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Abstract 

Many modification tasks on an existing software system result in changes to code that 
crosscuts the system's structure. Making these changes is difficult because a developer 
must understand large parts of the system and must reason about how the modification will 
interact with the existing behaviour. Most of the time, developers attempt to make a change 
use an ad-hoc process with tools that help in gaining some understanding of the existing 
system, but which do not provide any specific support for reasoning about, implementing, 
or analyzing the modification. 

This thesis presents the Behavioural Concern Modelling (BCM) approach and tool 
that provide direct support for a systematic approach to modification tasks. This approach 
helps a developer create a partial, abstract, grounded behavioural model of a concern or 
concerns. The model is grounded in that the relationship between the model and the code is 
explicit: A developer describes which code contributes to each part of the model. The ex­
amples described use a finite state machine as a model and show how the approach can help 
a developer capture a concern, reason about design options, and implement modifications. 
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Chapter 1 

Introduction 

All too often, modifications to an existing software system are made in an ad-hoc manner. 

A developer determines some parts of the code relevant to the modification and then starts 

to iteratively identify, understand, and change the code to perform the modification. When 

the points in the program related to the modification are well-localized, this approach can 

be effective. When the relevant points span, or crosscut, multiple modules, this approach 

begins to fall apart [2]: developers have a difficult time estimating how long it will take 

to complete the modification task, the code added and changed as part of the modification 

introduces defects into seemingly unrelated parts of the system, amongst other problems. 

The ad-hoc process seems to break down when the modification crosscuts the sys­

tem because many of the subtasks the developer must perform to complete the modification 

task become harder. It is harder for the developer to identify relevant portions of the existing 

code, or the underlying concerns, because large parts of the system may need to be consid­

ered and understood. It is harder for the developer to evaluate options for the design of the 

modification because large parts of the existing design must be considered. It is harder for 

the developer to determine how the modification's code impacts other crosscutting concerns 

because those concerns are also implicit. 

Existing tools can help the developer with some parts of some of these subtasks. 

Lexical searching tools, such as grep and Aspect Browser [10], can help identify relevant 

code. Structural analyzers, such as FEAT [18], flow analyzers, such as program slicers [21], 
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and some reverse engineering tools, such as Shimba [19], can help a developer identify and 

build up an understanding of how relevant code works. These tools help a developer deal 

with the existing system, but they do not help a developer reason about, implement, analyze, 

or verify the modification because they focus on the existing system, not the system with 

the modification. 

The thesis of this research is that a developer can perform a modification task more 

systematically when the developer has access to a behavioural model of a concern (or con­

cerns) relevant to the modification that is partial, abstract, and grounded. The behavioural 

characteristic of the model helps a developer reason about how the existing code works and 

how the modification might work. The partial characteristic enables a developer to model 

only those parts of a concern relevant to the task at hand. The abstract characteristic ensures 

that the model is of a size and complexity amenable for the developer to reason about. The 

grounded characteristic maintains a mapping between the model and the existing source. 

This mapping enables the model to be used to direct analysis on the code. For example, the 

mapping enables a developer to analyze whether the data- and control-flows in the system 

respect the model. 

To investigate the use of such models, an approach called Behavioural Concern 

Modelling (BCM) and a supporting tool have been developed. In the B C M approach, a 

developer posits all or part of a finite-state machine (FSM) representing the behaviour of a 

concern or concerns, and then uses the B C M tool to determine how data- and control-flows 

relate to the posited state machine. The B C M tool builds on previous work in conceptual 

modules [1]. A conceptual module (CM) is a logical module, consisting of a set of possibly 

non-contiguous lines in the source, that can be overlaid on an existing system. Relationships 

between CM's can be established based on flow analysis between the lines of code mapped 

to different CM's. The B C M tool supports CM's for Java |9] and enables developers to 

represent the states and transitions of a FSM with CM's. 
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1.1 A Sample Modification 

To clarify the BCM approach, I describe the use of the approach to assess a change to a 

FTP server. The approach supports five of six steps in a systematic modification process 

(Figure 1.1). 

Start 
_ J ± _ 

1. Identify Task-Specific 
Concerns and Source 

2. Form Task-Specfic 
Model of Concerns 

3. Consider Design 
Options 

4. Select Design 

5. Use Model as Guide 
for Implementation 

6. Use Model to Analyze 
Implementation 

End 

Figure 1.1: Modification Process 

1. The developer identifies concerns, and their associated source code, in the existing 

system that are relevant to the modification. 

2. The developer forms a grounded, abstract, partial, behavioural model of the concerns 

pertinent to the given modification task. 

3. The developer considers several different design options and models the ones worth 

further consideration. 

4. The developer selects a design. 

5. The developer uses the corresponding model as a guide to implement the chosen 

design. 

6. The developer uses the model to help analyze the implementation. 
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The role of the behavioural model and BCM in the last step of the process is dis­

cussed in Section 5.1.4. The posited six step modification does not directly correspond to 

any documented existing process. 

1.1.1 Modifying a F T P Server 

jFTPd1 is a FTP server written in Java that supports basic FTP commands and anonymous 

login. The modification task in consideration is the addition of named-user logins to the 

jFTPd system. This modification will either build on or impact the anonymous login con­

cern. 

The first step in the process requires the identification of the code (and concerns) 

relevant to the anonymous login concern. The second step requires the formation of the 

modification-specific, behavioural model. Although these two steps could be performed 

separately, a developer may find it useful to iteratively build the model as the developer 

identifies the relevant code. Furthermore, the developer can use the model to help identify 

code of interest. 

To start, the source code implementing the USER FTP command is identified: This 

command must exist if anonymous login is supported. The doUserCommand method in 

the FTPConnection class is identified using grep. This method supports this command 

by setting the userName field based on user input. A subset of the doUserCommand is 

modelled as a setUser transition (Figure 1.4a). In the BCM tool, a CM is created to repre­

sent this transition. Four lines of code marked with a asterisk in Figure 1.2 are associated 

with that CM. 

This fragment of a model must be expanded to support reasoning about the change. 

Because FTP user authentication involves the two commands USER and PASS, it is im­

portant to identify the code that implements the PASS command. The doPassCommand 
method is identified using grep. Examination of this method reveals that it is responsible 

for several different functions: it decides whether a user has permission to log in, and it 

'Available from http://jftpd.prominic.Org/l.3/index.htmI. The code for jFTPd comprises 11 
classes and approximately 3000 lines of code. 
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protected boolean doUserCommand(String l i n e ) { 
i f ( l i n e . l e n g t h ( ) <= 5) 

return f a l s e ; 
i f (anonUser) ( 

out.print("530 Can't change user from guest l o g i n . " ) ; 
} e l s e { 

S t r i n g user = l i n e . s u b s t r i n g ( 5 ) ; 
userName = user; 
S t r i n g userLower = user.toLowerCase() ; 
i f (userLower.equals("ftp") I I userLower.equals("anonymous")) ( 

out.print("331 Guest l o g i n ok, send your complete e-mail address."); 
} e l s e { 

out.print("331 Password required f o r "+user+"."); 
} 

) 
r e t u r n t r u e ; 

1 

Figure 1.2: Code Associated with SetUser Transition 

decides whether to grant or deny access to the user. Several model elements are created to 

model this behaviour: a handleAnonPass transition, a permitAnonymousLogin state, an au­

thenticate Anonymous User transition and a rejectUser transition (Figure 1.4b). Each model 

element is associated with code as illustrated in Figure 1.3. 

protected boolean doPassCommand(String l i n e ) ( 
1 i f (userName == n u l l ) ( 

out.print("503 Login with USER f i r s t . \ \ n " ) ; 
r eturn t r u e ; 

) 
2 S t r i n g userLower = userName.toLowerCase(); 
2 i f (userLower.equals("ftp") I I userLower:equals("anonymous")) ( 

printWelcome(line); 
3 authorized = t r u e ; 
3 anonUser = tr u e ; 

return t r u e ; 
2 ) e l s e { 

out.print("530 Login i n c o r r e c t . \ \ n " ) ; 
4 userName = n u l l ; 

r eturn t r u e ; 
2 } 
} 

1 HandleAnonPass Transition 

2 PermitAnonymousLogin state 

3 AuthenticateAnonymousUser transition 

4 RejectUser 

Figure 1.3: Code Associated with Various States and Transitions 
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a) 
Set. 

"Die7 

Auth. 
-Aftefl^ 
User 

Auth. 
AronV 
User 

fj) Reject 
User 

/UnauthenA Set . / Got 
I ticated J User I User 

Figure 1.4: Steps in Building a Model for jFTPd 

In the FTP user-authentication mechanisms, the user name is passed from the imple­

mentation of the USER command to the implementation of the PASS command. Thus there 

must be a data-flow between the setUser transition and handleAnonPass transition. Because 

the USER command must be issued before the PASS command in order for the login to be 

successful, there must exist a control-flow between the setUser and handleAnonPass. Both 

the data-flow and the control-flow form part of the state between the transitions. 

The manual tracing of these flows is a tedious task that can be avoided with the 

use of a relatedness query supported by the B C M tool. This query examines the data- and 

control-flows between two CM's within a given context as specified by a third, context, C M . 

The query responds with the set of statements that comprise the flows, as well as class and 

method summary information for those statements. A relatedness query between setUser 

b) Reject 

C) Reject 
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and handleAnonPass with all the jFTPd classes as the context returns the following class 

summary. 

FTPConnection —> PassiveConnection 
FTPConnection ->• W i l d c a r d F i l t e r 
FTPConnection ->• FTPHandler 
FTPHandler -» FTPConnection 

As is often the case, a first query returns results that are very broad. The query 

context is refined by removing W i l d c a r d F i l t e r . Since this class extends Java . i o . 
F i l e n a m e F i l t e r , it is unlikely to be related to the setUser and handlePass transitions.2 

The method summary reports several methods that implement FTP commands un­

related to setUser and handlePass. Some of these methods include doListCommand, 
doCwdCommand, and doDeleCommand. The commands implement functionality unre­

lated to the user authentication concern and thus they are removed from the query context. 

With the refinements, the query between setUser and handlePass returns the fol­

lowing method summary: 

doPassCommand —>• printWelcome 
doUserCommand —> doPassCommand 
doCommand —> doUserCommand 
doCommand —> doPassCommand 
run —> doCommand 
doCommand —> run 
doCommand —• setBusy 
doCommand —> setLastCommandTime 

Examination of doCommand reveals that it parses FTP commands and calls the 

appropriate methods to handle the commands. Examination of run reveals that it reads 
2The W i l d c a r d F i l t e r is used to implement the LIST command and is not related to user 

authentication. 
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FTP commands and passes them to doCommand. A GotUser state, containing the loop in 

run and the parsing statements in doCommand, is created as shown in Figure 1.4c. 

As noted previously, doCommand parses commands and dispatches them to other 

methods. The commands that doCommand parses includes some that are typically used 

when the system is in an unauthenticated state, such as USER, and some that are used 

when the system is in an authenticated state, such as LIST. Because the parsing statements 

execute when the system is in both of these states, the statements not only belong to the 

GotUser state, but also to an Unauthenticated and an Authenticated state. Other statements 

also execute while the system is in those states, but those statements are not relevant to the 

change task. For example, one might consider whether or not to model the individual FTP 

command handlers because some of the corresponding FTP commands are only valid when 

a user is authenticated. However, a model including the command handlers would not aid 

in the addition of named-user logins and thus they are not included in the model. 

Steps one and two of the modification process are repeated until the model is com­

plete enough to reason about the modification task. Queries introduced as part of the orig­

inal C M tool help check that the model is complete by reporting the interface to a logical 

module represented by a C M . These queries elucidate the data- and control-flows to and 

from the interface. A developer can examine the query results to verify that none of the 

interface flows are pertinent to the model and thus the model is sufficiently complete. A 

new C M is created that consists of all the state and transitions, and their associated cross-

cutting code. The interface query determines which variables and fields are inputs to this 

C M , which variables and fields are outputs, and which control transfers emanate from the 

C M . 

No unexpected values are reported as part of the outputs list or the control trans­

fer list, but unexpected values are reported as inputs to the C M . Specifically, the query 

reports two fields, FTPConnection . anonUser and FTPConnection. userName, 

as inputs. jFTPd uses the anonUser field to indicate whether the current user is an anony­

mous user, and thus all definitions of this field should be part of the model. The input query 
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reports that an instance initializer for a n o n U s e r exists outside of C M ; this statement is 

added to the Unauthenticated state. Similarly, the userName field is also defined in an 

instance initializer and that is also added to the Unauthenticated state. At this point, the 

model is sufficiently complete (Figure 1.4d). 

For step three, there are two different design options for implementing named-user 

authentication. One option is to consider anonymous login as an instance of named-user 

logins where the anonymous user has the name "anonymous". The second option is to 

consider anonymous login to be a special case that is separate from named-user logins. 

In the first option, as Figure 1.5 shows, only slight adjustments need to be made to 

the model, renaming transitions and states to reflect the change from anonymous to named-

user authentication. Only one path from the unauthenticated state to the authenticated state 

is needed. This option is conceptually simple, but it may be difficult to implement policies 

in which it is useful to treat anonymous users as a separate class of users. For example, 

there may be a need to limit the number of anonymous logins as well as the total number of 

named-user logins. 

Reject 

Permit \ Authenticate 
Named J—Named 
Login / User 

Legend 
„ . . New/Modfed 
B o l d — _. 

Elements 

Figure 1.5: jFTPd Model with Single Login Path 

In the second option, anonymous login and named-user login are separate mecha­

nisms, as Figure 1.6 shows. Anonymous logins would be more explicitly represented in the 

source code, and it may be easier to implement such policies as described above. 

After the design options are considered, a design is selected as part of step four. 

For step five, the model can serve as a guide to aid developers in locating points in the 
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Reject 
User 

Legend 
Bold New/Modified 

Elements 

Figure 1.6: jFTPd Model with Separate Named Login Path 

code that need to be modified. For instance, if the first design option was selected, the 

model could be used to determine that no modifications were required for the Unauthen­

ticated, GotUser, and Authenticated states or the setUser transition, amongst others. The 

model could aid in determining that the PermitLogin state must be modified, and an Au-

thenticateNamedUser transition added. In addition to providing design information about 

the modification, because it is grounded, the model can point a developer to specific code 

that must be considered. For example, consider the first option for named-user support was 

chosen. The change to the PermitAnonymousLogin transition to PermitNamedLogin would 

indicate that the some of the lines in the method doPassCommand in Figure 1.3 would 

need to be changed. 

1.2 Thesis Outline 

The contribution of this thesis is an approach for modelling the behaviour of a concern. 

This model can help to manage a concern during a software enhancement task. This thesis 

also demonstrates a need to ground a model in the source to support such tasks. Additional 

uses of the model are discussed in Section5.1. 

This chapter presented an overview of the approach, and provided an example of 
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how the approach might be used to perform a modification task. The remaining chapters 

of the thesis are organized as follows. Chapter 2 describes the B C M tool interface and 

tool internals including how it calculates data- and control- flows. Chapter 3 presents a 

case study on an outstanding change request to a public-domain web browser. Chapter4 

compares this work with other related work, including reverse engineering approaches and 

concern identification tools. Chapter 5 summarizes this work. 
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Chapter 2 

The BCM Tool 

The grounding of a behavioural concern model in the source is a critical part of the B C M 

approach. Without this grounding, it is easy to create a model that overlooks important 

details about how the concern is implemented. Since the approach is partial, there may be 

details that a developer does choose to leave out because they are not relevant to the task 

at hand. However, by grounding the model, a the developer must explicitly choose which 

details are relevant and which can be safely ignored or delayed. This section describes the 

tool support provided to help a developer create and investigate the grounding of the model. 

Section 2.1 describes the architecture of the B C M tool. Section 2.2 provides an 

overview of the interface between the user of the tool and the tool itself. The rest of this 

chapter describes some of the details of the tool's structure. Section2.3.1 describes the data 

structure used to store information on methods. Sections 2.3.2- 2.4 provide details about 

the data-flow analyzer. Section 2.5 discusses possibilites for tool extensions to support 

finer-grained queries. 

2.1 Tool Architecture 

Figure 2.1 presents an architectural overview of the B C M tool. B C M uses Jikes Bytecode 

Toolkit (JikesBT1) to read Java class files [16]. Within B C M a data-flow analyzer constructs 

a control-flow graph for the bytecodes in a given method and performs data-flow analysis 

'Available from http://www.alphaworks.ibm.com/tech/jikesbt. 
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Class Jikes Query 

Files f BT ; Extensions : 

BCM 

Method 
Digest 

Respository 

Data-Flow 
Analyzer 

Query 
Engine 

Legend 
Not 

Implemented 

- • Data Flows 

User 

Figure 2.1: B C M Architecture 

on that method. To reduce the memory requirements for B C M , the data-flow analyzer 

summaries the side effects of methods and stores them as method digests in the method 

digest repository. Data- and control-flows for methods are not retained between calculations 

and are only recalculated when such information is required. This typically occurs when 

a user has a query about the flows through a particular method. As a given query expands 

over several methods, the flows within those methods are recalculated on demand. 

2.2 Tool Interface 

The B C M tool enables a developer to construct a finite state machine (FSM) model and 

to map source code to the state and transition model elements. A developer can perform 

queries about how the model elements relate to each other and how they relate to the source 

code. These features of B C M are built on a Conceptual Modules representation of model 

elements. 
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A Conceptual Module (CM) captures a collection of source code lines and treats 

them as a logical unit. The source code lines need not be contiguous nor do they need to be 

restricted to the lines from a single method or class. A developer creates a C M from a set of 

lines by specifying the names and signatures of the lines' enclosing methods and their line 

numbers within those methods. Lines are selected from a developer-specified set of classes. 

This set of classes represents the world for CM's. All C M data- and control-flow analyses 

are conservative with respect to this world. 

Currently, states and transitions are simply named CM's. B C M does not provide a 

graphical interface for drawing FSM's. A developer must depend on naming conventions 

to distinguish between states and transitions and to identify the connections between them. 

Once the user has a partial model containing some states or transitions, the user 

can perform a relatedness query. This query requires three inputs: a source, a target and 

a context. The source and target can be any states or transitions. Like the states and tran­

sitions, the context is a C M and is specified by a set of lines2. The query starts from the 

lines identified by the source and follows any data- or control-flow connections within the 

context. Once the query has identified all the flows from the source, it filters out the flows 

that do not reach the target. The query reports the remaining flows, a method summary, and 

a class summary in a textual interface. 

The user can also perform an interface query on a C M as described in Section 1.1.1. 

2.3 Tool Internals 

B C M uses JikesBT to process the classes specified for the world. B C M pre-processes 

the classes to improve the efficiency of further analyses. For each bytecode in a method, 

B C M calculates data- and control-flows by simulating the operations performed on the 

Java Virtual Machine (JVM) stack and local variables (Figure2.2). B C M uses the method 

simulation results to generate a method digest that summarizes the method's side effects. 

Using a fixpoint algorithm, B C M iterates over all the methods in the world until 
2For an example of the inputs and outputs to the query, see Appendix A 
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all the method digests have reached a fix point. If dependencies between two methods are 

cyclic, the algorithm does not try to order them. If depencencies between two methods are 

acyclic, the algorithm iterates over the dependent method later. This reduces the number of 

iterations until a fix point is reached3. 

As the algorithm iterates over all the methods, it keeps track of all the side effects 

it has encountered and adds new side effects as it encounters them. Thus the number of 

noted side effects monotonicly increases over the algorithm's iterations. Since the total 

number of side effects in a given set of methods is fixed, the algorithm will eventually run 

to completion. 

Once the algorithm completes, only the method digests are retained. Data- and 

control-flows within methods are re-calculated on demand. 

- b u i l d c o n t r o l f l o w g r a p h f o r m e t h o d 
- a d d t h e f i r s t b y t e c o d e i n t h e m e t h o d t o a b y t e c o d e queue 
- l o o p w h i l e t h e r e a r e b y t e c o d e s i n t h e q u e u e 

- g e t t h e n e x t b y t e c o d e i n t h e q u e u e 
- i f t h e c u r r e n t b y t e c o d e t h r o w s an e x c e p t i o n t h a t i s c a u g h t 

by t h e c u r r e n t m e t h o d , a d d t h e e x c e p t i o n h a n d l e r b y t e c o d e t o 
t h e b y t e c o d e q u e u e 

- s i m u l a t e t h e b y t e c o d e 
- s i m u l a t e l o c a l v a r i a b l e l o a d s 
- s i m u l a t e l o c a l v a r i a b l e s t o r e s 
- s i m u l a t e s t a c k p o p s 
- s i m u l a t e s t a c k p u s h e s 
- i f t h e c u r r e n t b y t e c o d e i s a m e t h o d c a l l , l o o k up t h e 

c o r r e s p o n d i n g m e t h o d d i g e s t a n d n o t e m e t h o d s i d e e f f e c t s 
- i f t h e r e s u l t s o f t h e s i m u l a t i o n h a v e n o t b e e n n o t e d b e f o r e , 

p r o p a g a t e t h e r e s u l t s t o i m m e d i a t e b y t e c o d e s i n t h e c o n t r o l - f l o w 
a n d a d d t h o s e b y t e c o d e s t o t h e b y t e c o d e q u e u e 

Figure 2.2: Pseudo-code for Method Digest Calculation 

2.3.1 Method Digests 

A method digest contains information on which arguments are used and defined in a given 

method. Since the Java VM stores method arguments in a local variable array, the algorithm 

keeps track of which local variable entries are method arguments. When the algorithm 
3For a brief analysis of the run-time complexity of this algorithm see Section 2.3.4. 

1 5 



simulates a bytecode that defines or uses a method argument, it notes this in the method 

digest for the method. 

During method simulation, the algorithm identifies the bytecodes that define and 

use fields, local variables and method arguments. It also performs data-flow analysis on 

anything else that can be placed on the V M stack including constants, bytecode address 

references, and computation results not stored in local variables. The algorithm does not 

maintain actual values of objects, but it keeps track of the bytecode index at which a ref­

erence was defined or used. The algorithm also keeps track of the class of a particular 

reference to more accurately simulate exception throwing bytecodes. The throwing of an 

exception requires at least two bytecodes: one to place an instance of an exception on the 

stack and one to get the value from the stack and throw it. 

2.3.2 Data flow 

The algorithm generates a method digest by simulating the operations performed for each of 

the method's bytecodes. Each bytecode performs a series of operations possibly involving 

the Java VM's stack, local variable array and a variety of data types. For example, the 

stack for a single method call may contain values of base types such as i n t , objects such 

as HashMap and method references such as j a v a . u t i l . HashMap. < i n i t > ( i n t ) . 
Henceforth, these types are collected referred to as references. In BCM, there is a hierarchy 

of classes used to represent the references that a Java V M can manipulate. Each type of 

reference has several pieces of associated information: 

• the bytecode index at which this reference was defined 

• depending on the type of reference: 

- the object's class (e.g., i n t , Java . u t i l . HashMap$Entry) 

- an address (used in Jump Sub-Routine bytecode) 

- a local variable index to keep track of local variable a reference came from 

- a field reference (e.g., j a v a . l a n g . System, out) 

- a method reference 
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The algorithm uses these references to perform data-flow analysis by identifying 

where the references are defined and used. When the algorithm simulates a bytecode that 

defines a reference, the reference's bytecode index is set to the current bytecode index. For 

example, in Figure 2.3, bytecode 2 defines a reference on the stack. This reference has 

a bytecode index field with a value of 2, the bytecode index at which the reference was 

defined. Furthermore, this reference is on the stack prior to simulating bytecode 3 and is 

used by bytecode 3. The algorithm does not keep track of the actual value of reference. For 

example, if the algorithm encountered i = 10, the algorithm would not store the value 

10, but would keep track of which bytecode defined i . 

References can be defined by a number of bytecodes including: 

• load constant (e.g., 3.14159, "Hello World") 

• arithmetic, bit and logic operations (e.g., multiply, xor, ==) 

• method/constructor calls 

• assignment to an array (e.g., array [ i ] = 0) 

• assignment to a field 

• return statement (e.g., return 123) 

When the algorithm simulates the following bytecodes, references are used and their 

usage is noted: 

• method/constructor calls with arguments 

• arithmetic, bit, and logic operations 

• assignment to an array (via an aastore bytecode) 

• reading a value from an array (via an aaload bytecode) 

• field access 
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When the algorithm simulates an instance or interface method call, it uses class 

hierarchy analysis to calculate a conservative digest for all methods that can execute as a 

result of the call. For example if several classes implement a d o i t ( L i s t arg) method 

and only some of the classes modify arg, then the calculated digest reports a r g is defined 

by d o l t . 

2.3.3 Control Flow 

For each method, the algorithm builds a control-flow graph (CFG) where each vertex is a 

bytecode and an edge is a control flow between bytecodes. For some bytecodes, control-

flow proceeds with the next instruction, but goto's, if's, switch's, and try/catch/finally blocks 

require special handling. 

The control-flow graph does not have edges between method calls and method tar­

gets. Instead, the algorithm uses method digests to simulate the effects of a target method. 

JikesBT determines the method target for method-call bytecodes that only have one possible 

target, such as I n v o k e S t a t i c . For bytecodes that have multiple possible targets, B C M 

uses JikesBT to determining all the methods that override or implement a given method. 

B C M uses those methods to calculate a conservative digest for simulation. 

While building a method's C F G , the algorithm checks the method for an exception 

table. In Java bytecode, exception tables describe which exceptions are locally handled by 

what code within the same method. Each entry in the table describes the range of bytecodes 

handled, the type of exception handled and the bytecode index of the handler. The exception 

may also contain entries for f i n a l l y blocks. The only difference with these entries is that 

the type of exception handled is stated as any. In the example in Figure2.3, if any exception 

is thrown between bytecode 4 (inclusive) and bytecode 14 (exclusive), the control-flow will 

proceed to bytecode 18. 

For each declared exception in the exception table, the algorithm examines the byte­

codes specified by the exception entry. If the algorithm encounters a method call, it uses 

JikesBT to determine if the corresponding method can throw the exception specified by the 
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exception entry or a sub-class of that exception. If the method can throw such an exception, 

the algorithm adds a control flow edge from the method call to the exception's handler. For 

other throwable's, the algorithm uses a conservative approximation: all bytecodes specified 

by an exception table entry can throw the exception specified by the entry. This creates an 

edge between each of the bytecodes specified and the corresponding handler. 

A f i n a l l y block in Java is typically compiled into a subroutine. The subroutine 

can be called with the Jump Sub-Routine bytecode and when the subroutine completes, the 

Return bytecode returns control back to the bytecode following the Jump. The control-

flows for Jump bytecodes are determined when most other control-flows are determined, 

prior to simulating the method. However, the control-flows for Return bytecodes are deter­

mined during simulation of the method because different callers to the subroutine will have 

different return points. 

Execution Contexts 

Consider the bytecodes in Figure 2.3 on page 23. When the Jump Sub-Routine bytecode 

at index 14 is simulated, the return bytecode index of 17 is pushed on the stack. Execution 

then continues at bytecode 24 where the return index is stored in a local variable. When the 

sub-routine returns at bytecode 35, it uses the bytecode index in local variable 4 to return 

to the correct bytecode index. Similarly, when the Jump Sub-Routine bytecode at index 

19 is simulated, the return bytecode index of 22 is pushed on the stack. Eventually, the 

sub-routine returns at bytecode 35, but this time it returns to bytecode index 22. Note that 

there are two separate control-flow paths that share a common sub-routine. 

To accurately simulate this behaviour, each bytecode needs to keep track of the 

stack and local variables for each control-flow that enters the bytecode. This provides a 

context for each of the different ways a bytecode can be executed. 
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2.3.4 Computing Resources 

In general, the number of classes or methods in a given application does not significantly 

affect the computing resources required by BCM. At any given time, BCM retains only 

the data- and control-flows for the method it is currently analyzing. The more complex 

a method's control-flows are, the more CPU and memory BCM requires to analyze the 

method. 

The data-flow analysis first performs a topological sort on the methods. The sort 

uses call relationships between methods to determine which method in a pair of methods is 

independent and thus should be ordered earlier in the sort. Methods with cycles between 

them are ordered arbitrarily. The topological sort is an optimization to reduce the number 

of fix point iterations over all the methods. A topological sort runs in time 0(\methods\ + 

\methodCalls\) [5]. 
In an ideal situation, there are no cycles between methods and the algorithm com­

pletes after iteration because the topological sort has ordered them in order of dependence. 

The worst case situation arises when all the methods are all dependent on each other. In this 

case when one method digest is updated, potentially all the other method digests need to be 

updated. However, each method digest stores the side effects of the methods it calls. Thus 

the algorithm is bounded by 0(\methods\2) iterations. 

For each method, data-flow information between bytecodes is propagated similar to 

how method digests are progated between methods. Thus the algorithm iterates over a max­

imum of 0(\bytecodes\2) bytecodes per method. Thus in the ideal situation, the algorithm 

completes in 0{\methods\\bytecodes\2) and in the worst case 0(\methods\2\bytecodes\2). 

Without statistical analysis of a large percentage of the Java code in existance, it is 

almost impossible to determine the characteristics of the average case situation. However, 

BCM has processed several system in several minutes. For example, BCM has processed 

a system called XBrowser (Chapter 3) consisting of 29000 lines of Java source code in 10 

minutes on a PHI lGhz with 512MB of RAM running Java 1.3 HotSpot VM. 
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2.4 Tool Limitations 

B C M does not support analysis of native methods. A particular case of this problem occurs 

with classes that extend java. l a n g . Thread and that override the run method. At 

some point, the native method s t a r t is called and it eventually calls the run method. 

This control-flow between s t a r t and run is not detected by B C M . One workaround is to 

write a temporary subclass of Thread with an overridden s t a r t method that explicitly 

calls run. 

To a lesser extent, native methods also cause problems in the analysis of code that 

uses reflection. The methods that implement reflection are native and can not be analyzed 

by B C M . To complicate matters, the actual value of variables is sometimes required for 

analysis, as in C l a s s . f orName (myClass) where myClass is a S t r i n g . 

B C M also does not support alias analysis. Thus some data-flow dependencies be­

tween lines of source code may not be identified. 

2.5 Tool Extensions 

Section 1.1.1 described the use of a context C M to refine query results. B C M has another 

feature that provides users with finer-grained control over query results. Users can write 

plug-ins in Java that specify which data- and control-flows to consider as part of the query 

and which flows to report as part of the query results. 

The plug-in feature uses a variation of the visitor pattern |8] to perform frontier 

exploration. A developer's plug-in does not have to visit all bytecodes in a given set of 

classes. The plug-in feature provides a queue that contains the current frontier and data-

and control-flow information about each bytecode. The developer is only responsible for 

deciding which bytecodes should initially be on the queue, what flows to report as query 

results and what new flows need to be added when new bytecodes are encountered. 
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2.6 Alternative Flow Analyzer 

During the development of B C M , the Soot [20] project was developed. Soot was designed 

for bytecode optimization using data-flow analysis. There is potential for B C M to use Soot 

as it's data-flow analyzer, but Soot provides more detailed analysis than B C M requires. Soot 

uses constraint-based type analysis which is often not necessary in B C M because most of 

the time only a given dependence is important and not the actual type of the dependence. 

For example, if a bytecode uses a value defined by another bytecode, only this dependence 

is important and not the actual type of the valued used. Although B C M could benefit from 

alias analysis, Soot does not support it. Also, BCM's problems with native methods can not 

be alleviated through the use of Soot because Soot also performs its analysis on bytecodes. 
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p u b l i c c l a s s MethodSum { 
p u b l i c s t a t i c v o i d main(String[) args) { 

i n t i = 0, j = 1; 
t r y { 

args[i++] = "He l l o " ; 
j = 2; 

} f i n a l l y { 
System.out.printIn(i + j ) ; 

} 

> 

} 

Method v o i d main(java.lang.String[]) 
0 iconst_0 
1 i s t o r e _ l 
2 i c o n s t _ l 
3 i s t o r e _ 2 
4 aload_0 
5 i l o a d _ l 
6 i i n c 1 1 
9 l d c #1 <String "Hello"> 

11 aastore 
12 iconst_2 
13 i s t o r e _ 2 
14 j s r 24 
17 return 
18 astore_3 
19 j s r 24 
22 aload_3 
23 athrow 
24 astore 4 
26 g e t s t a t i c #7 <Field java.io.PrintStream out> 
2 9 i l o a d _ l 
30 iload_ 2 
31 iadd 
32 i n v o k e v i r t u a l #8 <Method void p r i n t l n ( i n t ) > 
35 r e t 4 

Exception t a b l e : 
from to tar g e t type 
4 14 18 any 

MethodSum.main(java.lang.String[]): 
def s : 

bytecode index: 11 
type: j a v a . l a n g . S t r i n g [ ] 
l o c a l var: 0 

uses: 
bytecode index: 4 
type: Java.lang.String[] 
l o c a l var: 0 

Figure 2.3: Bytecode and Method Summary Example 
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Chapter 3 

Evaluating BCM 

For the B C M approach to be viable, it has to be possible for developers to create useful 

models of a concern within a reasonable amount of time. To date, the focus of this work 

has been on the first part of this statement within a specific context: is it possible to create 

a useful model of a concern for reasoning about a change? To provide additional evidence 

that model creation is possible, this section describes a case study of applying the B C M 

approach to an outstanding change task on a system. The model created for this change 

task provided a framework for introducing the desired behaviour and.for examining how 

it would interact with the existing behaviour. Once the modifications to the model were 

complete, the existing mapping between the model and source code aided in identifying the 

structural units that needed modification. 

3.1 XBrowser 

The target of this study was the XBrowser system, which is a Web browser written in Java 

using Swing with features similar to Netscape Navigator version 3.1 The code for XBrowser 

comprises 171 classes and approximately 29000 lines of code. 

One of the outstanding feature enhancements for XBrowser is a request for Meta-

Refresh support. In any H T M L document, the H E A D element may contain any number of 

META elements. Each of these M E T A elements provides metadata such as a document's 

'XBrowser is available from http://xbrowser.sourceforge.net. 
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keywords and author. The M E T A element may also be used to refresh a document window 

to another URL after a specified number of seconds. 

For this study, the B C M approach was applied to support the addition of Meta-

Refresh feature to XBrowser. Little technical documentation about XBrowser was avail­

able, providing a "worst-case" type of situation for applying B C M . Even JavaDoc H T M L 

pages were unavailable. 

3.1.1 Modelling the Existing Behaviour 

Knowledge of the Meta-Refresh feature helps to identify the XBrowser concerns that are 

impacted by the change and therefore are of interest to model. First, the addition of Meta-

Refresh changes the current URL, and thus there is a navigation concern. Second, the 

feature requires parsing the current document, and thus there is a document parsing concern. 

Similar to the description in Section 1.1.1, partial models of each of these concerns 

were grown through a combination of identifying code snippets of interest with grep, posit­

ing model pieces and associating code with those pieces, and using relatedness queries to 

check that code of interest had been modelled. As before, context was specified as part of 

the relatedness queries to make the output of queries feasible to read. Reducing the context 

was relatively easy because the graphical user interface classes fell outside the scope of 

interest and they were easily filtered out of the queries. 

Parts of the navigation concern were identified first. XBrowser supports history 

navigation using "Back" and "Forward" buttons. Grep was used to search for the string 

Back. The code in figure 3.1 was identified and captured as a Back transition in Figure3.2a. 

Grep identified a B a c k A c t i o n class containing an a c t i o n P e r f ormed method. 

This method calls a s h o w P r e v i o u s P a g e method which in turn calls a p r o c e s s X H y -

p e r L i n k method. The body of the p r o c e s s X H y p e r L i n k method calls two methods 

that collectively set the current page to a specified URL. The first method stops the previ­

ous page-loading thread, and the second starts a new thread and loads the new page. These 

methods are captured as a Process HyperLink state and the actual method bodies are cap-
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c l a s s B a c k A c t i o n . . . ( 
v o i d a c t i o n P e r f o r m e d ( . . . ) ( 

g e t A c t i v e R e n d e r e r ( ) . s h o w P r e v i o u s P a g e ( ) ; 

> 

c l a s s X C u s t o m R e n d e r e r . . . { 
v o i d s h o w P r e v i o u s P a g e ( ) { 

i f ( h a s B a c k w a r d H i s t o r y ( ) ) 
p r o c e s s X H y p e r L i n k ( . . . ) ; 

} 
} 

Figure 3.1: Code Associated with Back Transition 

tured as a Page Load Stop, Page Load Start transition (Figure3.2b) 2 . 

Use of the relatedness query helped check that all of the pertinent code between 

Back and Page Load Stop, Page Load Start has been captured. The initial query used Back 

as the source, Page Load Stop, Page Load Start as the target, and all the classes in XBrowser 

as the context. The class summary reported a large number of user interface classes. For ex­

ample, XURLComboBox was reported because the U R L it displays must change when the 

user navigates to a different URL. These classes were removed from the query context. The 

class summary also reported classes that implement URL history. These classes were also 

irrelevant to the modification and were removed from the context. Re-running the query 

reduced the number of classes that needed to be examined. The new class summary only 

reported one additional unexpected class, XHTMLEditorKit. The corresponding method 

summary contained a call from XCustomRenderer . d e s t r o y i n g () to XHTMLEdi­

t o r K i t . d e s t r o y A H A p p l e t s (). The method d e s t r o y i n g contained part of the 

Page Load Stop, Page Load Start transition and terminated any running threads, including 

Java Applets, associated with a web page. The remaining entries in the method summary 

were methods that had already been examined while building the model. 

The GUI thread's Page Load Stop, Page Load Start transition controls the state of 

the page-loading thread. This behaviour was modelled in the page-loading thread with a 

Page Load Stop transition that enters a Stopped state and a Page Load Start transition that 

2This transition represents a sequence of events. First Page Load Stop occurs and then Page Load 
Start. 
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Figure 3.2: Steps in Building XBrowser Model 

leaves from the Stopped state (Figure 3.2c). These new model elements were isolated from 

the previous elements to show that the state of the page-loading thread is independent of 

the other thread. 

Under normal circumstances, every state and transition has some associated code. 
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In this case, only Page Load Start has some associated code, a call to J E d i t o r P a n e . 

setPage ( . . . ) that sets the URL for the current page. For Page Load Stop and Stopped, 

there is no associated code because their behaviour is completely implemented by j a v a . 

l a n g . Thread. Although it is possible to obtain source code for J ava . l a n g . Thread, 

it is considered to be library code and external to XBrowser. Nonetheless, the new state and 

transitions served to describe behaviour pertinent to the modification task. 

Parts of the document parsing concern were identified next. Knowledge about 

Swing and experience with using XBrowser helped in identifying the document parsing 

concern. In Swing, the page displayed in a browser window is set by a call to the JEd­

i t o r P a n e . setPage ( . . . ) method. Since XBrowser supports JavaScript, a call to 

this method will result in the parsing of the page to execute any JavaScript present in the 

document. Thus there is a control-flow between setPage and the code implementing 

the document parsing concern. This control-flow must be implemented by both Swing 

code and XBrowser code since setPage is a Swing method and JavaScript is not directly 

supported by Swing. Of the code that implements the control-flow, only the portions imple­

mented by XBrowser were relevant to the modification task as changes to Swing were not 

an option. Examination of Swing documentation and the code for the class XCustomRen-

d e r e r revealed that a static initializer registers the class X H T M L E d i t o r K i t with Swing's 

J E d i t o r P a n e to handle H T M L content. Further examination reveals that the control-

flow extends through the methods X H T M L E d i t o r K i t . c r e a t e D e f aultDocument 

and XHTMLDocument .getReader. The getReader method returns an instance of 

the class XHTMLReader. This class contains methods for handling different kinds of 

H T M L tags such as start, end, text and comments tags including JavaScript. The XHTML­

Reader class is captured as a Parsing state. 

Although a large part of the control flow is in Swing, it is still useful to capture 

the connection between setPage and XHTMLReader. The connection is modelled by 

setting Parsing as the target state for the Page Load Start transition as in Figure3.2d. 

After using Swing to display the page for a URL, the page-loading thread returns to 
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the Stopped state. This behaviour is modelled with a Display Page transition from Parsing 

to Stopped (Figure 3.2e). The Display Page transition does not have any associated code, 

but serves to describe behaviour pertinent to the modification task. 

The input, output and control transfer queries were used to confirm that the model 

has captured the pertinent portions of the navigation and document parsing concerns. These 

queries help elucidate the model boundaries when performed on a CM consisting of all the 

states and transitions. The queries on the XBrowser model reported nothing unexpected. 

The Resulting Model 

Figure 3.3 shows the model resulting from this iterative process. Most of the model ele­

ments describe the behaviour of the navigation concern. Only the Parsing state describes the 

document parsing concern in XBrowser. A large portion of the HTML parsing is handled 

by Swing and what little parsing code exists in XBrowser is well localized. 

G | J | Page-Loading 
Thread 
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Page Load Stop, 
Page Load Start 

Page Load 
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Legend 
No Mapped 
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Figure 3.3: Complete XBrowser Model 

This model has two interesting features: different fragments of state machines are 
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used to represent behaviour in different threads, and some model elements do not have any 

code associated with them. 

Each fragment of the model represents a part of the behaviour exhibited by a given 

thread. The two fragments of the state machine reflect the fact that the GUI thread and 

the Page-Loading thread may be in different states at different times. Had the two thread 

been merged, there would be a set of states representing the cross-product of the individual 

threads' states. The cross-product of a large number of threads each with a significant 

number of states would lead to a state explosion. This is an issue with the form of the 

model and is discussed in Section 5.1.1. 

In the Page Loading thread Stopped, Page Load Stop, and Display Page are all 

model elements that do not have any associated code. Their behaviour is implemented by 

Swing and Java core libraries. Without these elements, the model would not accurately 

reflect the behaviour of the system. They provide context that helps developers make sense 

of the others elements. 

3.1.2 Modelling the Meta-Refresh Feature 

The model of the navigation and document parsing concerns provided a basis on which to 

consider approaches for implementing the Meta-Refresh feature. After some deliberation, 

the approach in Figure 3.4 was selected. 

The Refresh behaviour is modelled as a separate thread consisting of three states: 

Stopped, Waiting, and Process HyperLink. One detail worth noting is the Process Hyper-

Link state. Although the behaviour described by this state is similar to the behaviour of 

the GUI thread's Process HyperLink state, the two states execute in different thread con­

texts. The distinction between the two states is consistent with the rest of the model where 

different states and transitions are isolated based on the executing thread. 

Extension of the model aided in the consideration of subtle pieces of the Meta-

Refresh feature. One example is the case of documents with multiple refresh M E T A ele­

ments. This was handled by the addition of a Refresh Stop, Refresh Start transition from 
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Figure 3.4: XBrowser Model with Meta-Refresh Feature 

Parsing to Parsing. This transition ensures any existing refresh thread is stopped, and is 

thus prevented from changing the current URL, before a new refresh is started for the next 

META element. 

Another subtle piece of the Meta-Refresh feature involves changing the current 

URL before the refresh thread runs to completion. Suppose a user visits a page with a 

refresh M E T A element. The browser parses the element and starts a refresh thread. Sup­

pose that before the refresh thread changes the current URL, the user visits a different page. 

The existing refresh thread is no longer relevant to the current page and should not change 

the current URL. This behaviour is modelled by modifying the GUI thread's Page Load 

Stop, Page Load Start transition. It is renamed to Refresh Stop, Page Load Stop, Page Load 

Start to reflect the desired behaviour. 
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3.1.3 Implementing the Meta-Refresh Feature 

The model served as a guide to indicate the points in the source that needed modifying or 

augmenting. 

As one example, consider the Refresh thread's Page Load Stop, Page Load Start 

transition. There needs to be code that exists in the system to perform this function. Since 

this transition is similar to the GUI thread's Refresh Stop, Page Load Stop, Page Load Start 

transition, the reuse of that code is considered. Examination of the code reveals that it is 

appropriate and it is used to ground the Refresh thread's transition. Also, the code for the 

GUI thread's implementation of Refresh Stop needs to be implemented. The Page Load 

Stop, Page Load Start transition from the GUI thread prior to the model modification maps 

to the method d e s t r o y i n g . This method relinquishes resources required by the current 

page and is a good location to which to add Refresh Stop. 

As another example, the model served as a guide for selecting an implementation 

option for the Refresh thread. One option was to implement the thread in a new class, say 

XRef resher. This approach would isolate the refresh behaviour from other existing be­

haviours. However, this choice would result in a mutual dependence between the Refresh 

thread and the Renderer, leading to a high degree of coupling. As a result, the mutual de­

pendence was removed by implementing the Refresh thread behaviour as part of an existing 

class. 

It is worth noting that without analyzing the Swing and Java core libraries, it is 

impossible to determine the exact nature of the interactions between those libraries and 

XBrowser. In particular, a developer must rely on library documentation to avoid problems 

with unexpected interactions including thread interactions. 

3.2 Summary 

B C M models describe existing behaviour and present a framework for considering mod­

ifications to the behaviour. These models facilitate the integration of desired and existing 
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behaviour, and aid developers in considering subtle but important behavioural details. Once 

a developer has modelled the desired behaviour, the mapping provided by these models sup­

ports the developer in identifying sections of code that need modification or augmentation. 
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Chapter 4 

Related Work 

In the creation of a model of a program from existing artifacts, the B C M approach is sim­

ilar to existing reverse engineering and reengineering approaches. In the identification of 

code related to a concern, the B C M approach is similar to existing concern finding tools. 

The following sections compare the B C M approach and tool to these two bodies of exist­

ing work. In the case of reverse and reengineering tools, the comparisons are limited to 

those tools that provide either direct support of reengineering or the reverse engineering of 

behavioural, rather than structural, models. 

4.1 Reverse Engineering and Reengineering Tools 

Reverse engineering is defined as the analysis of software components and their interre­

lationships in order to obtain a description of the software a high level of abstraction [5]. 

Unlike most reverse engineering tools, B C M enables developers to abstract concerns that 

crosscut system structure. This gives developers the freedom to capture concepts without 

being restricted by existing structures. Reengineering is the process of examination, under­

standing, and alteration of a system with the intent of implementing the system in a new 

form [3]. Unlike other reengineering tools, B C M supports the formation of a user-defined 

behavioural model through the use of data-flow analysis queries. 
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4 . 1 . 1 Shimba 

Shimba is a reverse engineering environment that uses dynamic event traces and static pro­

gram analysis to automatically generate scenario and state diagrams [19]. Shimba generates 

such diagrams in the context of existing classes and thus cannot generate such models for 

concerns that crosscut a system. 

Shimba can abstract interactions between objects by recognizing user-specified be­

havioural patterns, but such abstractions are limited to one of two types: repetition con­

structs or subscenarios. The repetition construct allows developers to capture repetition 

of behavioural patterns found in w h i l e , f o r and d o - w h i l e structures. Developers are 

limited to abstractions defined by the context of those structures. Subscenarios describe a 

specific sequence of events common to multiple scenarios. Subscenarios limit developers 

to abstractions that align along sequences of events. Unlike the abstraction mechanisms in 

Shimba, BCM allows developers to create abstractions based on any set of possibly non­

contiguous lines of source. 

Shimba allows developers to filter event traces based on class-level entities such 

as methods, variables, and interfaces. For example, this allows developers to collect event 

traces for a specific set of classes. BCM provides additional capabilities by enabling users 

to filter results based on source code lines while simultaneously providing users with data-

and control- flow information. 

4.1.2 Rational Rose 

Rational Rose is a development environment that supports a team of developers by pro­

viding a common modelling language, known as UML, for expressing and sharing design 

concepts [6]. Rose supports developers throughout the entire software development lifecy-

cle including analysis, design, implementation and back to analysis again. Rose manages 

specifications, designs written in UML and source code developed in a variety of integrated 

development environments. Rose also supports reverse engineering of software from source 

code to UML sequence diagrams. 
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Rose limits a developer to working with existing system structures. This makes it 

difficult for users to identify and remember which pieces of structure, such as a set of lines 

within a method, contribute to a concern or feature. 

4.1.3 Womble 

Womble is a static analysis tool that extracts object models from Java bytecode [12]. It 

creates models automatically without user intervention. The basic unit in Womble mod­

els represents classes. Arcs between classes describe arity and inheritance relationships. 

Womble differs from other structural extractors in two ways. It analyzes how fields are 

used to determine the arity of relationships between classes. It also abstracts the use of 

collections, such as arrays and hashtables, into names of relationships. For example, if a 

Company class has an array of Person's called employees, the model would represent this 

with an arc named employees between the Company class and the Person class. There 

would be no mention of the array implementation of employees in the model. 

Womble presents a structural description of existing software while B C M enables 

developers to describe system behaviour. Womble is not suited to capturing or manipulating 

crosscutting concerns. Work on Womble describes its use in the formation of object models, 

but the work does not describe how the models can be used in a modification task or how 

the model affects the modification process. 

4.1.4 Use Case Model Recovery 

Lucca, Fasolino and Carlini describe a reverse engineering approach to recover use case 

models from object-oriented code [17]. In this approach, developers identify statements 

that form input events and output events. A tool then automatically identifies code corre­

sponding to potential uses cases. The mapping between a given use case to its correspond­

ing code supports developers in program understanding and maintenance impact analysis. 

One problem with this approach is that developers still need to isolate the relevant use cases 

from all the use cases returned by the tool. This problem is exacerbated by the fact that 
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current tools for this approach lack any kind of filtering mechanism. 

Use cases provide a description of the externally visible behaviour of a system. This 

description is typically presented from a system user's perspective. Concerns differ in that 

they are implementations of concepts in a system's code. Typically the details of concerns 

are only apparent to software designers and developers. 

4.1.5 Conceptual Modules 

Baniassad and Murphy introduced the Conceptual Modules [1] approach to help software 

developers performing software reengineering tasks. This approach enables a developer 

to overlay a desired structure on an existing structure and to query about the relationships 

between those two structures. As described earlier, a conceptual module (CM) is a logical 

module that consists of a set of possibly non-contiguous lines in the source. The B C M ap­

proach extends the C M approach in two ways. First, it uses the logical modules to represent 

pieces of a behavioural.model, rather than using them to represent static modules. Second, 

the B C M tool permits the overlay of CM's on object-oriented Java code rather than the pro­

cedural C code supported by the earlier tool. When compared to the earlier tool, B C M has 

additional support for analysis of exceptions, fields and polymorphic method calls. 

4.2 Concern Identification Tools 

Aspect Browser, Concern Graph and A M T are some of the existing concern identification 

tools. The tools' approach complement the B C M approach. Each can be used to help 

identify the code related to a concern. Each can be used to help systematize the actual 

process of making a change once the change is decided upon. The B C M approach extends 

these approaches by helping to systematize how the change should be made: the behavioural 

model built of the concern code as part of the B C M approach provides the basis on which 

to reason about different approaches to the change task. 
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4.2.1 Aspect Browser 

The Aspect Browser tool supports the identification of a concern using lexical queries |10]. 

The results of queries are shown using a map representation similar to the view presented 

in the Seesoft tool [7]. The map metaphor helps developers navigate through an identified 

concern, but it has no inherent structure. The metaphor also serves as a guide to developers 

performing maintenance by highlighting the points in code that potentially need modifica­

tion. 

4.2.2 Aspect Mining Tool 

The Aspect Mining tool (AMT) [11] supports concern identification by supporting a com­

bination of lexical and structural queries. A developer may perform a lexical query over 

expressions that combines type information. Similar to the Aspect Browser, A M T shows 

the results of queries through a Seesoft-like view. The concern identified has no inherent 

structure. 

4.2.3 Concern Graphs 

A Concern Graph provides an abstracted representation of the code related to a concern. 

The representation consists of structural items, such as classes and particular calls within 

methods, that comprise the concern. The FEAT tool supports the identification of concern 

code in a Java system through structural queries and supports the representation of the 

identified code as a Concern Graph. A Concern Graph representation of the concern code 

can be used to reason about the concern and can be used as a basis for identifying the 

dependences—calls and uses—between code in the Concern Graph and the rest of the code 

base. 
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Chapter 5 

Summary 

When performing modification tasks, developers often encounter crosscutting concerns. It 

is difficult for developers to understand how modifications interact with these concerns. 

Current tools help a developer analyze the existing code, but do not help the developer 

reason about, implement, or analyze a modification. 

This thesis has discussed a systematic approach to modification tasks supported by 

the Behavioural Concern Modelling approach and tool. The tool helps a developer model 

concerns pertinent to a modification and supports the querying of source through a created 

model. A developer may then use the model to reason about design choices and may use 

the model as a guide to performing the modification. 

5.1 Discussion 

The BCM approach shows promise, but several questions remain. This section presents 

some of the choices made in the definition of the approach and the implementation of our 

tool. It also describes extensions to the approach that would further help in systematizing 

the change process, and discusses how the approach might help in further modularization 

of a code base. 
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5.1.1 Form of the Model 

Finite state machines (FSM) are suited to modelling concern behaviour in several ways. 

Their lightweight syntax and semantics allow developers to focus on describing the be­

haviour of a concern. Single elements in FSM's rely only on local knowledge, enabling 

developers to describe parts of a concern without knowledge of other parts of the concern. 

One potential problem with FSM's is state explosion. This occurs when a large 

number of states is required to model the behaviour of a given system. In such situations, 

abstracting parts of the model may help reduce the number of states that need to be consid­

ered at a given time. 

The states in B C M models typically represent modes of computation; the transitions 

typically represent a possible change in modes. This interpretation may be confusing to 

developers who expect states to represent the potential values of fields, and transitions to 

represent changes in those fields, or flows of data. Further case study work is needed to 

determine if this interpretation is suitable for a wide range of change tasks, or if other model 

types, such as U M L sequence or collaboration diagrams [13], may be more appropriate 

some, or all, of the time. In addition, the form of the model may be dependent not just 

on the change task, but also on the concerns involved. For example, sequence diagrams 

may be the best choice for modelling a transaction concern for a student enrollment system. 

Since the B C M tool is not currently sensitive to the form of model, the tool may be used to 

experiment with these different choices. 

5.1.2 Models as Long-Term Documentation 

In the B C M approach, models serve as documentation for a specific modification task. 

These models could serve as long-term documentation that span multiple tasks if several 

issues were addressed. Developers would need to define more precise semantics for their 

models so that every developer would share the same understanding of the model's be­

haviour. Tool support would have to enable developers to examine different views for 

different tasks. As one example, a tool that enables the model to be viewed at different 
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levels of detail would be helpful. For example, if a modification task required a developer 

to change how XBrowser parsed JavaScript, one would not use the Parsing state from Fig­

ure 3.2. One would expand Parsing to several states representing whether the parser is in 

the BODY of the H T M L page or whether it has encountered a SCRIPT tag. 

5.1.3 Filtering Relatedness Query Results 

The query that returns information about how two CM's relate tends to produce a large 

number of results. Currently, the B C M tool filters the results based on structural contexts 

described by classes, methods, and lines. Another possibility is to enable filtering based 

on lexical information, such as variable and field names, or inheritance relationships. Yet 

another possibility is to filter on a graph theoretic basis: A developer may only want the 

results that are well-connected, or the results that form the shortest path from the source to 

the target. Each of these filtering methods represents a tradeoff between returning too much 

information and accidentally filtering out desired information. The situations in which these 

queries work best is still an open question. 

5.1.4 Analysis Using Behavioural Models and B C M 

This thesis describes how the B C M approach applies to five of the six steps outlined as part 

of a systematic change process in Section 1.1. The sixth step involves analyzing the imple­

mentation to determine whether the change has been made correctly. The B C M approach 

can also be used for this step. After mapping the changed source code to model elements, 

a developer can perform the relatedness query on a source and a target element to see if 

any unexpected flows may occur between the model elements. For example, consider the 

User Authentication concern from Section 1.1.1. If there is an unexpected flow from Unau­

thenticated to Authenticated, a malicious user might be able to gain unauthorized access to 

jFTPd. 

This approach is similar to model checking [14]. Unlike model checking tools, the 

developer is more limited in the queries that can be run. An advantage compared to existing 
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source code model checking tools, such as Bandera |4], is that a "higher-level" model can 

be used. That is the "states" in the model represent large pieces of processing, rather than a 

particular localized piece of state. 

5.1.5 "Aspectualizing" the Concern 

In some cases it may be advantageous to capture a concern's code explicitly as, for instance, 

an aspect in AspectJ [15]. Understanding how the concern's code works is an important step 

before trying to separate the code. The B C M tool can help in this step but would need to be 

combined with other tools, such as refactoring tools, to help create the appropriate interface, 

or joinpoints, between the existing code and the aspect code. Concern finding tools, as 

discussed in Section 4.2, may also be more effective than the B C M tool at elucidating 

pertinent code. 

There are benefits to using the B C M approach in forming aspects. B C M models 

may indicate that a certain piece of behaviour must occur before or after another piece 

of behaviour. This relationship between behaviours is explicitly support by some of the 

modularization mechanisms in AspectJ. Another benefit is that developers can use queries 

to help determine how difficult it might be to refactor a piece of behaviour as an aspect 

without actually performing the remodularization. For example, a large number of data- or 

control- flows between one C M and another may indicate that it will be difficult to create 

an aspect from either of the CM's. 

42 



Bibliography 

[1] Elisa L. A. Baniassad and Gail C. Murphy. Conceptual module querying for software 
reengineering. In International Conference on Software Engineering, pages 64-73. 
IEEE Computer Society Press, 1998. 

[2] Elisa L.A. Baniassad, Gail C. Murphy, Christa Schwanninger, and Michael Kircher. 
Managing crosscutting concerns during software evolution tasks: An inquisitive study. 
Technical Report UBC-CS-TR-2001-16, Department of Computer Science, Univer­
sity of British Columbia, Vancouver, BC, Canada, October 2001. 

[3] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: a 
taxonomy. IEEE Software, 7(1): 13-17, January 1990. 

[4] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. 
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from 
Java source code. In International Conference on Software Engineering, pages 439-
448. IEEE Computer Society Press, 2000. 

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT 
Press, Cambridge, MA, 1990. 

[6] R. Corporation. Rational rose, http://www.rational.com/products/rose/index.jsp 
[16 November 2001]. 

[7] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft—A tool for visu­
alizing line oriented software statistics. IEEE Transactions on Software Engineering, 
18(11):957-968, November 1992. 

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 
1995. 

[9] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 
1996. 

[10] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the map 
metaphor in a tool for software evolution. In Proc. of International Conference on 
Software Engineering, pages 265-274. IEEE Computer Society Press, 2001. 

43 

http://www.rational.com/products/rose/index.jsp


[11] J. Hannemann and G. Kiczales. Overcoming the prevalent decomposition in legacy 
code. In Workshop on Advanced Separation of Concerns at International Conference 
on Software Engineering. IEEE Computer Society Press, May 2001. 

[12] Daniel Jackson and Allison Waingold. Lightweight extraction of object models from 
bytecode. In International Conference on Software Engineering, pages 194-202. 
IEEE Computer Society Press, 1999. 

[13] Ivar Jacobson, James Rumbaugh, and Grady Booch. The Unified Software Develop­
ment Process. Object Technology Series. Addison-Wesley, Reading, MA, 1999. 

[14] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model 
Checking: 1020 States and Beyond. Information and Computing, 98(2): 142-170, 
1992. 

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, 
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP'97— 
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science, 
pages 220-242, Jyvaskyla, Finland, June 1997. 

[16] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, MA, 1997. 

[17] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, and Ugo De Carlini. Recovering 
use case models from object-oriented code: a thread-based approach. In Working 
Conference on Reverse Engineering, pages 108-117. IEEE Computer Society Press, 
2000. 

[18] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and describing 
concerns using structural program dependencies. Technical Report UBC-CS-TR-
2001-13, Department of Computer Science, University of British Columbia, Vancou­
ver, BC, Canada, September 2001. 

[19] Tarja Systa. Understanding the behavior of Java programs. In Working Conference on 
Reverse Engineering, pages 214-223. IEEE Computer Society Press, 2000. 

[20] Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, 
and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON 
1999, pages 125-135. IBM Canada Ltd., 1999. 

[21] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on 
Software Engineering, pages 439-449. IEEE Computer Society Press, 1981. 

44 



Appendix A 

Relatedness Query Example 

Query Inputs: 
Query Source: (setUser t r a n s i t i o n ) 

FTPConnection.doUserCommand(String), l i n e 534 
FTPConnection.doUserCommand(String) ,. l i n e 537 
FTPConnection.doUserCommand(String), l i n e 538 
FTPConnection.doUserCommand(String) , l i n e 539 
FTPConnection.doUserCommand(String) , l i n e 540 
FTPConnection.doUserCommand(String), l i n e 542 

Query Target: (handleAnonPass t r a n s i t i o n ) 
FTPConnection:doPassCommand(String), l i n e 560 

Query Context: 
A l l Classes except W i l d c a r d F i l t e r 

Query Outputs: (gotUser state) 
Class Summary: 

FTPConnection -> PassiveConnection 
FTPConnection -> FTPHandler 
FTPHandler -> FTPConnection 

Method Summary: 
doPassCommand -> printWelcome 
doUserCommand -> doPassCommand 
doCommand -> doUserCommand 
doCommand -> doPassCommand 
run -> doCommand 
doCommand -> run 
doCommand -> setBusy 
doCommand -> setLastCommandTime 

Figure A. 1: Query Example 
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