
Populating a Release History Database from Version Control and
Bug Tracking Systems∗

Michael Fischer, Martin Pinzger, and Harald Gall
Distributed Systems Group, Vienna University of Technology

{fischer,pinzger,gall}@infosys.tuwien.ac.at

Abstract

Version control and bug tracking systems contain large
amounts of historical information that can give deep in-
sight into the evolution of a software project. Unfortunately,
these systems provide only insufficient support for a de-
tailed analysis of software evolution aspects. We address
this problem and introduce an approach for populating a re-
lease history database that combines version data with bug
tracking data and adds missing data not covered by version
control systems such as merge points. Then simple queries
can be applied to the structured data to obtain meaning-
ful views showing the evolution of a software project. Such
views enable more accurate reasoning of evolutionary as-
pects and facilitate the anticipation of software evolution.
We demonstrate our approach on the large Open Source
project Mozilla that offers great opportunities to compare
results and validate our approach.

1. Introduction

During the lifetime of a software project a large amount
of historical information is collected and stored by ver-
sion control systems such as CVS [13], ClearCase [2], or
SourceSafe [1]. Since this information describes interesting
aspects of the evolutionary changes of a project, they are a
valuable source for retrospective analysis techniques which
explore, for example, change rates (number of changes
within a certain amount of time), error proneness (number
of errors), or indicate starvation (number of changes con-
verges to zero) of software projects.

Version information may be enhanced with data from
bug tracking systems that report about past maintenance ac-
tivities. Both information sources together lead to an ex-
tensive database that enables reasoning about the past and

∗This work is partially funded by the Austrian Ministry for Infrastruc-
ture, Innovation and Technology (BMVIT) and the European Commis-
sion under EUREKA 2023/ITEA-ip00004 ’from Concept to Application
in system-Family Engineering (CAFÉ)’.

anticipating future evolution of software projects. Unfor-
tunately, current version and bug report systems provide no
or only insufficient support for the combination of both data
sources and, hence, lack capabilities in software evolution
analysis. Moreover, the formats of and access to version
and bug report data vary across version control and bug re-
port systems that complicates the application of evolution
analysis techniques and tools.

In this paper we introduce the population of a Release
History Database that combines version and bug report data
and we further demonstrate some query examples with re-
spect to software evolution analysis. The basic building
blocks of our approach are an SQL database and scripts for
retrieval and filtering information from (a) the version con-
trol system and (b) the bug report database. In particular,
we demonstrate our approach on the Open Source project
Mozilla [23] that uses CVS as version control system and
Bugzilla [22] as bug report database. The Mozilla project
also has been addressed by other approaches in the software
evolution area [12, 18] and hence offers great opportunities
to compare results and emphasize the advantages of our ap-
proach.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview about related work in the area of
software evolution analysis. Section 3 describes the prin-
ciples of CVS and Bugzilla. In Section 4 we address the
problem of merge detection for development branches. Sec-
tion 5 explains the data model which will be used in later
case studies and Section 6 explains the import process. An
evaluation of our release history database is presented in
Section 7. We conclude in Section 8 with a discussion and
future work which will be built upon data provided by the
Release History Database.

2. Related work

To our knowledge there has not been much work in com-
bining version control and bug report data for software evo-
lution analysis. Most works focus on evolution aspects of
software or their visualization.

Similar to an earlier approach of our group described in
[9] Kemerer and Slaughter use modification reports as basis
for their analysis [15]. They use a refined classification
scheme for the modification reports (Corrective, Adaptive,
Perfective Enhancement [21], New Program) for an anal-
ysis of ordered change events. The focus of their work is
on deducing mappings of the systems life cycle (new pro-
gram, corrective, adaptive, etc.) by accomplishing gamma
analysis followed by a mapping phase.

Ball et al. [6] focused on the visualization of statistical
data derived from the version control system. A systematic
approach to integrate information from external sources is
not presented.

In [9, 10, 11] our group examined the structure of several
releases of a large Telecommunications Switching Software
(TSS). Since the release data were stored in an object ori-
ented database this approach could not be reused for the
investigation of other software systems using different ver-
sion control systems.

3. CVS and Bugzilla

In this section we give an overview about the CVS ver-
sion control system and the Bugzilla bug tracking system
that are the two major data sources required by our evolu-
tion analysis of the Mozilla project.

3.1. CVS

Basically, CVS is designed to handle revisions of textual
information by storing delta’s between subsequent revisions
in the repository. Binary files can be stored in the repository
as well, but they are not handled efficiently.

Revision numbers: Typically, version control systems
distinguish between version numbers of files and software
products. Concerning files these numbers are called revi-
sion numbers and indicate different versions of a file. In
terms of software products they are called release numbers
and indicate the releases of a software product.

Each new version of a file stored in the CVS repository
receives a unique revision number (e.g. 1.1 for the first
version of a file checked in). After an update of a file and
a commit of the changes to the CVS repository the revision
number of each affected file is increased by one. Because
some files are more affected by changes than others these
files have different revision numbers in the CVS repository.

A release represents a snapshot on the CVS repository
comprising all files realizing a software system whereas the
files can have individual revision numbers. Whenever a new
version of the software system is released a symbolic name
(i.e. tag) indicating the release is assigned to the revision
numbers of current files. The relation symbolic name - revi-

sion number is stored in the header section of every tagged
file and also appears in the header section of CVS log files.

Branches are common to version control systems and
indicate a self-maintained line of development [13]. Each
branch is identified by its branch number. CVS creates a
new branch number by picking the first unused even inte-
ger, starting with 2, and appending it to the file’s revision
number where the corresponding branch forked off. For
example the first branch created at revision 1.2 of a file
receives the branch number 1.2.2 (internally CVS stores
1.2.0.2). The main issue with branches is the detection
of merges that is not supported by CVS. We will come back
to this problem in Section 4 where we describe an algorithm
to identify merge points.

Version control data: For each working file in the
repository CVS generates version control data and stores
it to log files. From there, log file information can be
retrieved by issuing the cvs log command. The spec-
ification of additional parameters allow the retrieval of
information about a particular file or a complete direc-
tory. Figure 1 depicts an example log file taken from
the Mozilla project showing version data of the source
file nsCSSFrameConstructor.cpp as it is stored by
CVS.

Basically, a log file consists of several sections, each de-
scribing the version history of an artefact (i.e. file) of the
source tree. Sections are separated by a line of ’=’ charac-
ters. For the population of our release history database we
take into account the following attributes:

RCS file: The path information in this field identifies the
artefact in the CVS repository.

symbolic names: Lists the assignment of revision numbers
to tag names. This assignment is individual for each
artefact since revision numbers may differ.

description: Lists the modification reports describing the
change history of the artefact starting from its initial
check in until the current release. Besides the modifi-
cations made in the main trunk all changes which hap-
pened in the branches are also recorded there. Reports
(i.e. revisions) are separated by a number of ’-’ char-
acters. The revision number identifies the source code
revision (main trunk, branch) which has been modi-
fied. Date and time of the check in are recorded in the
date field. The author field identifies the person who
did the check in. The value of the state field deter-
mines the state of the artefact and usually takes one
of the following values: “Exp” means experimental
and “dead” means that the file has been removed. The
lines fields counts the lines added and/or deleted of the
newly checked in revision compared with the previous
version of a file. If the current revision is also a branch
point, a list of branches derived from this revision is

2

RCS file: /cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.cpp,v
Working file: nsCSSFrameConstructor.cpp
head: 1.804
branch:
locks: strict
access list:
symbolic names:

MOZILLA_1_3a_RELEASE: 1.800
NETSCAPE_7_01_RTM_RELEASE: 1.727.2.17
PHOENIX_0_5_RELEASE: 1.800
...
RDF_19990305_BASE: 1.46
RDF_19990305_BRANCH: 1.46.0.2

keyword substitution: kv
total revisions: 976; selected revisions: 976
description:

revision 1.804
date: 2002/12/13 20:13:16; author: doe@netscape.com; state: Exp; lines: +15 -47
Don’t set NS_BLOCK_SPACE_MGR and NS_BLOCK_WRAP_SIZE on ...

...

revision 1.638
date: 2001/09/29 02:20:52; author: doe@netscape.com; state: Exp; lines: +14 -4
branches: 1.638.4;
bug 94341 keep a separate pseudo frame list for a new pseudo block or inline frame ...

....
===

RCS file: /cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.h,v

Figure 1. Example log-file from Mozilla source tree

listed in the branches field (e.g. 1.638.4 in Figure 1).
The following free text field contains informal data en-
tered by the author during the check in process.

3.2. Bugzilla

As additional source of information to the modifica-
tion reports, bug report data from the Bugzilla bug report
database is imported into our Release History Database.
Access to the Bugzilla database is enabled via HTTP and
reports can be retrieved in XML format. The information
will be used later to classify the corresponding modifica-
tion reports found in CVS. This enables the identification
of error-prone files or modules which are candidates for re-
implementation or re-design.

Besides some administrative information such as contact
information, mailing addresses, discussion, etc., the bug re-
port database also provides some interesting information for
the evolutionary view such as bug severity, affected product

or component (see Figure 2):

bug id: This ID is referenced in modification reports.
Since the IDs are stored as free text in the CVS reposi-
tory, the information cannot be reliably recovered from
the change report database.

bug status (status whiteboard): Describes the current state
of the bug and can be unconfirmed, assigned, resolved,
etc.

product: Determines the product which is affected by a
bug. Examples in Mozilla are Browser, MailNews,
NSPR, Phoenix, Chimera, etc.

component: Determines which component is affected by
a bug. Examples for components in Mozilla are Java,
JavaScript, Networking, Layout, etc.

dependson: Declares which other bugs have to be fixed
first, before this bug can be fixed.

blocks: List of bugs which are blocked by this bug.

3

<bug_id>100069</bug_id>
<bug_status>VERIFIED</bug_status>
<product>Browser</product>
<priority>--</priority>
<version>other</version>
<rep_platform>All</rep_platform>
<assigned_to>doe@mozilla.org</assigned_to>
<delta_ts>20020116205154</delta_ts>
<component>Printing: Xprint</component>
<reporter>doe@mozilla.org</reporter>
<target_milestone>mozilla0.9.6</target_milestone>
<bug_severity>enhancement</bug_severity>
<creation_ts>2001-09-17 08:56</creation_ts>
<qa_contact>doe@mozilla.org</qa_contact>
<op_sys>Linux</op_sys>
<resolution>FIXED</resolution>
<short_desc>Need infrastructure for new print

dialog</short_desc>
<keywords>patch, review</keywords>
<dependson>106372</dependson>
<blocks>84947</blocks>
<long_desc>
<who>doe@mozilla.org</who>
<bug_when>2001-09-17 08:56:29</bug_when>
<thetext></thetext>
</long_desc>

Figure 2. Snippet from Bugzilla file

bug severity: This classification field for a bug report
(blocker, critical, major, minor, trivial, enhancement)

target milestone: Possible target version when changes
should be merged into the main trunk.

4. Tracing evolution across branches

For the evolutionary analysis of Software Product Lines
(but not limited to) it is desirable to trace back the introduc-
tion of new code, e.g., code of new features, in the main
trunk back to its origins which also can be somewhere in a
branch (see Figure 3).

Reference Architecture

merge?

merge?

Product 1

Product 2
bug fix

new feature

Figure 3. Features and products

Another motivation is given by the fact that modifica-
tions, e.g., bug fixes, can be applied first on a branch and
later merged into the main trunk. In this case modification
reports of the branch contain information which does not
slip into the modification report of the main trunk during a
merge.

In CVS merges are performed on a pure textual level and
can be performed automatically only if no conflicting sit-
uation during the merge operation occurs. A merge is per-
formed by first building the delta between two revisions fol-
lowed by a modification phase whereas the differences are
incorporated into the target file. A conflict situation arises
when simultaneous changes within a single file in a mu-
tual exclusive way are made to the same code section, e.g,
a source line has been edited in one version and the same
line has been deleted in a second version of the file. CVS
does not resolve such conflicts, instead the affected text sec-
tion is marked and the developer has to resolve the conflict
manually. Usually this can be done without too much effort.
When the situation is more difficult, the process of resolving
the conflict requires communication between the responsi-
ble persons. Solutions for improvements of the merge pro-
cess, such as the application of 3-way diff to build the delta,
are discussed in [5, 17, 19]. Unfortunately, CVS does not
provide mechanisms to record such merges.

To overcome this limitation, we developed an algorithm
which delivers criteria for the acceptance or rejection of the
hypothesis that source text found in a branch b also appears
in in the main trunk m. Input to this algorithm are the re-
vision tree data (revision numbers, revision date) and the
differences between revisions of a source file.

branch−end

branch−point

merge−point

fix b=96813 fix b=145224

1.641

merge?

diff branch−point − branch−end

diff branch−point − merge−point

main trunk

"bug fix" branch

1.638.4.1

1.638 1.639 1.640

1.638.4.41.638.4.2

1.638.4.3

Figure 4. Example for branches/merges

Branch/merge algorithm: The algorithm is based on
the observation that merges are performed either automati-
cally through CVS and lines are copied into the main trunk
or done by hand also by copying the source lines from the
branch into the main trunk.

In the description of the algorithm we will use the fol-
lowing naming convention: a branch-point denotes a point
in time and rbp the associated revision number where the
branch has been split of (see Figure 4); the last revision of
the branch, i.e., the end of a branch, checked in into the
repository is denoted by branch-end and rbe, respectively;
merge-point and rmp denote a possible candidate or the
actual point where modifications of the branch have been
merged into the main trunk and have been made public by

4

updating the repository; Sbe denotes the set of new lines
introduced to the branch form the branch point until the
branch-end; Smp denotes the set of new lines in the main
trunk. The outline of the algorithm is as follows:

1. Get the set of of source lines, i.e., Sbe, introduced be-
tween rbp and rbe from the repository using the cvs
diff command (or alternatively from the local files if
the releases are available);

2. Determine a possible merge-point (rmp) by retrieving
the last revision date of the branch-end (rbe) and find a
revision date in the main trunk which is later than that
of the branch, i.e., a merge-point candidate;

3. Get a second “diff” to obtain the differences between
rbp and rmp, i.e., Smp;

4. Select in both sets Sbe and Smp the lines which have
been added since rbp (removed and added lines are
marked by the cvs diff command using the char-
acters ’<’ and ’>’, respectively);

5. Accept the rmp if the applied heuristics function (see
below) exceeds the predefined threshold;

6. If no correlation can be found, a new merge-point
is chosen and the steps are repeated until a possible
merge point is found or the end of the revision tree is
encountered – in either case the algorithm terminates.

Heuristics: The goal of the heuristics function is to de-
fine a measure which allows us to put a higher confidence
on matching source lines which have complex structure.
We have defined the following line match ratio (lmr) and
complexity ratio (cmr) for assessment of merge-point can-
didates:

lmr =
lines(Sbp ∩ Smp)

lines(Smp)

cmr =
complexity(Sbp ∩ Smp)

complexity(Smp)

lines is a function returning the number of lines contained
in the set; complexity() evaluates the “entropy” of all lines
of a set (the “entropy” value for a line is determined by the
length of the residuum of the transformation function spec-
ified below, where a contiguous block, i.e., a cohesive se-
quence of source lines, is rated higher than the same number
of non consecutive matching lines).

Two thresholds have been empirically determined
by running a number of tests on complex revi-
sion trees (e.g., layout/html/style/src/
nsCSSFrameConstructor.cpp of the Mozilla
project). Based on these two thresholds we postulate a
minimum value of 0.5 for lmr and 0.3 for cmr. Since the
lines() function does not differentiate between matches
of simple lines and complex lines, we consider lmr less
trustworthy. Thus the threshold used for lmr is higher than
the threshold value for cmr.

Currently we use a string compare function to identify
equivalent code lines. To further improve accuracy this
function may be replaced by a more sophisticated algo-
rithm such as the approach for clone detection proposed by
Casazza [7].

Transformation: Source text of C/C++ programs is
transformed into a structural pattern to capture the essence
of a source line which is done in the following way: (1)
“background noise”, i.e., short (less than 3 characters) or
empty lines, are filtered and an empty string is returned; (2)
white spaces are removed; (3) every word is replaced by
a single character; (4) the special character ’;’ is removed.
Figure 5 depicts the transformation of two code lines.

Example: In the following, we demonstrate
the application of the algorithm on part of the re-
vision tree of the file layout/html/style/src/
nsCSSFrameConstructor.cpp. which is part of the
Mozilla source tree. The algorithm itself is implemented in
a script called mergepoint. Figure 6 depicts a snapshot of
the revision tree where the search of the merge-point for the
branch 1.638.4 shall take place. The branch-point revision
in our example is rbp = 1.638. The first merge-point can-

2001-09-28 1.637
2001-09-29 1.638
2001-10-08 | +---1.638.4.1
2001-10-09 1.639 |
2001-10-12 | 1.638.4.2
2001-10-19 1.640 |
2001-10-20 | 1.638.4.3
2001-10-20 | 1.638.4.4
2001-10-21 1.641
....
2001-11-07 1.654

Figure 6. Snapshot of revision tree

didate (rmp = 1.641) did not deliver any match out of the
181 possible lines and thus did not meet the threshold cri-
teria. By taking a new date - this is done by adding two
weeks to the original date - a new merge-point candidate
(rmp = 1.654) is selected and the values for lmr and cmr
are evaluated again. In our example a full match is detected,
i.e, lmr = 1.0 and cmr = 1.0 whereas the line count is
181 and the maximum complexity is 2365, thus the confi-
dence is high that the modifications of the branch have been
merged into the main trunk.

Current limitations of our approach: (1) Only inserted
text is considered in the detection process. The discovery of
code removal is not supported so far; (2) We assume that
the merge of a branch into the main trunk happens after
the branch end. Merging and afterwards undoing changes
or making additional modifications to the branch which are
committed to the repository, has a negative impact on the

5

// Notify the parent frame}
rv = ((nsTreeRowGroupFrame*)aParentFrame)->TreeAppendFrames(newFrame);

//X
X=((X*)X)->X(X)

Figure 5. Transformation

detection process; (3) Changes in the source code layout,
i.e., different position of line breaks in statements, have to
be handled by the compare function. (4) Binary files can-
not be compared with this method but are not well sup-
ported by CVS anyway; (5) Building an Abstract Syntax
Tree (AST) and comparing the trees would be more exact
but is more costly since several revisions of the source files
must be checked out to build the tree (the output of cvs
diff function is not suited for building an AST); (6) Sub-
branches, i.e., branches of branches, are currently not in-
spected.

5. Populating a release history database

Based on the data formats and structures used by CVS
we designed the Release History Database (RHDB) that
stores the extracted version and bug report data. Figure 7
depicts the database layout showing the primary entities and
their relationships.

Every artefact (i.e. file) of the CVS repository has a cor-
responding entry in the cvsitem table storing the attributes
extracted from the log file as described in Section 3.1. To
resolve the n:n relationship between symbolic names (i.e.
tags) and revisions of files we introduced the two entities
cvsalias and cvsitemalias. Whereas cvsalias holds the
symbolic name information, cvsitemalias contains a record
for each entry extracted from the symbolic names section
found in log files. Data about modification reports is stored
in the cvsitemlog table. It contains an entry for every mod-
ification entry found in the log file. Corresponding author
information is handled by cvsauthor.

Bug reports are directly imported from the bug tracking
system into the bugreport table. The current attributes of
this entity are derived from the Bugzilla system and may be
extended to address further bug tracking systems. Partic-
ularly, the link of bug reports with modification reports is
important for software evolution analysis. We realized this
link by the cvsitemlogbugreport table as n:n relation. The
table contains the bug report numbers found in the modifica-
tion reports together with the respective modification report
ID. Details about this import process of bug reports will be
described in Section 6.

Remaining entities that are shaded in Figure 7 are not di-

rectly involved in the import process, but are used in later
evolution analysis and to store the results. The entity proj-
struct reflects the hierarchical structure of the source tree.
Every node hosts subtree information such as, for example,
number of files or lines added/deleted in this subtree. This
data is used, for instance, in the process of creating mod-
ule history information for the selection of modules with a
certain size. The tables cvsitemfeature, feature, and fea-
tureset are used in the feature evolution analysis processes
which is part of our on-going and future work. The table
history contains results which are valid for the whole evo-
lution database such as time scale information or state in-
formation about executed queries.

To improve the communication with our RHDB and also
to increase efficiency we developed a query framework im-
plemented in Java. Particularly, we provide various Java
classes that handle different queries according to our soft-
ware evolution analysis process. The results of these queries
are stored as Java objects in the tables evalresult and his-
tory, respectively, and can be easily accessed via the frame-
work. In this way new data fields can be added without
modifying database tables by simply specifying proper at-
tributes in Java classes. On the contrary such a uniform
access implies the use of the framework API to gain data
access, hence reduces direct user-specific data manipulation
capabilities via SQL queries.

6. Import process

For the import of CVS and Bugzilla data into our RHDB
we use a straight forward process that basically is driven
by CVS and Bugzilla systems but also may be adapted to
other such systems. For the implementation we combined a
shell script that provides the glue code, several Perl scripts
for database interaction, and external commands for data
retrieval. The data import process as depicted in Figure 8
consists of the following six steps:

1. The initial source code tree is created by either down-
loading the Mozilla source code packages or by check-
ing out the source code directly from the Mozilla CVS
repository.

2. Retrieval of log information: A shell script traverses
through the source tree structure to retrieve the modi-

6

cvsitem

id
rcsfile
workfile
head
locks
access
keysubst
revtot
revsel
revision

evalresult

evobject
evclass
evtype
evkey
cvsitem
id

cvsitemlog

id
cvsitem
revision
date
author
state
ladd
ldel
branches
description

cvsitemlogbugreport

cvsitemlog
bugreport

id
name
date

cvsalias

usagecount

cvsitemalias

cvsalias
revision

cvsitem

cvsitemfeature

cvsitemid
featureid

feature

id
fname
fdata

featureset

featureid
subfeatureid

history

programkey
pgclass
pgstate

cvsitemprojectstruct

cvsitemid
projectstructid

projstruct

nodename
parentid
id

1

*

nodestate

bugreportdesc

id
bugreportid
who
bug_when
thetext

bugreport

id
bugfile_loc
bug_severity
short_desc
op_sys
priority
product
version
component
resolution
target_milestone
qa_contact
keywords

cvsauthor

id
author

1*

1

1 1

1

*

1*

1 ** 11 *
* *

1 *

*1

1

1 * * 1

Figure 7. Release history database

fication reports from the CVS repository on directory
bases (on UNIX by issuing the cvs log -l com-
mand). Modification reports about “unused” files that
have an entry in the CVS repository but are not part
of the currently checked out version are also captured
(i.e., deleted files or files belonging to different prod-
ucts).

3. Every item of the source tree is described by the cor-
responding log information. The log information (re-
vision number, modification date, modification report
text, etc.) is parsed by a Perl script and stored in
the evolution database, wheres the following entities
of the database are populated: cvsitem, cvsitemlog,
cvsauthor, cvsitemalias, cvsalias.

4. Bug report identifiers are extracted from the modifi-
cation reports contained in the CVS log files. Since
these references are not formally specified, Perl regular
expression such as bugi?d?:?=?\s*#?\s*(\d\
d\d+)(.*) or b=(\d\d\d\d+)(.*) are used to
retrieve this information. IDs found in this step are
stored in the table cvsitemlogbugreport so they can be
used as input by the next step. Since this method does
not work 100% exact, some kind of key word match-
ing between modification report text and bug report de-
scription or a manual inspection would be required.

5. The bug report IDs are used to retrieve bug report de-
scriptions from the Bugzilla database via HTTP. The
external program wget is used to retrieve this data.
All downloaded bug reports are stored on disk.

6. The XML formatted reports are parsed and the ex-
tracted bug report data is imported into the RHDB.

Import log file information

Get log file information

Retrieve Source Tree

Get bugreports

Import bugreports

RHDB

Release
History

Database

Get bugreport IDs

CVS item

bugreport

bugid

bugid

text

Figure 8. Import process

The result of our data import process is a populated RHDB
that contains CVS version control data combined with
Bugzilla bug report data. In terms of software evolution
analysis this repository facilitates the execution of simple
and complex analysis tasks as we will describe in the next
section.

7. Evaluation

In this section we evaluate our approach according to im-
port, timescale, historical, and coupling aspects of Mozilla.

7

security/manager/pki/src/nsPKIModule.cpp
. 1 3 1 1 1 1 . 1 2 . . # of modifications
. . . . 1 1 . 7 2 . . # of bug reports

security/manager/pki/src/nsNSSDialogs.cpp
. 2 11 9 5 . 2 1 11 1 1 3 1 . . 1 3 3 . 1 # of modifications
. 1 1 2 4 . 2 1 9 1 2 3 1 . . 1 2 3 . 1 # of bug reports

Figure 9. File change history

The results are based on data available per December 14th,
2002.

At that time 36.662 artefacts and 433.833 modification
reports were imported to the cvsitem and cvsitemlog tables,
respectively. From these artefacts, 23.540 were identified
to have a bug report ID in one of their associated modifi-
cation reports. In total 158.491 references to bug reports
were found which resulted in a final number of 28.456 bug
reports imported to the RHDB. Thus, out of the total num-
ber of 180.000 bug reports stored in Bugzilla, we filtered a
solid sample of roughly a sixth of the full set. This sam-
ple exhibits an important characteristic for evolution analy-
sis: they are referenced by modification reports and can be
linked to certain changes in particular files or logically cou-
pled files indicating what was changed, what the result of
the change was, and when the change happened.

Timescale: For the analysis of evolutionary aspects, e.g.,
system growth or change rate, it is necessary to create a time
scale based on an appropriate granularity [15]. In our semi-
automatic approach we used the symbolic names retrieved
from the CVS log files, e.g., MOZILLA_1_0_RELEASE,
as indicators. During the import process each occurrence
of a symbolic name is counted and the total number to-
gether with the most actual date of a modification re-
port are stored in the RHDB (see cvsalias). The count-
ing process considers symbolic names associated with the
main trunk only, since they indicate the affiliation to the
core architecture. These values are then used as indica-
tors for possible release dates. A Java program selects en-
tries by using a regular expression with groups to priorize
the results, e.g., (MOZILLA.*RELEASE)*(.*BASE)
*(.*RELEASE)*(.*)* , whereas only candidates with
a high number of “votes” are selected. Since the Mozilla
project team has published new releases on a nearly
monthly interval, we also used a monthly interval for our
further considerations.

Release history: Based on the time scale we can com-
pute the release history for all artefacts in the RHDB. An
artefact is marked when it first appears and the mark is up-
dated every time the artefact is modified in one of the time
slots. For example, the file nsPKIModule.cpp from Fig-
ure 9 has been introduced in release 33, modified in releases

34 trough 37, then again in 45 and 47, and finally in 53.
This leads to the following release sequence number: <33,
34,35,36,37,45,47,53>. These sequence numbers
are recorded and used in the detection of logical coupling
[9]. Another aspect of the release history are the number
of modifications and problem reports associated with ev-
ery artefact and time slot. The two example files, nsPKI-
Module.cpp (109 lines) and nsNSSDialogs.cpp (747 lines),
in Figure 9 were introduced in release 33 (2001-02-10,
MOZILLA_0_8_2001020916_BASE) and remained in
the main trunk until the latest release (2002-12-02,
MOZILLA_1_2_1_RELEASE). Although the first file has
been modified less frequently and also has lesser problem
reports, the source− line/bugreport ratio is better for the
second file (9.9 compared to 21), which means that the code
of the first file is more error-prone. To retrieve more detailed
bug report related information a simple SQL statement can
be used, e.g., to list all bug reports for nsNSSDialogs.cpp:

SELECT
b.bugreport,r.bug_severity,r.short_desc

FROM
cvsitem i, cvsitemlog l,
cvsitemlogbugreport b, bugreport r

WHERE i.id=l.cvsitem
AND l.id=b.cvsitemlog
AND b.bugreport=r.id
AND i.rcsfile REGEXP ’nsNSSDialogs.cpp’;

Besides a number of “normal” rated bug fixes (not all
are shown in Figure 10), one blocking problem (blocks
development and / or testing work), two critical problems
(crashes, loss of data, severe memory leak), one major prob-
lem (loss of function), and two requests for enhancement
were assigned to this file.

System history: From the release history of every arte-
fact the release history of the over-all system can be derived.
Figure 11 depicts 56 releases of Mozilla as system history
view, which shows an approximately linear growing of the
system. The rightmost bar is used for scaling and represents
100% or 34.847 artefacts. Label “0” has been assigned to
the leftmost release. Due to space limitations only releases
with odd numbers are labeled, and dashed lines indicate the
boundary between an odd and an even labeled release. The
coloring in Figure 11 indicates that about 50% of the files

8

+------+--------+---+
| bugid|severity|short_desc |
+------+--------+---+
169943	blocker	Form submit buttons not working [embedding apps]
97044	critical	PSM is passing null string to preferences [@ nsPrefBranch::QueryObserver]
92475	critical	Need error msg for expired CRLs.
70595	major	Need to make nsIPrompt accessible to nsIChannelSecurityInfo object
44042	enhance	Wording on security-alert dialog is confusing
31896	enhance	lock icon distinguish between weak and strong encryption
169932	normal	Replace wstring with AString in IDL
......

Figure 10. Problem report history

25%

0%

50%

75%

100%

Time

Size

Figure 11. System history of Mozilla

have been modified within the last quarter of project dura-
tion, even though only about 25% were introduced in this
last period. In [11] this approach has been applied on sub-
system level to compare growing, change rate and stability.
Applied on system level, it allows to compare the evolution
of different systems on a very high level, e.g., to compare
code maturity.

Coupling: Another aspect of a large software system is
that bug reports may not be seen in isolation and thought
of a problem concerning a single file. Moreover, files refer-
enced by bug reports are logically coupled with each other
either by interfaces they use, a common code base they were
copied from, or features they implement. Since modifica-
tions to fix one bug reported for a specific feature often re-
quire small changes in several files, an artefact in the RHDB
can be considered to be coupled with other artefacts through
bug reports. The degree of coupling depends on the number
of references to bug reports an artefact of the RHDB shares
with other artefacts.

For instance, we selected all 33 bug reports of nsNSSDi-
alogs.cpp and evaluated the number of artefacts referenced

by these reports. We found 456 different artefacts which
were affected by the selected bug reports. The topmost ref-
erenced files were nsNSSCertificate.cpp with 16 references,
nsNSSComponent.cpp with 13 references, and nsINSSDi-
alogs.idl with 11 references. Not surprising, they all belong
to the same sub-module security/manager/pki. The first file
from a different sub-module was nsPKCS12Blob.cpp from
security/manager/pki with 7 references. We also found a
single problem report (see [3] for report 88413) with refer-
ences to 373 different files. A change in an interface of a
base class required the modification of this large number of
files!

These relations between bugs can be used to build groups
of reports which refer to similar problems. In [8] we ana-
lyzed the effect of grouping concerning different features.
The results are depicted in graphical form to support the an-
alyst in uncovering hidden dependencies between different
features.

8. Conclusions and Future Work

CVS does not provide enough mechanisms for tracking
the evolution of large software systems and their particular
products (reflected in branches of the CVS tree). As shown
in this paper, this information can be reconstructed but a
more formal mechanism supported by the version control
system would be desirable. Another shortcoming of CVS is
the lack of functionality to support developers with a mech-
anisms for linking detailed modification reports and classi-
fication of changes according to Swanson [21] or Kemerer
[15]. Links to bug reports have to be added manually as free
text and therefore are hard to track since authors naturally
use different notions for bug report IDs. We have overcome
this problem by parsing the informal information contained
in modification reports and linking them with data from the
bug tracking system.

Joining the modification report information with the bug
report database is useful in several ways: detection of log-

9

ically coupled files, i.e., files which are coupled by the ap-
pearance of the same bug ID in several files distributed over
the source tree; identification of error prone classes with
affected components or products; or estimation of code ma-
turity with respect to the probability of remaining bugs and
discovery rate of bugs in earlier releases of the system.

Data gathered from the version control system and joined
with other sources will be used in our Software Evolution
Analysis framework which is currently under development.
This process will be applied on file level granularity which
allows the description of evolutionary changes in terms of
product line evolution and on the architectural level as well.
Product line evolution can be then described in terms of
feature evolution. By bridging the gap to our architecture
recovery framework [14] we also will be able to reason
about architecture evolution. The resulting framework en-
ables us to answer questions such as: Which architectural
design patterns / styles are used by one / some / all features
(and vice versa)? What evolutionary data are available for
files implementing a specific architectural style, e.g., Com-
ponent Object Model? Are elements which are part of a
specific architecture more error-prone than others?

A reduction of this large amount of collected histori-
cal data and visualization of this condensate is crucial for
understanding of the evolutionary processes in large soft-
ware projects. Using state of the art 3D real-time animation
[11] or virtual reality systems will improve expressiveness
of data obtained from the software evolution analysis pro-
cess and will give better insight into changes on system or
module level.

9. Acknowledgments

We thank the Mozilla developers for providing all their
data for this case study to analyze the evolution of an Open
Source project. Further, we thank the anonymous reviewers
for their valuable comments.

References

[1] Microsoft Visual SourceSafe. http://www.
microsoft.com/ssafe/.

[2] Rational ClearCase. http://www.rational.com/
products/clearcase/.

[3] The Mozilla Bug Database. http://bugzilla.
mozilla.org/.

[4] V. Ambriola, L. Bendix, and P. Ciancarini. The evolution
of configuration management and version control. Software
Engineering Journal, 5:303–310, November 1990.

[5] U. Asklund. Identifying conflicts during structural merge. In
Proceedings of NWPER’94, Nordic Workshop on Program-
ming Environment Research, Lund, Sweden (June), 1994.

[6] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your ver-
sion control system could talk ... In ICSE ’97 Workshop on

Process Modelling and Empirical Studies of Software Engi-
neering, May 1997.

[7] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. D.
Penta. Identifying clones in the Linux kernel. In Proceed-
ings of First IEEE International Workshop on Source Code
Analysis and Manipulation, pages 90–97. IEEE, 2001.

[8] M. Fischer, M. Pinzger, and H. Gall. Analyzing and Relat-
ing Bug Report Data for Feature Tracking. In 10th Working
Conference on Reverse Engineering (WCRE), pages 90–99,
November 2003.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings
International Conference on Software Maintenance, pages
190–198. IEEE Computer Society Press, March 1998.

[10] H. Gall, M. Jazayeri, R. R. Klösch, and G. Trausmuth. Soft-
ware Evolution Observations Based on Product Release His-
tory. In Proceedings of the International Conference on Soft-
ware Maintenance (ICSM’97), pages 160–166. IEEE Com-
puter Society Press, October 1997.

[11] H. Gall, M. Jazayeri, and C. Riva. Visualizing Software
Release Histories: The Use of Color and Third Dimension.
In Proceedings IEEE International Conference on Software
Maintenance, pages 99–108, August 1999.

[12] M. Godfrey and E. H. S. Lee. Secrets from the Monster: Ex-
tracting Mozilla’s Software Architecture. In Proceedings of
Second Symposium on Constructing Software Engineering
Tools (CoSET’00), June 2000.

[13] D. Grune, B. Berliner, J. Polk, J. Klingmon, and P. Ced-
erqvist. Version Management with CVS, 1992. http://
www.cvshome.org/docs/manual/ [5 April 2004].

[14] M. Jazayeri, A. Ran, and F. van der Linden. Software archi-
tecture for product families: principles and practice. Addi-
son Wesley, 2000.

[15] C. F. Kemerer and SandraSlaughter. An Empirical Approach
to Studying Software Evolution. IEEE Transactions on Soft-
ware Engineering, 25(4):493–509, July/August 1999.

[16] T. Kilpi. New challenges for version control and configura-
tion management: a framework and evaluation. In First Eu-
romicro Conference on Software Maintenance and Reengi-
neering, pages 33–34, March 1997.

[17] B. Magnusson, U. Asklund, and S. Minör. Fine-Grained Re-
vision Control for Collaborative Software Development. In
Proceedings of ACM SIGSOFT ’93: Symposium on Founda-
tions of Software Engineering, pages 21–30, Los Angeles,
California, 1993.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

[19] T. Olsson. A View of A Merge. In Proceedings of the Nordic
Workshop on Programming Environment Research, 1996.

[20] M. Svahnberg and J. Bosch. Evolution in Software Product
Lines. Software Maintenance, 11(6):391–422, November–
December 1999.

[21] E. B. Swanson. The dimensions of maintenance. In Pro-
ceedings of the 2nd International Conference on Software
Engineering (ICSE), pages 492–497. IEEE Computer Soci-
ety Press, October 1976.

10

[22] The Mozilla Organization. Bugzilla Bug Tracking System,
1998–2004. http://www.bugzilla.org [5 April
2004].

[23] The Mozilla Organization. Mozilla Open-Source Web
Browser, 1998–2004. http://www.mozilla.org [5
April 2004].

11

