe-
cution trace, the analysis of which produces an object dia-
gram. Consequently, the outcome of the dynamic analysis
is a set of object diagrams, each associated with a test case,
providing information on the objects and the relationships
that are instantiated with each test case. Their construction
from the execution trace is straightforward. The address of
each object (content of this, dumped into the trace) is an
identifier of the objects created during execution. The con-
tent of the fields of pointer type is directly the address of the
referenced objects, so that the values of the pointer fields
dumped into the execution trace give directly the identifiers
of the objects referenced by the current object.

With reference to the code sketched in Fig. 4, let
us assume that class Node has an extra field, key, of
type char*, on which the binary tree is kept sorted.
It is possible to execute the binary tree program with
some alternative sequences of keys as inputs. For exam-
ple, the three sequences ("a", "b", "c"), ("b",

BinaryTree−26

Node−20

key="b"

left

root

BinaryTree−26

Node−13

key="a"

Node−20

key="b"

right

root

Node−20

key="c"

BinaryTree−26

root

Node−13

key="b"

right

Node−20

key="c"

Node−17

key="a"

left

(c)

left

Node−13

key="c"

Node−20

key="a"

(a)

right

(b)

Figure 6. Dynamic object diagrams produced in
three executions of the program in Fig. 4 (left).

"a", "c"), ("c", "b", "a") can be associated to
three test cases. The analysis of the related execution traces
produces the three object diagrams depicted in Fig. 6. In
the first case all child nodes are added on the right. In the
second case the tree is balanced, while in the last case only
left children are present.

2.3 Discussion

Static and dynamic extractions of the object diagram pro-
duce different but complementary information about the in-
stantiations of the classes performed by the program. The
static object diagram gives a conservative view of the ob-
jects that are possibly created by the program and of the re-
lationships that may exist between the objects. The number
of objects reflects the number of program locations where
an allocation statement is present. If such a statement is
executed multiple times, the actual multiplicity of the re-
lated object is greater than the multiplicity indicated in the
static object diagram (i.e., 1). The presence of a relation-
ship between two objects in the static object diagram indi-
cates that there is some path in the program along which the
first object may reference the second one (through some of
its fields). The existence of a path in the program does not
imply that such a path is traversed in every execution. As a
consequence, the relationships between objects indicated in
the static object diagram are a conservative superset of those
actually instantiated at run time. Moreover, it may happen
that some of these relationships are associated to paths that
can never be followed, for any input value. This is typical of
the static analyses: the solution is conservative, but may in-
clude infeasible parts, due to mutually exclusive conditions
on the input values.

The dynamic object diagram complements the static one,
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in that objects are replicated in it each time a same alloca-
tion statement is re-executed, thus giving a better idea on
their actual multiplicity. However, such a diagram is always
partial, being based on a limited and necessarily incomplete
set of test cases. An indication of the parts of the object dia-
gram not yet explored can be obtained by contrasting it with
the static object diagram. Objects and relationships in the
static object diagram that are not represented in the dynamic
one are associated respectively to allocation statements and
execution paths not exercised by the available test cases.

As depicted in Fig. 5, the example program has a static
object diagram with 4 nodes and 7 edges. The first test case
executed on it (Fig. 6.a) instantiates its objects in 3 out of
the 4 locations identified statically. Allocation of a Node at
line 17 is not exercised in the first test case. Consequently,
the two edges leaving Node-17 in the static object diagram
and the two incoming edges are not represented in the first
dynamic object diagram. However, the first dynamic object
diagram provides some additional information on the multi-
plicity of the object Node-20, which appears to be greater
than 1. On the contrary, a unitary multiplicity seems to be
confirmed for BinaryTree-26 and Node-13.

The second test case generates a dynamic object diagram
(Fig. 6.b) in which all objects in Fig. 5 are represented.
The last test case (Fig. 6.c) reveals that the multiplicity of
Node-17 can also be greater than 1.

The comparison of the diagrams in Fig. 6 with that in
Fig. 5 highlights the different and complementary nature of
the information they provide. The actual shape of the allo-
cated objects (a tree) becomes clear only when the dynamic
diagrams are considered. However, they cannot be taken
alone, since they do not represent all possible cases that
may occur in the program. Inspection of the static object
diagram allows detecting portions of the code not yet exer-
cised, which are relevant for the construction of the objects
and of the inter-object relationships, and therefore could
contribute to the understanding of the object organization
in the program.

2.4 Testing

In addition to reverse engineering, the extraction of static
and dynamic object diagrams can be conducted in the con-
text of object oriented testing. Two novel object oriented
testing criteria can be defined, as a sub-product of the anal-
yses for the recovery of the object diagram:

Object coverage: Every object in the static object diagram
is instantiated during the execution of at least one test case.

Inter-object relationship coverage: Every relationship in
the static object diagram is instantiated during the execution
of at least one test case.

Coverage of all objects in the static object diagram is
always desirable, since it ensures that every object creation
that may occur in some execution has been tested. This
coverage criterion is subsumed by the statement coverage
testing criterion. Actually, it is a weaker criterion requiring
statement coverage limited to the allocation statements.

Coverage of all relationships that may exist between
pairs of objects is also desirable, since it enforces the ex-
ecution of all paths responsible for the assignment of object
references to some fields of a given object. This stronger
criterion is not directly comparable to any of the classical
coverage criteria (branch, def-use, etc.), except, of course,
for the all path coverage which ensures execution of all pro-
gram paths, but which becomes impractical if infinite paths
(due to loops) are present. Therefore, the inter-object rela-
tionship coverage criterion is complementary with respect
to the traditional coverage criteria. Being based on a rad-
ically different view of the program, it leads to exercising
the program differently, thus increasing the possibility of
revealing different kinds of defects. It is particularly suited
to object oriented programming, since it considers object
creation and it enforces a deep examination of the relation-
ships that may exist between the created objects.

By contrasting the dynamic diagrams in Fig. 6 with the
static diagram in Fig. 5, it is clear that object coverage has
been achieved (actually, the second test case alone is suffi-
cient for it). As regards inter-object relationship coverage,
2 out of the 7 relationships in Fig. 5 are not covered by
any test case. They are the edge from Node-17 to Node-
20 labeled with right and the edge from Node-20 to
Node-17 labeled with left. Two possible sequences of
key values that force their construction are: ("c", "a",
"b"), ("a", "c", "b"). Execution of the program
also in these cases provides a higher confidence on its abil-
ity to properly handle also these inter-object relationships.
Other, more traditional, coverage criteria, such as branch
coverage and all-uses coverage, are reached without the
need of the two extra test cases, since the first three test
cases are sufficient. Consequently, in this example tradi-
tional white box testing may not reveal defects associated
to some specific inter-object relationships, that are neces-
sarily examined if our testing criterion is adopted.

3 Case study

This work is part of a collaboration between ITC-irst and
CERN, the research center for Nuclear Physics in Geneva.
The collaboration aims at studying methodologies and tools
to improve the quality of the code developed at CERN. In
this context, the tool RevEng was developed, for the ex-
traction of a set of UML diagrams from C++ code, among
which the object diagram.

Recovery of the static and dynamic object diagram was
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Figure 7. Features of the C++ program Gutenbrowser (left) and portion of its class diagram (right).
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Figure 8. Static object diagram of the Gutenbrowser application.

experimented on a real world case study, the C++ applica-
tion Gutenbrowser. RevEng was employed for the static
analysis, while the program traces necessary for the dy-
namic analysis were obtained by wrapping the gdb debug-
ger. The gdb-wrapper automatically defines a set of break-
points, associated with every block of statements within
methods and with every allocation statement, it starts execu-
tion and it sends a sequence of continuation requests to gdb
until execution terminates. When reaching a breakpoint, the
wrapper dumps information about the current object, such
as its address and the content of its fields.

Gutenbrowser is a medium size C++ program (see Fig. 7,
left) of approximately 12 kLOC (Lines Of Code), to eas-
ily search, download and read free classic literature, in the
form of electronic E-texts. Classic books republished elec-
tronically by the Project Gutenberg can be read with Guten-
browser. Gutenbrowser is free software, distributed under
the GNU General Public License. It can be obtained from
the Web site http://sourceforge.net/.

Fig. 7 (right) shows a portion of class diagram of the
program Gutenbrowser, as produced by RevEng. The
main class of this program, Gutenbrowser, references some
graphical widgets such as a dialog window to search books
(class SearchDialog) and a scrollable text viewer for the dis-

play of the book pages (class MultiLine Ex). Other graphi-
cal elements are not directly accessed through fields of class
Gutenbrowser. They are created locally to some method
and deleted when their processing is finished. Examples
of such classes are LibraryDialog, handling the selection
of a book from a library, and OpenEtext, used to issue a
request of opening an E-text. The related objects are ex-
pected to have a shorter life time than those referenced by
class Gutenbrowser.

Fig. 8 contains the object diagram of Gutenbrowser re-
sulting from the static analysis performed by RevEng. It is
interesting to note that class MultiLine Ex is instantiated in
two places (lines 548 and 549 of gutenbrowserData.cpp),
the two related objects being referenced by the fields Lview
and Rview of class Gutenbrowser. They are associated to
the two book pages that are simultaneously displayed to the
user, one on the left and the other on the right of the main
window. Class optionsDialog is also instantiated in two dif-
ferent places. One instance (line 1510 of gutenbrowser.cpp)
handles the specification of some user options, such as ap-
pearence of the windows, ftp list and http browser, while the
other instance (line 625 of gutenbrowser.cpp) allows down-
loading a list of books via ftp/http. A configuration object of
class CConfigFile is instantiated by several classes (Guten-
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Figure 9. Dynamic object diagram of the Gutenbrowser application: common part.

browser, LibraryDialog, etc.) in different places. In turn, it
instantiates another configuration object of class CConfig-
Group at line 44 of CConfigFile.cpp.

Some interesting facts emerge by contrasting object di-
agram and class diagram. The class GutenbrowserView is
referenced by a field of Gutenbrowser in the class diagram,
while no object instantiates it in the object diagram. Ac-
tually, there is no program statement allocating any Guten-
browserView object, which thus seems to be not in use. Al-
though class HelpMe has a field (named config) referencing
a CConfigFile object in the class diagram, such a field is
assigned nowhere a value in the code. This is the reason
for the disconnected object of type HelpMe. While class
SearchDialog plays one role in the class diagram, being
referenced by a field of Gutenbrowser, it appears to play a
twofold role in the object diagram. In fact, a SearchDialog
is created at line 863 of gutenbrowser.cpp and is referenced
by class Gutenbrowser, but another disconnected Search-
Dialog object is created at line 529 of LibraryDialog.cpp.
This latter object is temporarily created when the user looks
for a book in the library and decides to perform a search.

Three test cases were executed to produce three dynamic
versions of the object diagram. The first test case consists of
the following user actions: after starting the program, an E-
text is selected and opened. Then, some pages of the book
are scrolled. In the second test case, the window containing
library information is opened, a book is selected and then
downloaded from a remote site. In the third test case, the
window with the configuration options is opened and some
switches are activated/deactivated.

The object diagrams resulting from the analysis of the
three execution traces contain a common part which is
shown in Fig. 9. For the sake of readability the num-
ber of instances of class CConfigGroup, reachable from a
CConfigFile object via the link currentgroup, has been re-
duced from 13 to 3. This applies also to the following di-
agrams. For each object, the memory address reported by
gdb is indicated above the file name/line number.

The common part of the object diagram contains all ob-

jects referenced by the instance of Gutenbrowser that are
shown in the static diagram (Fig. 8), except for the Serach-
Dialog object, which is not created since the searching func-
tionality was not executed. The multiplicity of the instanti-
ated objects becomes now clearer. While for most of them it
corresponds to that in the static diagram, the object of class
CConfigGroup is allocated several (actually, 13) times, be-
cause of several invocations of the method setGroup which
contains the allocation. In fact, each time a configuration
file is read (method read of CConfigFile), a new CConfig-
Group object is created.

The portions of the object diagram specific to the three
test cases are shown in Fig. 10. They contain a test case spe-
cific object – respectively, of class OpenEtext, LibraryDia-
log and optionsDialog – with the same configuration struc-
ture used by the Gutenbrowser class object: a CConfigFile
object referencing 13 CConfigGroup objects.

The dynamically computed object diagrams provide im-
portant information on the actual object creation that oc-
curs in specific run-time conditions. The mechanism related
to the multiple creations of CConfigGroup objects becomes
apparent. The role of objects such as OpenEtext, Library-
Dialog and optionsDialog can be better understood, since it
can be associated with a particular functionality exercised
by the test case (respectively, reading an E-text, consult-
ing the library and configuring the tool). Moreover, the
object diagram views specific to a given test case can be
contrasted against the static object diagram, to locate the
individual functionality in the framework of a global, con-
servative view of all instantiated objects.

Object diagram computation was so far regarded in the
framework of program understanding, but it is also possible
to consider it as a guide to testing. If the object coverage
criterion is considered, it is clear from the comparison of
Fig. 9, 10 and Fig. 8 that some objects are not instantiated
in any of the three test cases (the two Search Dialog ob-
jects, the HelpMe object and the optionsDialog object allo-
cated at line 625 of gutenbrowser.cpp). To reach complete
object coverage, some additional test cases have to be run,
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Figure 10. Dynamic object diagrams of the Guten-
browser application: test cases 1 (top), 2 (middle) and
3 (bottom).

which exercise the two searching facilities (from the main
window and from the library dialog window), which require
help and which download a list of books via ftp. With this
additional set of test cases object coverage is achieved, as
well as inter-object relationship coverage.

4 Conclusions and future work

The static and dynamic analysis techniques for the ex-
traction of the object diagram presented in this paper have
been applied to the C++ application Gutenbrowser. The re-
sulting diagrams helped us in the process of recovering in-
formation about the system, by providing additional details
on the inter-object relationships that are expected to occur
at runtime. The presence of classes that are instantiated

multiple times/in multiple places and play different roles
in the system is not apparent from the class diagram, while
it is revealed by the static and dynamic object diagrams.
Moreover, the association of the dynamic diagrams with test
cases allowed enriching the class instances and the associ-
ated relationships with semantic information, obtained as
the functionality exercised by each test case.

Future work will be devoted to improving the usability
of the recovered information, by providing the user with
an interface which supports filtering the extracted informa-
tion, browsing the results, and searching for specific data. A
wider empirical validation on the usefulness of the reverse
engineered diagrams is also desirable. Finally, the testing
criteria based on the object diagram will be further investi-
gated and compared with other object oriented testing tech-
niques both theoretically and experimentally.
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