
Behavioural Concern Modelling for Software Change Tasks

by

Albert Yee-Hang Lai

B.Sc, University of British Columbia, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

December 2001

© Albert Yee-Hang Lai, 2001

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this thesis

for scholarly purposes may be granted by the head of my department or by his or her repre­

sentatives. It is understood that copying or publication of this thesis for financial gain shall

not be allowed without my written permission.

Department of Computer Science

The University of British Columbia

Vancouver, Canada

December 6, 2001

Abstract

Many modification tasks on an existing software system result in changes to code that
crosscuts the system's structure. Making these changes is difficult because a developer
must understand large parts of the system and must reason about how the modification will
interact with the existing behaviour. Most of the time, developers attempt to make a change
use an ad-hoc process with tools that help in gaining some understanding of the existing
system, but which do not provide any specific support for reasoning about, implementing,
or analyzing the modification.

This thesis presents the Behavioural Concern Modelling (BCM) approach and tool
that provide direct support for a systematic approach to modification tasks. This approach
helps a developer create a partial, abstract, grounded behavioural model of a concern or
concerns. The model is grounded in that the relationship between the model and the code is
explicit: A developer describes which code contributes to each part of the model. The ex­
amples described use a finite state machine as a model and show how the approach can help
a developer capture a concern, reason about design options, and implement modifications.

ii

Contents

Abstract 1 1

Contents ">

List of Figures v

Acknowledgements V 1

1 Introduction 1

1.1 A Sample Modification . • 3

1.1.1 Modifying a FTP Server 4

1.2 Thesis Outline 10

2 The B C M Tool 12

2.1 Tool Architecture 12

2.2 Tool Interface 13

2.3 Tool Internals 14

2.3.1 Method Digests 15

2.3.2 Dataflow 16

2.3.3 Control Flow 18

2.3.4 Computing Resources 20

2.4 Tool Limitations 21

2.5 Tool Extensions 21

2.6 Alternative Flow Analyzer 22

iii

3 Evaluating B C M 24

3.1 XBrowser 24

3.1.1 Modelling the Existing Behaviour 25

3.1.2 Modelling the Meta-Refresh Feature 30

3.1.3 Implementing the Meta-Refresh Feature 32

3.2 Summary 32

4 Related Work 34

4.1 Reverse Engineering and Reengineering Tools 34

4.1.1 Shimba 35

4.1.2 Rational Rose 35

4.1.3 Womble 36

4.1.4 Use Case Model Recovery 36

4.1.5 Conceptual Modules 37

4.2 Concern Identification Tools . 37

4.2.1 Aspect Browser 38

4.2.2 Aspect Mining Tool 38

4.2.3 Concern Graphs 38

5 Summary 39

5.1 Discussion 39

5.1.1 Form of the Model 40

5.1.2 Models as Long-Term Documentation 40

5.1.3 Filtering Relatedness Query Results 41

5.1.4 Analysis Using Behavioural Models and BCM 41

5.1.5 "Aspectualizing" the Concern 42

Bibliography 43

Appendix A Relatedness Query Example 45

iv

List of Figures

1.1 Modification Process 3

1.2 Code Associated with SetUser Transition 5

1.3 Code Associated with Various States and Transitions 5

1.4 Steps in Building a Model for jFTPd 6

1.5 jFTPd Model with Single Login Path 9

1.6 jFTPd Model with Separate Named Login Path 10

2.1 BCM Architecture 13

2.2 Pseudo-code for Method Digest Calculation 15

2.3 Bytecode and Method Summary Example 23

3.1 Code Associated with Back Transition 26

3.2 Steps in Building XBrowser Model 27

3.3 Complete XBrowser Model 29

3.4 XBrowser Model with Meta-Refresh Feature 31

A. l Query Example 45

v

Acknowledgements

I would like to thank my supervisor, Gail Murphy, for her advice and encouragement. I
would also like to thank my parents for their patience and support.

A L B E R T Y E E - H A N G L A I

The University of British Columbia
December 2001

vi

Chapter 1

Introduction

All too often, modifications to an existing software system are made in an ad-hoc manner.

A developer determines some parts of the code relevant to the modification and then starts

to iteratively identify, understand, and change the code to perform the modification. When

the points in the program related to the modification are well-localized, this approach can

be effective. When the relevant points span, or crosscut, multiple modules, this approach

begins to fall apart [2]: developers have a difficult time estimating how long it will take

to complete the modification task, the code added and changed as part of the modification

introduces defects into seemingly unrelated parts of the system, amongst other problems.

The ad-hoc process seems to break down when the modification crosscuts the sys­

tem because many of the subtasks the developer must perform to complete the modification

task become harder. It is harder for the developer to identify relevant portions of the existing

code, or the underlying concerns, because large parts of the system may need to be consid­

ered and understood. It is harder for the developer to evaluate options for the design of the

modification because large parts of the existing design must be considered. It is harder for

the developer to determine how the modification's code impacts other crosscutting concerns

because those concerns are also implicit.

Existing tools can help the developer with some parts of some of these subtasks.

Lexical searching tools, such as grep and Aspect Browser [10], can help identify relevant

code. Structural analyzers, such as FEAT [18], flow analyzers, such as program slicers [21],

1

and some reverse engineering tools, such as Shimba [19], can help a developer identify and

build up an understanding of how relevant code works. These tools help a developer deal

with the existing system, but they do not help a developer reason about, implement, analyze,

or verify the modification because they focus on the existing system, not the system with

the modification.

The thesis of this research is that a developer can perform a modification task more

systematically when the developer has access to a behavioural model of a concern (or con­

cerns) relevant to the modification that is partial, abstract, and grounded. The behavioural

characteristic of the model helps a developer reason about how the existing code works and

how the modification might work. The partial characteristic enables a developer to model

only those parts of a concern relevant to the task at hand. The abstract characteristic ensures

that the model is of a size and complexity amenable for the developer to reason about. The

grounded characteristic maintains a mapping between the model and the existing source.

This mapping enables the model to be used to direct analysis on the code. For example, the

mapping enables a developer to analyze whether the data- and control-flows in the system

respect the model.

To investigate the use of such models, an approach called Behavioural Concern

Modelling (BCM) and a supporting tool have been developed. In the B C M approach, a

developer posits all or part of a finite-state machine (FSM) representing the behaviour of a

concern or concerns, and then uses the B C M tool to determine how data- and control-flows

relate to the posited state machine. The B C M tool builds on previous work in conceptual

modules [1]. A conceptual module (CM) is a logical module, consisting of a set of possibly

non-contiguous lines in the source, that can be overlaid on an existing system. Relationships

between CM's can be established based on flow analysis between the lines of code mapped

to different CM's. The B C M tool supports CM's for Java |9] and enables developers to

represent the states and transitions of a FSM with CM's.

2

1.1 A Sample Modification

To clarify the BCM approach, I describe the use of the approach to assess a change to a

FTP server. The approach supports five of six steps in a systematic modification process

(Figure 1.1).

Start
_ J ± _

1. Identify Task-Specific
Concerns and Source

2. Form Task-Specfic
Model of Concerns

3. Consider Design
Options

4. Select Design

5. Use Model as Guide
for Implementation

6. Use Model to Analyze
Implementation

End

Figure 1.1: Modification Process

1. The developer identifies concerns, and their associated source code, in the existing

system that are relevant to the modification.

2. The developer forms a grounded, abstract, partial, behavioural model of the concerns

pertinent to the given modification task.

3. The developer considers several different design options and models the ones worth

further consideration.

4. The developer selects a design.

5. The developer uses the corresponding model as a guide to implement the chosen

design.

6. The developer uses the model to help analyze the implementation.

3

The role of the behavioural model and BCM in the last step of the process is dis­

cussed in Section 5.1.4. The posited six step modification does not directly correspond to

any documented existing process.

1.1.1 Modifying a F T P Server

jFTPd1 is a FTP server written in Java that supports basic FTP commands and anonymous

login. The modification task in consideration is the addition of named-user logins to the

jFTPd system. This modification will either build on or impact the anonymous login con­

cern.

The first step in the process requires the identification of the code (and concerns)

relevant to the anonymous login concern. The second step requires the formation of the

modification-specific, behavioural model. Although these two steps could be performed

separately, a developer may find it useful to iteratively build the model as the developer

identifies the relevant code. Furthermore, the developer can use the model to help identify

code of interest.

To start, the source code implementing the USER FTP command is identified: This

command must exist if anonymous login is supported. The doUserCommand method in

the FTPConnection class is identified using grep. This method supports this command

by setting the userName field based on user input. A subset of the doUserCommand is

modelled as a setUser transition (Figure 1.4a). In the BCM tool, a CM is created to repre­

sent this transition. Four lines of code marked with a asterisk in Figure 1.2 are associated

with that CM.

This fragment of a model must be expanded to support reasoning about the change.

Because FTP user authentication involves the two commands USER and PASS, it is im­

portant to identify the code that implements the PASS command. The doPassCommand
method is identified using grep. Examination of this method reveals that it is responsible

for several different functions: it decides whether a user has permission to log in, and it

'Available from http://jftpd.prominic.Org/l.3/index.htmI. The code for jFTPd comprises 11
classes and approximately 3000 lines of code.

4

http://jftpd.prominic.Org/l.3/index.htmI

protected boolean doUserCommand(String l i n e) {
i f (l i n e . l e n g t h () <= 5)

return f a l s e ;
i f (anonUser) (

out.print("530 Can't change user from guest l o g i n . ") ;
} e l s e {

S t r i n g user = l i n e . s u b s t r i n g (5) ;
userName = user;
S t r i n g userLower = user.toLowerCase() ;
i f (userLower.equals("ftp") I I userLower.equals("anonymous")) (

out.print("331 Guest l o g i n ok, send your complete e-mail address.");
} e l s e {

out.print("331 Password required f o r "+user+".");
}

)
r e t u r n t r u e ;

1

Figure 1.2: Code Associated with SetUser Transition

decides whether to grant or deny access to the user. Several model elements are created to

model this behaviour: a handleAnonPass transition, a permitAnonymousLogin state, an au­

thenticate Anonymous User transition and a rejectUser transition (Figure 1.4b). Each model

element is associated with code as illustrated in Figure 1.3.

protected boolean doPassCommand(String l i n e) (
1 i f (userName == n u l l) (

out.print("503 Login with USER f i r s t . \ \ n ") ;
r eturn t r u e ;

)
2 S t r i n g userLower = userName.toLowerCase();
2 i f (userLower.equals("ftp") I I userLower:equals("anonymous")) (

printWelcome(line);
3 authorized = t r u e ;
3 anonUser = tr u e ;

return t r u e ;
2) e l s e {

out.print("530 Login i n c o r r e c t . \ \ n ") ;
4 userName = n u l l ;

r eturn t r u e ;
2 }
}

1 HandleAnonPass Transition

2 PermitAnonymousLogin state

3 AuthenticateAnonymousUser transition

4 RejectUser

Figure 1.3: Code Associated with Various States and Transitions

5

a)
Set.

"Die7

Auth.
-Aftefl^
User

Auth.
AronV
User

fj) Reject
User

/UnauthenA Set . / Got
I ticated J User I User

Figure 1.4: Steps in Building a Model for jFTPd

In the FTP user-authentication mechanisms, the user name is passed from the imple­

mentation of the USER command to the implementation of the PASS command. Thus there

must be a data-flow between the setUser transition and handleAnonPass transition. Because

the USER command must be issued before the PASS command in order for the login to be

successful, there must exist a control-flow between the setUser and handleAnonPass. Both

the data-flow and the control-flow form part of the state between the transitions.

The manual tracing of these flows is a tedious task that can be avoided with the

use of a relatedness query supported by the B C M tool. This query examines the data- and

control-flows between two CM's within a given context as specified by a third, context, C M .

The query responds with the set of statements that comprise the flows, as well as class and

method summary information for those statements. A relatedness query between setUser

b) Reject

C) Reject

6

and handleAnonPass with all the jFTPd classes as the context returns the following class

summary.

FTPConnection —> PassiveConnection
FTPConnection ->• W i l d c a r d F i l t e r
FTPConnection ->• FTPHandler
FTPHandler -» FTPConnection

As is often the case, a first query returns results that are very broad. The query

context is refined by removing W i l d c a r d F i l t e r . Since this class extends Java . i o .
F i l e n a m e F i l t e r , it is unlikely to be related to the setUser and handlePass transitions.2

The method summary reports several methods that implement FTP commands un­

related to setUser and handlePass. Some of these methods include doListCommand,
doCwdCommand, and doDeleCommand. The commands implement functionality unre­

lated to the user authentication concern and thus they are removed from the query context.

With the refinements, the query between setUser and handlePass returns the fol­

lowing method summary:

doPassCommand —>• printWelcome
doUserCommand —> doPassCommand
doCommand —> doUserCommand
doCommand —> doPassCommand
run —> doCommand
doCommand —> run
doCommand —• setBusy
doCommand —> setLastCommandTime

Examination of doCommand reveals that it parses FTP commands and calls the

appropriate methods to handle the commands. Examination of run reveals that it reads
2The W i l d c a r d F i l t e r is used to implement the LIST command and is not related to user

authentication.

7

FTP commands and passes them to doCommand. A GotUser state, containing the loop in

run and the parsing statements in doCommand, is created as shown in Figure 1.4c.

As noted previously, doCommand parses commands and dispatches them to other

methods. The commands that doCommand parses includes some that are typically used

when the system is in an unauthenticated state, such as USER, and some that are used

when the system is in an authenticated state, such as LIST. Because the parsing statements

execute when the system is in both of these states, the statements not only belong to the

GotUser state, but also to an Unauthenticated and an Authenticated state. Other statements

also execute while the system is in those states, but those statements are not relevant to the

change task. For example, one might consider whether or not to model the individual FTP

command handlers because some of the corresponding FTP commands are only valid when

a user is authenticated. However, a model including the command handlers would not aid

in the addition of named-user logins and thus they are not included in the model.

Steps one and two of the modification process are repeated until the model is com­

plete enough to reason about the modification task. Queries introduced as part of the orig­

inal C M tool help check that the model is complete by reporting the interface to a logical

module represented by a C M . These queries elucidate the data- and control-flows to and

from the interface. A developer can examine the query results to verify that none of the

interface flows are pertinent to the model and thus the model is sufficiently complete. A

new C M is created that consists of all the state and transitions, and their associated cross-

cutting code. The interface query determines which variables and fields are inputs to this

C M , which variables and fields are outputs, and which control transfers emanate from the

C M .

No unexpected values are reported as part of the outputs list or the control trans­

fer list, but unexpected values are reported as inputs to the C M . Specifically, the query

reports two fields, FTPConnection . anonUser and FTPConnection. userName,

as inputs. jFTPd uses the anonUser field to indicate whether the current user is an anony­

mous user, and thus all definitions of this field should be part of the model. The input query

8

reports that an instance initializer for a n o n U s e r exists outside of C M ; this statement is

added to the Unauthenticated state. Similarly, the userName field is also defined in an

instance initializer and that is also added to the Unauthenticated state. At this point, the

model is sufficiently complete (Figure 1.4d).

For step three, there are two different design options for implementing named-user

authentication. One option is to consider anonymous login as an instance of named-user

logins where the anonymous user has the name "anonymous". The second option is to

consider anonymous login to be a special case that is separate from named-user logins.

In the first option, as Figure 1.5 shows, only slight adjustments need to be made to

the model, renaming transitions and states to reflect the change from anonymous to named-

user authentication. Only one path from the unauthenticated state to the authenticated state

is needed. This option is conceptually simple, but it may be difficult to implement policies

in which it is useful to treat anonymous users as a separate class of users. For example,

there may be a need to limit the number of anonymous logins as well as the total number of

named-user logins.

Reject

Permit \ Authenticate
Named J—Named
Login / User

Legend
„ . . New/Modfed
B o l d — _.

Elements

Figure 1.5: jFTPd Model with Single Login Path

In the second option, anonymous login and named-user login are separate mecha­

nisms, as Figure 1.6 shows. Anonymous logins would be more explicitly represented in the

source code, and it may be easier to implement such policies as described above.

After the design options are considered, a design is selected as part of step four.

For step five, the model can serve as a guide to aid developers in locating points in the

9

Reject
User

Legend
Bold New/Modified

Elements

Figure 1.6: jFTPd Model with Separate Named Login Path

code that need to be modified. For instance, if the first design option was selected, the

model could be used to determine that no modifications were required for the Unauthen­

ticated, GotUser, and Authenticated states or the setUser transition, amongst others. The

model could aid in determining that the PermitLogin state must be modified, and an Au-

thenticateNamedUser transition added. In addition to providing design information about

the modification, because it is grounded, the model can point a developer to specific code

that must be considered. For example, consider the first option for named-user support was

chosen. The change to the PermitAnonymousLogin transition to PermitNamedLogin would

indicate that the some of the lines in the method doPassCommand in Figure 1.3 would

need to be changed.

1.2 Thesis Outline

The contribution of this thesis is an approach for modelling the behaviour of a concern.

This model can help to manage a concern during a software enhancement task. This thesis

also demonstrates a need to ground a model in the source to support such tasks. Additional

uses of the model are discussed in Section5.1.

This chapter presented an overview of the approach, and provided an example of

10

how the approach might be used to perform a modification task. The remaining chapters

of the thesis are organized as follows. Chapter 2 describes the B C M tool interface and

tool internals including how it calculates data- and control- flows. Chapter 3 presents a

case study on an outstanding change request to a public-domain web browser. Chapter4

compares this work with other related work, including reverse engineering approaches and

concern identification tools. Chapter 5 summarizes this work.

11

Chapter 2

The BCM Tool

The grounding of a behavioural concern model in the source is a critical part of the B C M

approach. Without this grounding, it is easy to create a model that overlooks important

details about how the concern is implemented. Since the approach is partial, there may be

details that a developer does choose to leave out because they are not relevant to the task

at hand. However, by grounding the model, a the developer must explicitly choose which

details are relevant and which can be safely ignored or delayed. This section describes the

tool support provided to help a developer create and investigate the grounding of the model.

Section 2.1 describes the architecture of the B C M tool. Section 2.2 provides an

overview of the interface between the user of the tool and the tool itself. The rest of this

chapter describes some of the details of the tool's structure. Section2.3.1 describes the data

structure used to store information on methods. Sections 2.3.2- 2.4 provide details about

the data-flow analyzer. Section 2.5 discusses possibilites for tool extensions to support

finer-grained queries.

2.1 Tool Architecture

Figure 2.1 presents an architectural overview of the B C M tool. B C M uses Jikes Bytecode

Toolkit (JikesBT1) to read Java class files [16]. Within B C M a data-flow analyzer constructs

a control-flow graph for the bytecodes in a given method and performs data-flow analysis

'Available from http://www.alphaworks.ibm.com/tech/jikesbt.

12

http://www.alphaworks.ibm.com/tech/jikesbt

Class Jikes Query

Files f BT ; Extensions :

BCM

Method
Digest

Respository

Data-Flow
Analyzer

Query
Engine

Legend
Not

Implemented

- • Data Flows

User

Figure 2.1: B C M Architecture

on that method. To reduce the memory requirements for B C M , the data-flow analyzer

summaries the side effects of methods and stores them as method digests in the method

digest repository. Data- and control-flows for methods are not retained between calculations

and are only recalculated when such information is required. This typically occurs when

a user has a query about the flows through a particular method. As a given query expands

over several methods, the flows within those methods are recalculated on demand.

2.2 Tool Interface

The B C M tool enables a developer to construct a finite state machine (FSM) model and

to map source code to the state and transition model elements. A developer can perform

queries about how the model elements relate to each other and how they relate to the source

code. These features of B C M are built on a Conceptual Modules representation of model

elements.

13

A Conceptual Module (CM) captures a collection of source code lines and treats

them as a logical unit. The source code lines need not be contiguous nor do they need to be

restricted to the lines from a single method or class. A developer creates a C M from a set of

lines by specifying the names and signatures of the lines' enclosing methods and their line

numbers within those methods. Lines are selected from a developer-specified set of classes.

This set of classes represents the world for CM's. All C M data- and control-flow analyses

are conservative with respect to this world.

Currently, states and transitions are simply named CM's. B C M does not provide a

graphical interface for drawing FSM's. A developer must depend on naming conventions

to distinguish between states and transitions and to identify the connections between them.

Once the user has a partial model containing some states or transitions, the user

can perform a relatedness query. This query requires three inputs: a source, a target and

a context. The source and target can be any states or transitions. Like the states and tran­

sitions, the context is a C M and is specified by a set of lines2. The query starts from the

lines identified by the source and follows any data- or control-flow connections within the

context. Once the query has identified all the flows from the source, it filters out the flows

that do not reach the target. The query reports the remaining flows, a method summary, and

a class summary in a textual interface.

The user can also perform an interface query on a C M as described in Section 1.1.1.

2.3 Tool Internals

B C M uses JikesBT to process the classes specified for the world. B C M pre-processes

the classes to improve the efficiency of further analyses. For each bytecode in a method,

B C M calculates data- and control-flows by simulating the operations performed on the

Java Virtual Machine (JVM) stack and local variables (Figure2.2). B C M uses the method

simulation results to generate a method digest that summarizes the method's side effects.

Using a fixpoint algorithm, B C M iterates over all the methods in the world until
2For an example of the inputs and outputs to the query, see Appendix A

14

all the method digests have reached a fix point. If dependencies between two methods are

cyclic, the algorithm does not try to order them. If depencencies between two methods are

acyclic, the algorithm iterates over the dependent method later. This reduces the number of

iterations until a fix point is reached3.

As the algorithm iterates over all the methods, it keeps track of all the side effects

it has encountered and adds new side effects as it encounters them. Thus the number of

noted side effects monotonicly increases over the algorithm's iterations. Since the total

number of side effects in a given set of methods is fixed, the algorithm will eventually run

to completion.

Once the algorithm completes, only the method digests are retained. Data- and

control-flows within methods are re-calculated on demand.

- b u i l d c o n t r o l f l o w g r a p h f o r m e t h o d
- a d d t h e f i r s t b y t e c o d e i n t h e m e t h o d t o a b y t e c o d e queue
- l o o p w h i l e t h e r e a r e b y t e c o d e s i n t h e q u e u e

- g e t t h e n e x t b y t e c o d e i n t h e q u e u e
- i f t h e c u r r e n t b y t e c o d e t h r o w s an e x c e p t i o n t h a t i s c a u g h t

by t h e c u r r e n t m e t h o d , a d d t h e e x c e p t i o n h a n d l e r b y t e c o d e t o
t h e b y t e c o d e q u e u e

- s i m u l a t e t h e b y t e c o d e
- s i m u l a t e l o c a l v a r i a b l e l o a d s
- s i m u l a t e l o c a l v a r i a b l e s t o r e s
- s i m u l a t e s t a c k p o p s
- s i m u l a t e s t a c k p u s h e s
- i f t h e c u r r e n t b y t e c o d e i s a m e t h o d c a l l , l o o k up t h e

c o r r e s p o n d i n g m e t h o d d i g e s t a n d n o t e m e t h o d s i d e e f f e c t s
- i f t h e r e s u l t s o f t h e s i m u l a t i o n h a v e n o t b e e n n o t e d b e f o r e ,

p r o p a g a t e t h e r e s u l t s t o i m m e d i a t e b y t e c o d e s i n t h e c o n t r o l - f l o w
a n d a d d t h o s e b y t e c o d e s t o t h e b y t e c o d e q u e u e

Figure 2.2: Pseudo-code for Method Digest Calculation

2.3.1 Method Digests

A method digest contains information on which arguments are used and defined in a given

method. Since the Java VM stores method arguments in a local variable array, the algorithm

keeps track of which local variable entries are method arguments. When the algorithm
3For a brief analysis of the run-time complexity of this algorithm see Section 2.3.4.

1 5

simulates a bytecode that defines or uses a method argument, it notes this in the method

digest for the method.

During method simulation, the algorithm identifies the bytecodes that define and

use fields, local variables and method arguments. It also performs data-flow analysis on

anything else that can be placed on the V M stack including constants, bytecode address

references, and computation results not stored in local variables. The algorithm does not

maintain actual values of objects, but it keeps track of the bytecode index at which a ref­

erence was defined or used. The algorithm also keeps track of the class of a particular

reference to more accurately simulate exception throwing bytecodes. The throwing of an

exception requires at least two bytecodes: one to place an instance of an exception on the

stack and one to get the value from the stack and throw it.

2.3.2 Data flow

The algorithm generates a method digest by simulating the operations performed for each of

the method's bytecodes. Each bytecode performs a series of operations possibly involving

the Java VM's stack, local variable array and a variety of data types. For example, the

stack for a single method call may contain values of base types such as i n t , objects such

as HashMap and method references such as j a v a . u t i l . HashMap. < i n i t > (i n t) .
Henceforth, these types are collected referred to as references. In BCM, there is a hierarchy

of classes used to represent the references that a Java V M can manipulate. Each type of

reference has several pieces of associated information:

• the bytecode index at which this reference was defined

• depending on the type of reference:

- the object's class (e.g., i n t , Java . u t i l . HashMap$Entry)

- an address (used in Jump Sub-Routine bytecode)

- a local variable index to keep track of local variable a reference came from

- a field reference (e.g., j a v a . l a n g . System, out)

- a method reference

16

The algorithm uses these references to perform data-flow analysis by identifying

where the references are defined and used. When the algorithm simulates a bytecode that

defines a reference, the reference's bytecode index is set to the current bytecode index. For

example, in Figure 2.3, bytecode 2 defines a reference on the stack. This reference has

a bytecode index field with a value of 2, the bytecode index at which the reference was

defined. Furthermore, this reference is on the stack prior to simulating bytecode 3 and is

used by bytecode 3. The algorithm does not keep track of the actual value of reference. For

example, if the algorithm encountered i = 10, the algorithm would not store the value

10, but would keep track of which bytecode defined i .

References can be defined by a number of bytecodes including:

• load constant (e.g., 3.14159, "Hello World")

• arithmetic, bit and logic operations (e.g., multiply, xor, ==)

• method/constructor calls

• assignment to an array (e.g., array [i] = 0)

• assignment to a field

• return statement (e.g., return 123)

When the algorithm simulates the following bytecodes, references are used and their

usage is noted:

• method/constructor calls with arguments

• arithmetic, bit, and logic operations

• assignment to an array (via an aastore bytecode)

• reading a value from an array (via an aaload bytecode)

• field access

17

When the algorithm simulates an instance or interface method call, it uses class

hierarchy analysis to calculate a conservative digest for all methods that can execute as a

result of the call. For example if several classes implement a d o i t (L i s t arg) method

and only some of the classes modify arg, then the calculated digest reports a r g is defined

by d o l t .

2.3.3 Control Flow

For each method, the algorithm builds a control-flow graph (CFG) where each vertex is a

bytecode and an edge is a control flow between bytecodes. For some bytecodes, control-

flow proceeds with the next instruction, but goto's, if's, switch's, and try/catch/finally blocks

require special handling.

The control-flow graph does not have edges between method calls and method tar­

gets. Instead, the algorithm uses method digests to simulate the effects of a target method.

JikesBT determines the method target for method-call bytecodes that only have one possible

target, such as I n v o k e S t a t i c . For bytecodes that have multiple possible targets, B C M

uses JikesBT to determining all the methods that override or implement a given method.

B C M uses those methods to calculate a conservative digest for simulation.

While building a method's C F G , the algorithm checks the method for an exception

table. In Java bytecode, exception tables describe which exceptions are locally handled by

what code within the same method. Each entry in the table describes the range of bytecodes

handled, the type of exception handled and the bytecode index of the handler. The exception

may also contain entries for f i n a l l y blocks. The only difference with these entries is that

the type of exception handled is stated as any. In the example in Figure2.3, if any exception

is thrown between bytecode 4 (inclusive) and bytecode 14 (exclusive), the control-flow will

proceed to bytecode 18.

For each declared exception in the exception table, the algorithm examines the byte­

codes specified by the exception entry. If the algorithm encounters a method call, it uses

JikesBT to determine if the corresponding method can throw the exception specified by the

18

exception entry or a sub-class of that exception. If the method can throw such an exception,

the algorithm adds a control flow edge from the method call to the exception's handler. For

other throwable's, the algorithm uses a conservative approximation: all bytecodes specified

by an exception table entry can throw the exception specified by the entry. This creates an

edge between each of the bytecodes specified and the corresponding handler.

A f i n a l l y block in Java is typically compiled into a subroutine. The subroutine

can be called with the Jump Sub-Routine bytecode and when the subroutine completes, the

Return bytecode returns control back to the bytecode following the Jump. The control-

flows for Jump bytecodes are determined when most other control-flows are determined,

prior to simulating the method. However, the control-flows for Return bytecodes are deter­

mined during simulation of the method because different callers to the subroutine will have

different return points.

Execution Contexts

Consider the bytecodes in Figure 2.3 on page 23. When the Jump Sub-Routine bytecode

at index 14 is simulated, the return bytecode index of 17 is pushed on the stack. Execution

then continues at bytecode 24 where the return index is stored in a local variable. When the

sub-routine returns at bytecode 35, it uses the bytecode index in local variable 4 to return

to the correct bytecode index. Similarly, when the Jump Sub-Routine bytecode at index

19 is simulated, the return bytecode index of 22 is pushed on the stack. Eventually, the

sub-routine returns at bytecode 35, but this time it returns to bytecode index 22. Note that

there are two separate control-flow paths that share a common sub-routine.

To accurately simulate this behaviour, each bytecode needs to keep track of the

stack and local variables for each control-flow that enters the bytecode. This provides a

context for each of the different ways a bytecode can be executed.

19

2.3.4 Computing Resources

In general, the number of classes or methods in a given application does not significantly

affect the computing resources required by BCM. At any given time, BCM retains only

the data- and control-flows for the method it is currently analyzing. The more complex

a method's control-flows are, the more CPU and memory BCM requires to analyze the

method.

The data-flow analysis first performs a topological sort on the methods. The sort

uses call relationships between methods to determine which method in a pair of methods is

independent and thus should be ordered earlier in the sort. Methods with cycles between

them are ordered arbitrarily. The topological sort is an optimization to reduce the number

of fix point iterations over all the methods. A topological sort runs in time 0(\methods\ +

\methodCalls\) [5].
In an ideal situation, there are no cycles between methods and the algorithm com­

pletes after iteration because the topological sort has ordered them in order of dependence.

The worst case situation arises when all the methods are all dependent on each other. In this

case when one method digest is updated, potentially all the other method digests need to be

updated. However, each method digest stores the side effects of the methods it calls. Thus

the algorithm is bounded by 0(\methods\2) iterations.

For each method, data-flow information between bytecodes is propagated similar to

how method digests are progated between methods. Thus the algorithm iterates over a max­

imum of 0(\bytecodes\2) bytecodes per method. Thus in the ideal situation, the algorithm

completes in 0{\methods\\bytecodes\2) and in the worst case 0(\methods\2\bytecodes\2).

Without statistical analysis of a large percentage of the Java code in existance, it is

almost impossible to determine the characteristics of the average case situation. However,

BCM has processed several system in several minutes. For example, BCM has processed

a system called XBrowser (Chapter 3) consisting of 29000 lines of Java source code in 10

minutes on a PHI lGhz with 512MB of RAM running Java 1.3 HotSpot VM.

20

2.4 Tool Limitations

B C M does not support analysis of native methods. A particular case of this problem occurs

with classes that extend java. l a n g . Thread and that override the run method. At

some point, the native method s t a r t is called and it eventually calls the run method.

This control-flow between s t a r t and run is not detected by B C M . One workaround is to

write a temporary subclass of Thread with an overridden s t a r t method that explicitly

calls run.

To a lesser extent, native methods also cause problems in the analysis of code that

uses reflection. The methods that implement reflection are native and can not be analyzed

by B C M . To complicate matters, the actual value of variables is sometimes required for

analysis, as in C l a s s . f orName (myClass) where myClass is a S t r i n g .

B C M also does not support alias analysis. Thus some data-flow dependencies be­

tween lines of source code may not be identified.

2.5 Tool Extensions

Section 1.1.1 described the use of a context C M to refine query results. B C M has another

feature that provides users with finer-grained control over query results. Users can write

plug-ins in Java that specify which data- and control-flows to consider as part of the query

and which flows to report as part of the query results.

The plug-in feature uses a variation of the visitor pattern |8] to perform frontier

exploration. A developer's plug-in does not have to visit all bytecodes in a given set of

classes. The plug-in feature provides a queue that contains the current frontier and data-

and control-flow information about each bytecode. The developer is only responsible for

deciding which bytecodes should initially be on the queue, what flows to report as query

results and what new flows need to be added when new bytecodes are encountered.

21

2.6 Alternative Flow Analyzer

During the development of B C M , the Soot [20] project was developed. Soot was designed

for bytecode optimization using data-flow analysis. There is potential for B C M to use Soot

as it's data-flow analyzer, but Soot provides more detailed analysis than B C M requires. Soot

uses constraint-based type analysis which is often not necessary in B C M because most of

the time only a given dependence is important and not the actual type of the dependence.

For example, if a bytecode uses a value defined by another bytecode, only this dependence

is important and not the actual type of the valued used. Although B C M could benefit from

alias analysis, Soot does not support it. Also, BCM's problems with native methods can not

be alleviated through the use of Soot because Soot also performs its analysis on bytecodes.

22

p u b l i c c l a s s MethodSum {
p u b l i c s t a t i c v o i d main(String[) args) {

i n t i = 0, j = 1;
t r y {

args[i++] = "He l l o " ;
j = 2;

} f i n a l l y {
System.out.printIn(i + j) ;

}

>

}

Method v o i d main(java.lang.String[])
0 iconst_0
1 i s t o r e _ l
2 i c o n s t _ l
3 i s t o r e _ 2
4 aload_0
5 i l o a d _ l
6 i i n c 1 1
9 l d c #1 <String "Hello">

11 aastore
12 iconst_2
13 i s t o r e _ 2
14 j s r 24
17 return
18 astore_3
19 j s r 24
22 aload_3
23 athrow
24 astore 4
26 g e t s t a t i c #7 <Field java.io.PrintStream out>
2 9 i l o a d _ l
30 iload_ 2
31 iadd
32 i n v o k e v i r t u a l #8 <Method void p r i n t l n (i n t) >
35 r e t 4

Exception t a b l e :
from to tar g e t type
4 14 18 any

MethodSum.main(java.lang.String[]):
def s :

bytecode index: 11
type: j a v a . l a n g . S t r i n g []
l o c a l var: 0

uses:
bytecode index: 4
type: Java.lang.String[]
l o c a l var: 0

Figure 2.3: Bytecode and Method Summary Example

23

Chapter 3

Evaluating BCM

For the B C M approach to be viable, it has to be possible for developers to create useful

models of a concern within a reasonable amount of time. To date, the focus of this work

has been on the first part of this statement within a specific context: is it possible to create

a useful model of a concern for reasoning about a change? To provide additional evidence

that model creation is possible, this section describes a case study of applying the B C M

approach to an outstanding change task on a system. The model created for this change

task provided a framework for introducing the desired behaviour and.for examining how

it would interact with the existing behaviour. Once the modifications to the model were

complete, the existing mapping between the model and source code aided in identifying the

structural units that needed modification.

3.1 XBrowser

The target of this study was the XBrowser system, which is a Web browser written in Java

using Swing with features similar to Netscape Navigator version 3.1 The code for XBrowser

comprises 171 classes and approximately 29000 lines of code.

One of the outstanding feature enhancements for XBrowser is a request for Meta-

Refresh support. In any H T M L document, the H E A D element may contain any number of

META elements. Each of these M E T A elements provides metadata such as a document's

'XBrowser is available from http://xbrowser.sourceforge.net.

24

http://xbrowser.sourceforge.net

keywords and author. The M E T A element may also be used to refresh a document window

to another URL after a specified number of seconds.

For this study, the B C M approach was applied to support the addition of Meta-

Refresh feature to XBrowser. Little technical documentation about XBrowser was avail­

able, providing a "worst-case" type of situation for applying B C M . Even JavaDoc H T M L

pages were unavailable.

3.1.1 Modelling the Existing Behaviour

Knowledge of the Meta-Refresh feature helps to identify the XBrowser concerns that are

impacted by the change and therefore are of interest to model. First, the addition of Meta-

Refresh changes the current URL, and thus there is a navigation concern. Second, the

feature requires parsing the current document, and thus there is a document parsing concern.

Similar to the description in Section 1.1.1, partial models of each of these concerns

were grown through a combination of identifying code snippets of interest with grep, posit­

ing model pieces and associating code with those pieces, and using relatedness queries to

check that code of interest had been modelled. As before, context was specified as part of

the relatedness queries to make the output of queries feasible to read. Reducing the context

was relatively easy because the graphical user interface classes fell outside the scope of

interest and they were easily filtered out of the queries.

Parts of the navigation concern were identified first. XBrowser supports history

navigation using "Back" and "Forward" buttons. Grep was used to search for the string

Back. The code in figure 3.1 was identified and captured as a Back transition in Figure3.2a.

Grep identified a B a c k A c t i o n class containing an a c t i o n P e r f ormed method.

This method calls a s h o w P r e v i o u s P a g e method which in turn calls a p r o c e s s X H y -

p e r L i n k method. The body of the p r o c e s s X H y p e r L i n k method calls two methods

that collectively set the current page to a specified URL. The first method stops the previ­

ous page-loading thread, and the second starts a new thread and loads the new page. These

methods are captured as a Process HyperLink state and the actual method bodies are cap-

25

c l a s s B a c k A c t i o n . . . (
v o i d a c t i o n P e r f o r m e d (. . .) (

g e t A c t i v e R e n d e r e r () . s h o w P r e v i o u s P a g e () ;

>

c l a s s X C u s t o m R e n d e r e r . . . {
v o i d s h o w P r e v i o u s P a g e () {

i f (h a s B a c k w a r d H i s t o r y ())
p r o c e s s X H y p e r L i n k (. . .) ;

}
}

Figure 3.1: Code Associated with Back Transition

tured as a Page Load Stop, Page Load Start transition (Figure3.2b) 2 .

Use of the relatedness query helped check that all of the pertinent code between

Back and Page Load Stop, Page Load Start has been captured. The initial query used Back

as the source, Page Load Stop, Page Load Start as the target, and all the classes in XBrowser

as the context. The class summary reported a large number of user interface classes. For ex­

ample, XURLComboBox was reported because the U R L it displays must change when the

user navigates to a different URL. These classes were removed from the query context. The

class summary also reported classes that implement URL history. These classes were also

irrelevant to the modification and were removed from the context. Re-running the query

reduced the number of classes that needed to be examined. The new class summary only

reported one additional unexpected class, XHTMLEditorKit. The corresponding method

summary contained a call from XCustomRenderer . d e s t r o y i n g () to XHTMLEdi­

t o r K i t . d e s t r o y A H A p p l e t s (). The method d e s t r o y i n g contained part of the

Page Load Stop, Page Load Start transition and terminated any running threads, including

Java Applets, associated with a web page. The remaining entries in the method summary

were methods that had already been examined while building the model.

The GUI thread's Page Load Stop, Page Load Start transition controls the state of

the page-loading thread. This behaviour was modelled in the page-loading thread with a

Page Load Stop transition that enters a Stopped state and a Page Load Start transition that

2This transition represents a sequence of events. First Page Load Stop occurs and then Page Load
Start.

26

GUI

Back Action

a)

GUI

Back Action

Stop,
Start

n. Page-Loading bUI . Thread
Action

Page
Page Ld

Stop,
ad Start

Page; Load
Stop

Stopped

Pagd

C)

Load
Stfart

GUI

Action

Page-Loading
Thread
Page' Load

Stop

d)

Stopped

Page Load
Start

0

Page-Loading
Thread

Action
Page; Load

Stop

Stopped

Stop,
Start

Pagd
Stbrt

Load

e)
0 Display

Page

Legend
No Mapped

Source Code

Figure 3.2: Steps in Building XBrowser Model

leaves from the Stopped state (Figure 3.2c). These new model elements were isolated from

the previous elements to show that the state of the page-loading thread is independent of

the other thread.

Under normal circumstances, every state and transition has some associated code.

27

In this case, only Page Load Start has some associated code, a call to J E d i t o r P a n e .

setPage (. . .) that sets the URL for the current page. For Page Load Stop and Stopped,

there is no associated code because their behaviour is completely implemented by j a v a .

l a n g . Thread. Although it is possible to obtain source code for J ava . l a n g . Thread,

it is considered to be library code and external to XBrowser. Nonetheless, the new state and

transitions served to describe behaviour pertinent to the modification task.

Parts of the document parsing concern were identified next. Knowledge about

Swing and experience with using XBrowser helped in identifying the document parsing

concern. In Swing, the page displayed in a browser window is set by a call to the JEd­

i t o r P a n e . setPage (. . .) method. Since XBrowser supports JavaScript, a call to

this method will result in the parsing of the page to execute any JavaScript present in the

document. Thus there is a control-flow between setPage and the code implementing

the document parsing concern. This control-flow must be implemented by both Swing

code and XBrowser code since setPage is a Swing method and JavaScript is not directly

supported by Swing. Of the code that implements the control-flow, only the portions imple­

mented by XBrowser were relevant to the modification task as changes to Swing were not

an option. Examination of Swing documentation and the code for the class XCustomRen-

d e r e r revealed that a static initializer registers the class X H T M L E d i t o r K i t with Swing's

J E d i t o r P a n e to handle H T M L content. Further examination reveals that the control-

flow extends through the methods X H T M L E d i t o r K i t . c r e a t e D e f aultDocument

and XHTMLDocument .getReader. The getReader method returns an instance of

the class XHTMLReader. This class contains methods for handling different kinds of

H T M L tags such as start, end, text and comments tags including JavaScript. The XHTML­

Reader class is captured as a Parsing state.

Although a large part of the control flow is in Swing, it is still useful to capture

the connection between setPage and XHTMLReader. The connection is modelled by

setting Parsing as the target state for the Page Load Start transition as in Figure3.2d.

After using Swing to display the page for a URL, the page-loading thread returns to

28

the Stopped state. This behaviour is modelled with a Display Page transition from Parsing

to Stopped (Figure 3.2e). The Display Page transition does not have any associated code,

but serves to describe behaviour pertinent to the modification task.

The input, output and control transfer queries were used to confirm that the model

has captured the pertinent portions of the navigation and document parsing concerns. These

queries help elucidate the model boundaries when performed on a CM consisting of all the

states and transitions. The queries on the XBrowser model reported nothing unexpected.

The Resulting Model

Figure 3.3 shows the model resulting from this iterative process. Most of the model ele­

ments describe the behaviour of the navigation concern. Only the Parsing state describes the

document parsing concern in XBrowser. A large portion of the HTML parsing is handled

by Swing and what little parsing code exists in XBrowser is well localized.

G | J | Page-Loading
Thread

Action

Page Load Stop,
Page Load Start

Page Load
Stjop

Stopped ip.

Page Load
Stlart Display

P^ge

Legend
No Mapped

Source Code

Figure 3.3: Complete XBrowser Model

This model has two interesting features: different fragments of state machines are

29

used to represent behaviour in different threads, and some model elements do not have any

code associated with them.

Each fragment of the model represents a part of the behaviour exhibited by a given

thread. The two fragments of the state machine reflect the fact that the GUI thread and

the Page-Loading thread may be in different states at different times. Had the two thread

been merged, there would be a set of states representing the cross-product of the individual

threads' states. The cross-product of a large number of threads each with a significant

number of states would lead to a state explosion. This is an issue with the form of the

model and is discussed in Section 5.1.1.

In the Page Loading thread Stopped, Page Load Stop, and Display Page are all

model elements that do not have any associated code. Their behaviour is implemented by

Swing and Java core libraries. Without these elements, the model would not accurately

reflect the behaviour of the system. They provide context that helps developers make sense

of the others elements.

3.1.2 Modelling the Meta-Refresh Feature

The model of the navigation and document parsing concerns provided a basis on which to

consider approaches for implementing the Meta-Refresh feature. After some deliberation,

the approach in Figure 3.4 was selected.

The Refresh behaviour is modelled as a separate thread consisting of three states:

Stopped, Waiting, and Process HyperLink. One detail worth noting is the Process Hyper-

Link state. Although the behaviour described by this state is similar to the behaviour of

the GUI thread's Process HyperLink state, the two states execute in different thread con­

texts. The distinction between the two states is consistent with the rest of the model where

different states and transitions are isolated based on the executing thread.

Extension of the model aided in the consideration of subtle pieces of the Meta-

Refresh feature. One example is the case of documents with multiple refresh M E T A ele­

ments. This was handled by the addition of a Refresh Stop, Refresh Start transition from

30

GUI Page-Loading
Thread

Display
Paige

Refresh Stop
Ref resnStar t

Legend

Bold

No Mapped
Source Code

New/Modified
Elements

Refresh
Thread

Refresh
S top

Load Stop,
Load Start

Figure 3.4: XBrowser Model with Meta-Refresh Feature

Parsing to Parsing. This transition ensures any existing refresh thread is stopped, and is

thus prevented from changing the current URL, before a new refresh is started for the next

META element.

Another subtle piece of the Meta-Refresh feature involves changing the current

URL before the refresh thread runs to completion. Suppose a user visits a page with a

refresh M E T A element. The browser parses the element and starts a refresh thread. Sup­

pose that before the refresh thread changes the current URL, the user visits a different page.

The existing refresh thread is no longer relevant to the current page and should not change

the current URL. This behaviour is modelled by modifying the GUI thread's Page Load

Stop, Page Load Start transition. It is renamed to Refresh Stop, Page Load Stop, Page Load

Start to reflect the desired behaviour.

31

3.1.3 Implementing the Meta-Refresh Feature

The model served as a guide to indicate the points in the source that needed modifying or

augmenting.

As one example, consider the Refresh thread's Page Load Stop, Page Load Start

transition. There needs to be code that exists in the system to perform this function. Since

this transition is similar to the GUI thread's Refresh Stop, Page Load Stop, Page Load Start

transition, the reuse of that code is considered. Examination of the code reveals that it is

appropriate and it is used to ground the Refresh thread's transition. Also, the code for the

GUI thread's implementation of Refresh Stop needs to be implemented. The Page Load

Stop, Page Load Start transition from the GUI thread prior to the model modification maps

to the method d e s t r o y i n g . This method relinquishes resources required by the current

page and is a good location to which to add Refresh Stop.

As another example, the model served as a guide for selecting an implementation

option for the Refresh thread. One option was to implement the thread in a new class, say

XRef resher. This approach would isolate the refresh behaviour from other existing be­

haviours. However, this choice would result in a mutual dependence between the Refresh

thread and the Renderer, leading to a high degree of coupling. As a result, the mutual de­

pendence was removed by implementing the Refresh thread behaviour as part of an existing

class.

It is worth noting that without analyzing the Swing and Java core libraries, it is

impossible to determine the exact nature of the interactions between those libraries and

XBrowser. In particular, a developer must rely on library documentation to avoid problems

with unexpected interactions including thread interactions.

3.2 Summary

B C M models describe existing behaviour and present a framework for considering mod­

ifications to the behaviour. These models facilitate the integration of desired and existing

32

behaviour, and aid developers in considering subtle but important behavioural details. Once

a developer has modelled the desired behaviour, the mapping provided by these models sup­

ports the developer in identifying sections of code that need modification or augmentation.

33

Chapter 4

Related Work

In the creation of a model of a program from existing artifacts, the B C M approach is sim­

ilar to existing reverse engineering and reengineering approaches. In the identification of

code related to a concern, the B C M approach is similar to existing concern finding tools.

The following sections compare the B C M approach and tool to these two bodies of exist­

ing work. In the case of reverse and reengineering tools, the comparisons are limited to

those tools that provide either direct support of reengineering or the reverse engineering of

behavioural, rather than structural, models.

4.1 Reverse Engineering and Reengineering Tools

Reverse engineering is defined as the analysis of software components and their interre­

lationships in order to obtain a description of the software a high level of abstraction [5].

Unlike most reverse engineering tools, B C M enables developers to abstract concerns that

crosscut system structure. This gives developers the freedom to capture concepts without

being restricted by existing structures. Reengineering is the process of examination, under­

standing, and alteration of a system with the intent of implementing the system in a new

form [3]. Unlike other reengineering tools, B C M supports the formation of a user-defined

behavioural model through the use of data-flow analysis queries.

34

4 . 1 . 1 Shimba

Shimba is a reverse engineering environment that uses dynamic event traces and static pro­

gram analysis to automatically generate scenario and state diagrams [19]. Shimba generates

such diagrams in the context of existing classes and thus cannot generate such models for

concerns that crosscut a system.

Shimba can abstract interactions between objects by recognizing user-specified be­

havioural patterns, but such abstractions are limited to one of two types: repetition con­

structs or subscenarios. The repetition construct allows developers to capture repetition

of behavioural patterns found in w h i l e , f o r and d o - w h i l e structures. Developers are

limited to abstractions defined by the context of those structures. Subscenarios describe a

specific sequence of events common to multiple scenarios. Subscenarios limit developers

to abstractions that align along sequences of events. Unlike the abstraction mechanisms in

Shimba, BCM allows developers to create abstractions based on any set of possibly non­

contiguous lines of source.

Shimba allows developers to filter event traces based on class-level entities such

as methods, variables, and interfaces. For example, this allows developers to collect event

traces for a specific set of classes. BCM provides additional capabilities by enabling users

to filter results based on source code lines while simultaneously providing users with data-

and control- flow information.

4.1.2 Rational Rose

Rational Rose is a development environment that supports a team of developers by pro­

viding a common modelling language, known as UML, for expressing and sharing design

concepts [6]. Rose supports developers throughout the entire software development lifecy-

cle including analysis, design, implementation and back to analysis again. Rose manages

specifications, designs written in UML and source code developed in a variety of integrated

development environments. Rose also supports reverse engineering of software from source

code to UML sequence diagrams.

35

Rose limits a developer to working with existing system structures. This makes it

difficult for users to identify and remember which pieces of structure, such as a set of lines

within a method, contribute to a concern or feature.

4.1.3 Womble

Womble is a static analysis tool that extracts object models from Java bytecode [12]. It

creates models automatically without user intervention. The basic unit in Womble mod­

els represents classes. Arcs between classes describe arity and inheritance relationships.

Womble differs from other structural extractors in two ways. It analyzes how fields are

used to determine the arity of relationships between classes. It also abstracts the use of

collections, such as arrays and hashtables, into names of relationships. For example, if a

Company class has an array of Person's called employees, the model would represent this

with an arc named employees between the Company class and the Person class. There

would be no mention of the array implementation of employees in the model.

Womble presents a structural description of existing software while B C M enables

developers to describe system behaviour. Womble is not suited to capturing or manipulating

crosscutting concerns. Work on Womble describes its use in the formation of object models,

but the work does not describe how the models can be used in a modification task or how

the model affects the modification process.

4.1.4 Use Case Model Recovery

Lucca, Fasolino and Carlini describe a reverse engineering approach to recover use case

models from object-oriented code [17]. In this approach, developers identify statements

that form input events and output events. A tool then automatically identifies code corre­

sponding to potential uses cases. The mapping between a given use case to its correspond­

ing code supports developers in program understanding and maintenance impact analysis.

One problem with this approach is that developers still need to isolate the relevant use cases

from all the use cases returned by the tool. This problem is exacerbated by the fact that

36

current tools for this approach lack any kind of filtering mechanism.

Use cases provide a description of the externally visible behaviour of a system. This

description is typically presented from a system user's perspective. Concerns differ in that

they are implementations of concepts in a system's code. Typically the details of concerns

are only apparent to software designers and developers.

4.1.5 Conceptual Modules

Baniassad and Murphy introduced the Conceptual Modules [1] approach to help software

developers performing software reengineering tasks. This approach enables a developer

to overlay a desired structure on an existing structure and to query about the relationships

between those two structures. As described earlier, a conceptual module (CM) is a logical

module that consists of a set of possibly non-contiguous lines in the source. The B C M ap­

proach extends the C M approach in two ways. First, it uses the logical modules to represent

pieces of a behavioural.model, rather than using them to represent static modules. Second,

the B C M tool permits the overlay of CM's on object-oriented Java code rather than the pro­

cedural C code supported by the earlier tool. When compared to the earlier tool, B C M has

additional support for analysis of exceptions, fields and polymorphic method calls.

4.2 Concern Identification Tools

Aspect Browser, Concern Graph and A M T are some of the existing concern identification

tools. The tools' approach complement the B C M approach. Each can be used to help

identify the code related to a concern. Each can be used to help systematize the actual

process of making a change once the change is decided upon. The B C M approach extends

these approaches by helping to systematize how the change should be made: the behavioural

model built of the concern code as part of the B C M approach provides the basis on which

to reason about different approaches to the change task.

37

4.2.1 Aspect Browser

The Aspect Browser tool supports the identification of a concern using lexical queries |10].

The results of queries are shown using a map representation similar to the view presented

in the Seesoft tool [7]. The map metaphor helps developers navigate through an identified

concern, but it has no inherent structure. The metaphor also serves as a guide to developers

performing maintenance by highlighting the points in code that potentially need modifica­

tion.

4.2.2 Aspect Mining Tool

The Aspect Mining tool (AMT) [11] supports concern identification by supporting a com­

bination of lexical and structural queries. A developer may perform a lexical query over

expressions that combines type information. Similar to the Aspect Browser, A M T shows

the results of queries through a Seesoft-like view. The concern identified has no inherent

structure.

4.2.3 Concern Graphs

A Concern Graph provides an abstracted representation of the code related to a concern.

The representation consists of structural items, such as classes and particular calls within

methods, that comprise the concern. The FEAT tool supports the identification of concern

code in a Java system through structural queries and supports the representation of the

identified code as a Concern Graph. A Concern Graph representation of the concern code

can be used to reason about the concern and can be used as a basis for identifying the

dependences—calls and uses—between code in the Concern Graph and the rest of the code

base.

38

Chapter 5

Summary

When performing modification tasks, developers often encounter crosscutting concerns. It

is difficult for developers to understand how modifications interact with these concerns.

Current tools help a developer analyze the existing code, but do not help the developer

reason about, implement, or analyze a modification.

This thesis has discussed a systematic approach to modification tasks supported by

the Behavioural Concern Modelling approach and tool. The tool helps a developer model

concerns pertinent to a modification and supports the querying of source through a created

model. A developer may then use the model to reason about design choices and may use

the model as a guide to performing the modification.

5.1 Discussion

The BCM approach shows promise, but several questions remain. This section presents

some of the choices made in the definition of the approach and the implementation of our

tool. It also describes extensions to the approach that would further help in systematizing

the change process, and discusses how the approach might help in further modularization

of a code base.

39

5.1.1 Form of the Model

Finite state machines (FSM) are suited to modelling concern behaviour in several ways.

Their lightweight syntax and semantics allow developers to focus on describing the be­

haviour of a concern. Single elements in FSM's rely only on local knowledge, enabling

developers to describe parts of a concern without knowledge of other parts of the concern.

One potential problem with FSM's is state explosion. This occurs when a large

number of states is required to model the behaviour of a given system. In such situations,

abstracting parts of the model may help reduce the number of states that need to be consid­

ered at a given time.

The states in B C M models typically represent modes of computation; the transitions

typically represent a possible change in modes. This interpretation may be confusing to

developers who expect states to represent the potential values of fields, and transitions to

represent changes in those fields, or flows of data. Further case study work is needed to

determine if this interpretation is suitable for a wide range of change tasks, or if other model

types, such as U M L sequence or collaboration diagrams [13], may be more appropriate

some, or all, of the time. In addition, the form of the model may be dependent not just

on the change task, but also on the concerns involved. For example, sequence diagrams

may be the best choice for modelling a transaction concern for a student enrollment system.

Since the B C M tool is not currently sensitive to the form of model, the tool may be used to

experiment with these different choices.

5.1.2 Models as Long-Term Documentation

In the B C M approach, models serve as documentation for a specific modification task.

These models could serve as long-term documentation that span multiple tasks if several

issues were addressed. Developers would need to define more precise semantics for their

models so that every developer would share the same understanding of the model's be­

haviour. Tool support would have to enable developers to examine different views for

different tasks. As one example, a tool that enables the model to be viewed at different

40

levels of detail would be helpful. For example, if a modification task required a developer

to change how XBrowser parsed JavaScript, one would not use the Parsing state from Fig­

ure 3.2. One would expand Parsing to several states representing whether the parser is in

the BODY of the H T M L page or whether it has encountered a SCRIPT tag.

5.1.3 Filtering Relatedness Query Results

The query that returns information about how two CM's relate tends to produce a large

number of results. Currently, the B C M tool filters the results based on structural contexts

described by classes, methods, and lines. Another possibility is to enable filtering based

on lexical information, such as variable and field names, or inheritance relationships. Yet

another possibility is to filter on a graph theoretic basis: A developer may only want the

results that are well-connected, or the results that form the shortest path from the source to

the target. Each of these filtering methods represents a tradeoff between returning too much

information and accidentally filtering out desired information. The situations in which these

queries work best is still an open question.

5.1.4 Analysis Using Behavioural Models and B C M

This thesis describes how the B C M approach applies to five of the six steps outlined as part

of a systematic change process in Section 1.1. The sixth step involves analyzing the imple­

mentation to determine whether the change has been made correctly. The B C M approach

can also be used for this step. After mapping the changed source code to model elements,

a developer can perform the relatedness query on a source and a target element to see if

any unexpected flows may occur between the model elements. For example, consider the

User Authentication concern from Section 1.1.1. If there is an unexpected flow from Unau­

thenticated to Authenticated, a malicious user might be able to gain unauthorized access to

jFTPd.

This approach is similar to model checking [14]. Unlike model checking tools, the

developer is more limited in the queries that can be run. An advantage compared to existing

41

source code model checking tools, such as Bandera |4], is that a "higher-level" model can

be used. That is the "states" in the model represent large pieces of processing, rather than a

particular localized piece of state.

5.1.5 "Aspectualizing" the Concern

In some cases it may be advantageous to capture a concern's code explicitly as, for instance,

an aspect in AspectJ [15]. Understanding how the concern's code works is an important step

before trying to separate the code. The B C M tool can help in this step but would need to be

combined with other tools, such as refactoring tools, to help create the appropriate interface,

or joinpoints, between the existing code and the aspect code. Concern finding tools, as

discussed in Section 4.2, may also be more effective than the B C M tool at elucidating

pertinent code.

There are benefits to using the B C M approach in forming aspects. B C M models

may indicate that a certain piece of behaviour must occur before or after another piece

of behaviour. This relationship between behaviours is explicitly support by some of the

modularization mechanisms in AspectJ. Another benefit is that developers can use queries

to help determine how difficult it might be to refactor a piece of behaviour as an aspect

without actually performing the remodularization. For example, a large number of data- or

control- flows between one C M and another may indicate that it will be difficult to create

an aspect from either of the CM's.

42

Bibliography

[1] Elisa L. A. Baniassad and Gail C. Murphy. Conceptual module querying for software
reengineering. In International Conference on Software Engineering, pages 64-73.
IEEE Computer Society Press, 1998.

[2] Elisa L.A. Baniassad, Gail C. Murphy, Christa Schwanninger, and Michael Kircher.
Managing crosscutting concerns during software evolution tasks: An inquisitive study.
Technical Report UBC-CS-TR-2001-16, Department of Computer Science, Univer­
sity of British Columbia, Vancouver, BC, Canada, October 2001.

[3] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: a
taxonomy. IEEE Software, 7(1): 13-17, January 1990.

[4] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from
Java source code. In International Conference on Software Engineering, pages 439-
448. IEEE Computer Society Press, 2000.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[6] R. Corporation. Rational rose, http://www.rational.com/products/rose/index.jsp
[16 November 2001].

[7] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft—A tool for visu­
alizing line oriented software statistics. IEEE Transactions on Software Engineering,
18(11):957-968, November 1992.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
1995.

[9] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

[10] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the map
metaphor in a tool for software evolution. In Proc. of International Conference on
Software Engineering, pages 265-274. IEEE Computer Society Press, 2001.

43

http://www.rational.com/products/rose/index.jsp

[11] J. Hannemann and G. Kiczales. Overcoming the prevalent decomposition in legacy
code. In Workshop on Advanced Separation of Concerns at International Conference
on Software Engineering. IEEE Computer Society Press, May 2001.

[12] Daniel Jackson and Allison Waingold. Lightweight extraction of object models from
bytecode. In International Conference on Software Engineering, pages 194-202.
IEEE Computer Society Press, 1999.

[13] Ivar Jacobson, James Rumbaugh, and Grady Booch. The Unified Software Develop­
ment Process. Object Technology Series. Addison-Wesley, Reading, MA, 1999.

[14] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Information and Computing, 98(2): 142-170,
1992.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP'97—
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220-242, Jyvaskyla, Finland, June 1997.

[16] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, MA, 1997.

[17] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, and Ugo De Carlini. Recovering
use case models from object-oriented code: a thread-based approach. In Working
Conference on Reverse Engineering, pages 108-117. IEEE Computer Society Press,
2000.

[18] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and describing
concerns using structural program dependencies. Technical Report UBC-CS-TR-
2001-13, Department of Computer Science, University of British Columbia, Vancou­
ver, BC, Canada, September 2001.

[19] Tarja Systa. Understanding the behavior of Java programs. In Working Conference on
Reverse Engineering, pages 214-223. IEEE Computer Society Press, 2000.

[20] Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON
1999, pages 125-135. IBM Canada Ltd., 1999.

[21] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, pages 439-449. IEEE Computer Society Press, 1981.

44

Appendix A

Relatedness Query Example

Query Inputs:
Query Source: (setUser t r a n s i t i o n)

FTPConnection.doUserCommand(String), l i n e 534
FTPConnection.doUserCommand(String) ,. l i n e 537
FTPConnection.doUserCommand(String), l i n e 538
FTPConnection.doUserCommand(String) , l i n e 539
FTPConnection.doUserCommand(String) , l i n e 540
FTPConnection.doUserCommand(String), l i n e 542

Query Target: (handleAnonPass t r a n s i t i o n)
FTPConnection:doPassCommand(String), l i n e 560

Query Context:
A l l Classes except W i l d c a r d F i l t e r

Query Outputs: (gotUser state)
Class Summary:

FTPConnection -> PassiveConnection
FTPConnection -> FTPHandler
FTPHandler -> FTPConnection

Method Summary:
doPassCommand -> printWelcome
doUserCommand -> doPassCommand
doCommand -> doUserCommand
doCommand -> doPassCommand
run -> doCommand
doCommand -> run
doCommand -> setBusy
doCommand -> setLastCommandTime

Figure A. 1: Query Example

45

