
Reducing Build Time Through Precompilations for Evolving Large Software

Yijun Yu Homayoun Dayani-Fard John Mylopoulos Periklis Andritsos
University of Toronto IBM Canada University of Toronto University of Toronto

Abstract

Large-scale legacy programs take long time to compile,
thereby hampering productivity. This paper presents algo-
rithms that reduce compilation time by analyzing syntactic
dependencies in fine-grain program units, and by removing
redundancies as well as false dependencies. These algo-
rithms are combined with parallel compilation techniques
(compiler farms, compiler caches), to further reduce build
time. We demonstrate through experiments their effective-
ness in achieving significant speedup for both fresh and in-
cremental builds.

1 Introduction

Managing complexity of large-scale software develop-
ment is central to software engineering [30]. Software sys-
tems, under maintenance pressures for improved function-
ality, better quality and more services, are becoming more
complex by the Lehman’s second law of evolution [19].
Such pressures obscure the internal structure and quality of
the software, making it difficult to understand and maintain
it [5]. We studied an evolving large-scale C/C++ software
within IBM over several releases and documented its var-
ious growth factors. Figure 1 depicts the number of pro-
gram entities (broken down into functions, variables and
types), number of source files, average number of included
header files, and number of inter-dependencies among com-
ponents. The number of program files in the software sys-
tem has been growing steadily for the past four years, with
jumps near major new releases. Similarly, the number of ac-
tual dependencies have grown as well as the average num-
ber of header files included by program files.

Typical large-scale C/C++ programs consist of many
compilation and header units. A compilation unit (e.g. ‘.c’
file) will be compiled into an object file [18]. It is also
called a translation unit in the GCC community [12]. A
header unit (e.g. ‘.h’ file) will be included into a compila-
tion unit prior to compilation. At a small granularity, we
define a program unit (PU) as a declaration or definition
of a symbol. User-defined symbols must be defined once

0

20

40

60

80

100

120

140

160

T
h

o
u

sa
n

d
s

fresh release builds over 4 years

n
u

m
b

er
o

f
p

ro
g

ra
m

en
ti

ti
es

Functions Variables Types

0

5

10

15

20

25

30

35

40

H
u

n
d

re
d

s

fresh development builds over 4 years

n
u

m
b

er
o

f
p

ro
g

ra
m

fi
le

s

0

50

100

150

200

250

300

350

400

fresh development builds over 4 years

av
g

.n
u

m
b

er
o

f
h

ea
d

er
s

in
cl

u
d

ed
0

20
40
60
80

100
120
140
160
180
200
220

T
h

o
u

sa
n

d
s

fresh milestone builds over 4 years

n
u

m
b

er
o

f
in

te
r-

co
m

p
o

n
n

en
ts

d
ep

en
d

en
ci

es

Figure 1. The growth of an industrial software

globally in the program, but can be declared multiple times
in different compilation units. In C/C++, global variables
and functions are regarded as definition units; the remaining
symbols are declarations, such as static functions/variables,
function/variable prototypes, classes, structs, unions, type-
defs, enumerators, etc. Most declarations are grouped into
the headers and preprocessed into the compilation unit by
replacing the #include directives with the content of cor-
responding headers. A full expansion of the #include
directives results in a preprocessed image.

Introducing headers generally reduces redundancies (i.e.
duplicate declarations) to save space and reduce update in-
consistencies. However, headers can be included by mul-
tiple files and as such may contain declarations that are
falsely (i.e. not) needed by some compilation units that in-
clude them. Although the functionality of a system is not
affected, redundancies and false dependencies in the pre-
processed compilation units do affect the efficiency of the
development process: the longer the build process (e.g.,
compilation and linking) takes, the longer developers have
to wait in order to integrate their changes.

This paper presents a precompilation (i.e. source-to-
source transformation before compilation) approach to the

removal of redundancies inside compilation units and false
dependencies among the files. We show that removing dec-
laration redundancies within compilation units can speedup
the fresh builds (i.e., compiling everything from scratch),
while removing false dependencies can speedup the incre-
mental builds (i.e. compiling only the changes). Unlike file
level dependency checking, our approach analyzes the de-
pendencies among fine-grain program units inside headers
and compilation units. Furthermore, to reduce the overhead
of using the exact dependencies, we adopt an approach that
needs light-weight amount of information to be extracted.
The resulting precompilation technique is transparent to the
build process, incremental to the development and indepen-
dent of the choice of compiler. In addition to the algorithms
for identifying and removing redundancies and false depen-
dencies, the paper also presents an experimental evaluation.

The rest of the paper is organized as follows. Section 2
presents definitions and algorithms that serve as foundations
for our approach. Section 3 outlines experimental results
when applied to a public-domain software (VIM [21]) in
C as well as an industrial component in C++. Section 4
describes and compares related work in the compilation op-
timization area. Section 5 provides some concluding re-
marks.

2 Our approach

Our process consists of four steps: 1) the compilation
units are parsed by an adapted GCC 3.4.0 parser into se-
quences of program units; 2) a redundancy removal algo-
rithm is applied to remove unnecessary PUs by traversing
the abstract syntax tree (AST) once; 3) a partitioning algo-
rithm is performed on the lexically ordered necessary PUs
to regroup them into headers and compilation unit source
files, while preserving their dependency order; 4) finally, a
logical grouping of files is created by clustering of the gen-
erated compilation units to reduce the number of generated
headers. In the remainder of this section we present each
step of our approach in detail.

Extracting program units A unit u is lexically before
unit v, if u occurs before v in one of the preprocessed im-
ages. A program unit u depends on another program unit v
if u uses v and v occurs lexically before u.

The program unit extraction is an algorithm imple-
mented by adapting the GCC compiler: given a compilation
unit as a sequence of tokens (the lexicon stream) from the
lexical analyzer, the algorithm converts it into a sequence
of program units. The token strings are concatenated into
a character stream, which is recorded upon the identifica-
tion of a program unit and reset to empty for the next token.
This allows us to accurately locate program units by their
start/end lines and columns.

Based on the stream, the GCC parser constructs an ab-
stract syntax tree T. During the parsing, we are interested in
the tree nodes that may be identified as program units. The
-fdump-translation-unit option in GCC is not
sufficient for this purpose because external references are
not stored in the abstract syntax tree. Thus we adapted the
GCC type-checker that calls the build external ref
routine to keep track of the dependency of the program
unit on the externally referenced declaration unit. The
output of one compilation unit is a sequence of program
units P . Each program unit in P has an associated code
segment and at least one node in T . On the other hand,
each declaration node corresponds to at most one pro-
gram unit. The new option in our adapted GCC is called
-fdump-program-unit.

We illustrate the parsing process by an example compi-
lation unit, which is dissected into a sequence of 7 program
units. Each has a character stream until the next program
unit. An alias shown in the comment is associated with the
kind and the name of a program unit. E.g., “struct:A” indi-
cates a “struct” with a name “A”.

typedef int NUMBER; //PU@1 type:NUMBER
struct node; //PU@2 forward:node
typedef struct node { //PU@3 struct:node
float value; //
struct node* next; // <- PU@3,PU@2

} *list; // type:list
struct A { //PU@4 struct:A
union { //
NUMBER value; // <- PU@1

} u; // union:u
}; //
extern int //
printf(char *format,...); //PU@5 funcdcl:printf
enum { //PU@6 enum:<anonymous>

Satisfied, // enumerator:Satisfied
Denied, // enumerator:Denied

}; //
int main(argc, argv) //PU@7 funcdef:main
int argc; char **argv; //
{ //

list l, n; // <- PU@3
for (n = l; n; n=n->next) //
printf("%f", n->value); // <- PU@5

return (int) Satisfied; // <- PU@6
} //

Several aliases may refer to the same program unit be-
cause they do not separate from each other, e.g. the
struct:node and type:list are aliases to PU@4.
Aliases help the parser to link partial information, such as
the enumerator constant Satisfied, to the declaration of
the anonymous enum type.

Entities such as field names, parameter names and auto
variables are not considered program units because they are
not needed for parsing other program units. E.g., union:u
inside struct:A is not considered a program unit. In this
manner, much fewer entities need to be recorded compared
to the traditional fact extraction.

The dependencies are extracted for symbols that were
previously identified as a program unit, e.g. the PU “7”
depends on 3 previously defined PU’s {3, 5, 6}. The output
is thus a lexically ordered sequence of program units.

A compiler such as GCC 3.4.0 can have 36 phases from
parsing source code into generating hardware instructions.
We stop right after the first parsing phase using the option
-fsyntax-only to have a quicker precompilation, while
the other phases will be called in the compilation phase of
the precompiled code.

Removing redundancies Among all the program units
P , we denote the set of definitions C as program units that
will be stored in the object file, while the set of declarations
is defined as H = P \ C [18]. A program unit dependency
graph (PUDG) is a digraph G(P, D), where the vertexes in
P represent program units, and the edges in D ⊂ H × P
represent the dependencies among PUs. Given a lexical
order ≺, the set of program units in a compilation unit is
converted into a sequence P , where P [i] denotes the i-th
program unit in the sequence. Now a light-weight PUDG
(LPUDG) is defined as a digraph G≺ = (P,≺) implied by
the lexical ordering of the sequence ≺: P [i] ≺ P [j] ⇐⇒
i < j. As not all pairs of the program units in the sequence
have dependency between each other, D ⊂≺.

For each compilation unit, we keep a sequence of pro-
gram units (which implies LPUDG) rather than storing the
complete PUDG. We will show that having the seemingly
less accurate LPUDG is enough for the redundancy removal
and also enough for the header restructuring.

In the set of declarations H , only a subset N ⊂ H is
necessary for the correct compilation of C, while other dec-
larations R = H \ N can be removed. After dependency
extraction, the immediately dependent declarations for the
i-th program unit P [i] can be identified as N(i). Thus the
necessary declarations N are the union of all the declara-
tions that are transitively depended by C. This is done
through traversing the extracted PU sequence twice. Ini-
tially all the definition units are marked as necessary. Then
the first traversal iterates through the PU sequence back-
ward from the end to the beginning, marks all the PU’s that
are directly depended by a currently necessary unit as nec-
essary. After the traversal, all necessary declarations N and
defintions C are marked. The second traversal simply out-
puts the marked PU’s from the beginning to the end. Among
a parsed sequence of 7 program units in our example pro-
gram, H={1–6} are declarations, C = {7} is the only defi-
nition. Then based on the extracted dependencies, the back-
ward traversal marks {3, 5, 6} as necessary for 7, then skips
the dependency 1 → 4, and marks {2} as necessary for
3. At the end of the traversal, program units R = {1, 4}
will be removed because the definition in C = {7} does
not depend on them transitively. Unlike this example, the

density ((|N | + |C|)/|P |) of necessary elements in the real
applications tends to be much smaller. The reason is that
most system headers contain redundant declarations for dif-
ferent platforms. For example, a single line of declaration
for printf is necessary in the complete 843 lines of the
stdio.h if it were included, which still contains 406 LOC
after removing blank lines produced from the #ifdef macros
by the command cpp -E -P.

Removing false dependencies If the same program unit
will be included multiple times in different compilation
units, it is better to place it into a constructed header. We
have presented elsewhere [31] an algorithm to remove re-
dundancies and false code dependencies based on the heavy
weight PUDG extraction. In this paper, we adapted GCC for
the program units extraction and the efficient redundancy
removal. The new header restructuring algorithm only re-
quires the necessary program unit sequences obtained from
individual compilation units.

Given the containing relation between files (headers and
compilation units) and program units, we define a file de-
pendency graph (FDG) G = (F ,D) where F represents
the set of files. Each element of F contains a subset of
program units P in the PUDG. The vertices F are sepa-
rated into headers H and compilation units C, then the edges
D ⊂ H×F are the dependencies. The relation between the
PUDG G and the FDG G is determined by the N -to-1 par-
titioning mapping X : N × F , where each element of F is
a partitioned (disjoint) subset of N .

In a file dependency graph, a dependency between a file
with program units A ⊂ P and a file with program units
B ⊂ P is false if there is no PU dependency from any
PU a ∈ A to any PU b ∈ B. In header restructuring, we
only consider false dependencies caused by spurious PUs
in headers. A remedy to this problem is to split the header
so that only true dependencies occur.

We do not split the compilation units as individual def-
initions because the false dependencies in the compilation
units have no impact on the build time. Therefore we keep
the existing mapping between definitions and compilation
units and replace all definitions Ci in the i-th compilation
unit with one node i ∈ C. Thus the new PUDG have a vertex
set N∪C where N is the union of the necessary declarations
in all the compilation units C.

Each necessary declaration u ∈ N i of the i-th compila-
tion unit has a dependency (u, i) in the new LPUDG. After
the union of the global declarations in compilation units, we
also know a set of compilation units that depends on each
u ∈ N : D(u) = {i|u ∈ N i}. Starting from a naive parti-
tioning where each declaration in H is a separate partition
set, we merge the PUs that belong to the same sets of com-
pilation units and update the partitioning H. The resulting
partitioning describes the headers to be generated. Now we

present the pseudo code of our restructuring algorithm.

Algorithm 1. Header Restructuring
Input: The sequences of necessary declarations N i for each

compilation unit i ∈ C;
Output: A partition of N where N =

⋃
i∈C N i and generated

header and compilation units.
begin /* Initializing */ N = {}; ∀u ∈ N : D(u) = {};

for each i ∈ C : N = N ∪ N i; ∀u ∈ N i : D(u) = D(u) ∪ {i};
/* Partitioning */ let H = {{u}|u ∈ N};
repeat done = true;

for each A, B ∈ H and A �= B:
if

⋃
a∈A D(a) =

⋃
b∈B D(b) then:

H = H ∪ {A ∪ B} \ {A, B}; done = false;
for each k ∈ ⋃

a∈A D(a) : Hk = Hk ∪ {A ∪ B} \ {A, B};
until done;
for k = 1, |H| : PrintSortUnits(k, Hk, ComparePUs);
for i = 1, |C| : PrintSortUnits(i, N i, H, ComparePU);

end
ComparePUs(I: program unit sets A, B: A �= B; O: ≺,�, or =)
begin if D(A) ⊃ D(B) return ≺;

if D(A) ⊂ D(B) return �;
return =; end

ComparePU(I: program units a, b; O: ≺, = , or �)
begin if ∃k : Pk[i] = a ∧ Pk[j] = b return i − j;

return a − b; end

When generating code with a set of program units Hk,
a proper order is used to sort them into a sequence. In our
algorithm, the program units in a generated header are com-
pared using their lexical order if there is a compilation unit
in which both of them occur. The header units in a com-
pilation unit are compared using a partial order defined by
the set inclusion relationship between their transitive clo-
sures: A < B iff D(A) ⊂ D(B). Figure 2 illustrates
how the algorithm uses the sequences of necessary program
units to derive a set of headers and to generate the right se-
quence of header inclusions and definitions in the compila-
tion units. The lexical ordering of program units (LPUDG)
in (a) already implies the explicit dependencies among them
(PUDG): the dependencies on declarations are found by
clustering equivalent classes for each declaration in (b); the
partial ordering of the equivalent class partitions is defined
by the set inclusion relationship (c); and the header inclu-
sions are generated by sorting with the partition ordering
(d). The generated code may change the order of decla-
rations. For example in Figure 2a, a sequence of declara-
tions h1, h3, h2 is restructured into a sequence of header in-
clusions H0, H1, where H0, H1 are generated headers with
declarations h3 and h1, h2 respectively (Figure 2c). There-
fore the new compilation unit will have a new sequence of
headers h3, h1, h2 after inclusion expansion. By the prop-
erties below, we prove that the new sequence maintains the

h2

C1

C2

C3h4

h3

{C1, C2}

h1

{C1, C2}

{C3}

{C1, C2, C3}

{C1,C2,C3}

{C1, C2} {C3}

{ }

H0 = <h3>

H1=<h1,h2> H2=<h4>
H0
H1
C1

H0
H1
C2

H0
H2
C3

h1
h3
h2
C1

h3
h1
h2
C2

h3
h4
C3

(a) PU sequences parsed (LPUDG)
(b) Dependencies (PUDG)

(c) Partial ordering of partitions (d) PU sequences generated

Figure 2. The illustrative steps of the header
restructuring algorithm

dependencies.
The following properties hold for the FDG G after header

restructuring.

1. No false dependencies in headers. For any two decla-
ration program units u, v in the same generated header
file, if there is a dependency path from u to a compila-
tion unit w ∈ C, there is also a dependency path from
v to w.
Proof. There is a dependency path from u ∈ N to
w ∈ C i.f.f. w ∈ D(u). By the header partitioning pro-
cedure, if u, v are in the same generated header, then
D(u) = D(v). Thus w ∈ D(v), in other words, there
is also a dependency path from v to w. �

2. Largest granularity. If a set containing two nodes
from separate partitions is considered as a header, then
a false dependency is introduced. In other words, For
any two vertices u, v in two different generated head-
ers, there is a w ∈ C such that either there is a path
from u to w but no path from v to w, or there is a path
from v to w but no path from u to w.
Proof. Since u, v belong to different partitions,
D(u) �= D(v). Either D(u) ∩ D(v) = φ or D(u) ∩
D(v) �= φ. If the intersection is empty, any node w ∈
D(u) ∪ D(v) satisfies the conclusion; if the intersec-
tion is not empty, then any node w ∈ (D(u) \ D(v)) ∪
(D(v) \ D(u)) = (D(u) ∪ D(v)) \ (D(u) ∩ D(v))
satisfies the conclusion. �

3. Correct generation of code. The generated code re-
spects the dependencies in the PUDG G = (P, D).
In other words, if there is a dependency between any
two program units ai, bi ∈ P, (ai, bi) ∈ D in the same
compilation unit i ∈ C, then they are generated in the

order of ai, bi in the restructured code after preprocess-
ing.
Proof. (1) By calculation, ComparePUs(Hi, Hj) re-
turns i < j if D(Hi) ⊃ D(Hj) and returns i �= j
if D(Hi) �= D(Hj). (2) Also, we prove that a de-
pendency (a, b) ∈ D implies D(a) ⊇ D(b): Since
we have removed redundant program units, thus for
any compilation unit i where b occurs, there is a def-
inition program unit ci ∈ N i such that (b, ci) ∈ Di.
By the transitive property of dependency relations, if
(a, b) ∈ Di, then (a, ci) ∈ Di. In other words,
i ∈ D(a). Therefore D(a) ⊇ D(b). This establishes a
lattice (Figure 2(c)). (3) Now, consider a violation of
the PUDG dependency happens as (b, a) ∈ D while
a ≺ b. If both a, b are program units in the same file,
they must follow the order in the original sequence of
program units by ComparePU, thus b ≺ a; if b is in a
generated header and a is in the definition part of the
compilation unit, then b ≺ a by the output order of
the algorithm; if they are included from two different
generated headers: a ∈ Hi, b ∈ Hj and i �= j, since
a ≺ b then i < j. However, by (1) and (2), i ≥ j.
Therefore, in any case, the violating dependency does
not occur between two outputted program units in the
lexical order defined by the algorithm. �

Given these properties, it is not necessary to place the du-
plicate inclusion guards around any generated header since
they are included only once in each compilation unit. The
time complexity of the partitioning procedure is O(|N | ×
|C|) operations.

The restructured header inclusions after false depen-
dency removal help to accurately identify the compilation
units that need to recompile as a program unit is changed,
without wasting time on the compilation of falsely depen-
dent compilation units. Therefore, header restructuring can
reduce the time spent on incremental build at the expense of
increasing number of generated headers.

Directory clustering Having partitioned the program
units into headers, one can think of an additional opti-
mization to partition the headers and associated compilation
units together into a local directory.

Given the partitioned compilation units, the directory
restructuring moves the generated headers along with the
compilation units to the corresponding directories. 1) Con-
vert the FDG into a list of dependency vectors on the com-
pilation units, similar to the output from the Intel compiler
-M option or makedepend. 2) Pass them to a clustering
algorithm to group similar records together. As a clustering
algorithm in our approach, we use LIMBO [2], which min-
imizes the loss of information across the clusters it builds.
The outcome from the algorithm is n partitions of the com-
pilation units. We move the compilation units and the head-

ers into n separate directories corresponding to the parti-
tions. The samples provided to the clustering algorithm ac-
curately reveal the architecture and guarantee a good clus-
tering. 3) Next, factor out the common headers used by each
directory until there is no more redundancies. To save time,
we only compare the common headers among all directories
(in this case 1), the common headers between two directo-
ries (n(n−1)/2) and the remaining distinct headers in each
directory (n). Moreover, a factoring is performed on direc-
tories A and B only if (|A ∩ B|/|A ∪ B|) > ε where ε is
a threshold with a default value of 0.5. 4) Finally prepro-
cess the small headers in each directory into a large one and
change the corresponding inclusions in every compilation
unit.

This change to the FDG will introduce some false de-
pendencies back into the program. It is a trade-off between
componentizing the software system and introducing over-
head for the incremental build [6].

3 Experiments

We have applied our approach to two case studies: VIM
6.2 and a mature industrial product owned by IBM (Fig-
ure 1). Our experimental results, presented in the following
subsections, show that, in both cases, the improvement of
our approach was significant relative to other approaches
that do not use our optimizations.

3.1 Restructuring VIM

The public domain program VIM (Vi IMproved) 6.2 [21]
is studied. The source code includes 61 .c files, 24 .h
headers, 38 .xpm headers and 56 .pro headers1. The
complete code base has 220 KLOC.

Prepare the code bases and the compilation farm. Af-
ter running the configure command for Linux, -g -O2
option and 49 compilation units were automatically chosen
as original code base. These units depend on 355 unique
headers. Transitively, each file on average includes 290
headers. The precompilation (-fdump-program-unit)
and restructuring (-fdump-headers) were done auto-
matically using our adapted GCC 3.4.0, while the LIMBO
clustering algorithm was performed after the desired num-
ber of clusters was chosen as 3 according to the number
of components in Model-View-Controller (MVC) architec-
ture [16]2. Apart from the original code base, we obtained
three additional code bases, namely the precompiled, re-
structured and componentized ones.

1Additional headers will be introduced from the inclusion of system
headers

2The resulting clusters do follow the MVC architecture for VIM.

Table 1. Header statistics.
Original Precompiled Restructured Componentized

Header 527,271 0 261,376 125,440
Compilation units 5,095,601 5,366,778 4,557,615 3,983,735

Total bytes 5,622,872 5,366,778 4,818,991 4,109,175
No. of unique headers 355 0 925 5

No. of header inclusions 14,276 0 5,778 138

In Table 1, the bytes needed for storing the code base and
the number of inclusion directives are compared.

The experiments on VIM were carried out on a network
of Linux workstations. The host machine for the compila-
tions is a 2.20 GHz Intel Pentium 4 workstation, with 512
KB cache. The OS is RedHat Linux 7.3, with kernel ver-
sion 2.4.20-30.7 compiled by GCC 2.96. We also used the
servers available in the local area network of our campus
lab. The compilation farm can use up to 8 processors: 2 x
2.8GHz, 4 x 2.4GHz, 1 x 2.2GHz (the local workstation)
and 1 x 1.6GHz. All machines use the same operating sys-
tem, although distcc allows for cross-compilation. The
times are measured as the average of 10 separate runs of the
same settings.

Improvement of fresh builds The average size of prepro-
cessed files was reduced from 708.9 KB to 104.71 KB. The
overall build size is reduced from 33.9 MB to 5.01 MB. The
size saving comparisons of individual compilation units are
shown in Figure 3a. The data items are horizontally sorted
by the original preprocessed file size. The similar shapes
of the two curves indicate that the reduction happens al-
most uniformly to every compilation unit. The time savings
and their comparisons are shown in Figure 3b. The compi-
lation time is almost uniformly reduced for each compila-
tion unit, since almost every unit in VIM includes vim.h.
The net speedup by precompilation is 251% (2.51x). The
precompilation overhead is needed only for the first fresh
build. Taking into account precompilation overhead for the
first build, the time is still 12.6% faster than the original
fresh build. If the precompiled code is compiled N times,
then the overhead can be divided by N . The restructured
and componentized code has less time reduction than fresh
build.

We also compared the compilation time for the complete
program when different compiler options were used. To
compare with parallel compilation, we chose distcc, a
distributed compiler specially designed for C/C++ compi-
lation. Other parallel compilers are general purpose and
we do not intend to compare with the C/C++ compilation.
To compare with compilation cache ccache, we used the
$HOME/.ccache as a shared directory for the cached
files. The first run is after the cleanup of the cache using
ccache -C, the second run with ccache is just after the

first one to utilize the cache. The third and fourth runs are
associated with different parallel make options -j5 and
-j20 respectively. We also compared two different C/C++
compilers GCC 2.96 (gcc) and Intel C/C++ compiler 8.0
(icc) on the Linux system3. The time of the fresh build us-
ing different make options is shown in Figure 4.

When there are available processors, in our case 8, the
parallel compilation applying distcc leads to a speedup
of 3x (3 times), far below 8 because of the network traf-
fic in the environment. When the compiler cache or pre-
processed header technique is applied for the first time, the
compilation degrades by warming up the cache; when they
are applied later, their net speedup over parallel build was
in the range of 60%. For example, the combined speedup
becomes 5x after applying the caching techniques on top of
distcc;

Our precompilation further reduces compilation time
by 1.5x to 8x further than over techniques. The high-
est overall speedup 39.59x is reached when all the above
techniques are combined for GCC compilation, while the
highest net speedup using precompilation over other tech-
niques is 8.41x. The net speedup is higher on a heavy-
loaded compiler farm for parallel build than that for sequen-
tial build because the code size reduction also reduces the
network bandwidth demands by sending/receiving prepro-
cessed images to/from remote compilers. In summary, our
redundancy removal precompilation is orthogonal to paral-
lel compilation, compilation cache and precompiled head-
ers techniques.

Improvement of incremental builds In this experiment,
we estimate whether incremental builds can be improved.
The change data of VIM at each incremental build is not
available4, therefore a probability analysis is used by as-
suming that a code base per incremental build has changed
∆L lines of code and the probability of change for each line
is uniform ∆L/L where L is the total lines of code (LOC).

Consider a file dependency graph (FDG), and measure
the line of code for each file as LHi for headers Hi or
LCi for compilation units Ci. The probability of chang-

3Due to the platform chosen, we did not test the Microsoft Visual
C/C++ compiler and the HP C/C++ compiler cited in the related work

4The publicly committed CVS log does not match the real development
changes since not all changes were committed to the repository.

Size of preprocessed compilation units in LOC (VIM 6.2)

0

5000

10000

15000

20000

25000

30000

ev
al

ex
_d

oc
m

d

sy
nt

ax

op
tio

n

no
rm

aled
it

sc
re

en

m
isc

1
op

s
file

io

ex
_c

m
ds

re
ge

xp

os
_u

nix

ex
_c

m
ds

2

wind
ow
bu

ffe
r

ex
_g

et
ln

se
ar

ch

m
isc

2

gu
i_g

tk_
x1

1

m
em

lin
e

ge
tch

ar

gu
i_g

tk

ne
tb

ea
ns
te

rmgu
i
fo

ldta
g

m
ov

e

m
es

sa
ge ui

qu
ick

fix
m

aindif
f

m
en

u

ex
_e

va
l

m
ar

k

if_
xc

m
ds

rv

m
by

te

gu
i_g

tk_
f

ch
ar

se
t

un
do

m
em

file

gu
i_b

ev
al

dig
ra

ph

ve
rs

ionpt
y

pa
th

de
f

if_
cs

co
pe

compilation units

LO
C original

precompiled

Compilation time for individual compilation units

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ev
al

ex
_d

oc
m

d

sy
nt

ax

op
tio

n

no
rm

aled
it

sc
re

en

m
isc

1
op

s
file

io

ex
_c

m
ds

re
ge

xp

os
_u

nix

ex
_c

m
ds

2

wind
ow
bu

ffe
r

ex
_g

et
ln

se
ar

ch

m
isc

2

gu
i_g

tk_
x1

1

m
em

lin
e

ge
tch

ar

gu
i_g

tk

ne
tb

ea
ns
te

rmgu
i
fo

ldta
g

m
ov

e

m
es

sa
ge ui

qu
ick

fix
m

aindif
f

m
en

u

ex
_e

va
l

m
ar

k

if_
xc

m
ds

rv

m
by

te

gu
i_g

tk_
f

ch
ar

se
t

un
do

m
em

file

gu
i_b

ev
al

dig
ra

ph

ve
rs

ionpt
y

pa
th

de
f

if_
cs

co
pe

compilation unit

se
co

nd
s

original

precompiled

precomp. +overhead

restructured

componentized

Estimated incremental recompilation time

0

0.5

1

1.5

2

2.5

ev
al

ex
_d

oc
m

d

sy
nt

ax

op
tio

n

no
rm

al
ed

it

sc
re

en

m
isc

1
op

s
file

io

ex
_c

m
ds

re
ge

xp

os
_u

nix

ex
_c

m
ds

2

wind
ow
bu

ffe
r

ex
_g

et
ln

se
ar

ch

m
isc

2

gu
i_g

tk_
x1

1

m
em

lin
e

ge
tch

ar

gu
i_g

tk

ne
tb

ea
ns
te

rm gu
i
fo

ld ta
g
m

ov
e

m
es

sa
ge ui

qu
ick

fix
m

ain dif
f

m
en

u

ex
_e

va
l

m
ar

k

if_
xc

m
ds

rv

m
by

te

gu
i_g

tk_
f

ch
ar

se
t
un

do

m
em

file

gu
i_b

ev
al

dig
ra

ph

ve
rs

ion pt
y

pa
th

de
f

if_
cs

co
pe

compilation units

S
ec

on
d

original
precompiled
restructured
componentized

Figure 3. (a) Size, (b) Fresh build time, (c) Incremental build time for VIM code bases

Compilation Time

0

10

20

30

40

50

60

70

80

m
ak

e
CC=gc

c

m
ak

e
CC=gc

c (2
nd

)

m
ak

e
CC=gc

c -j5

m
ak

e
CC=gc

c -j2
0

m
ak

e
CC="d

ist
cc

gc
c"

m
ak

e
CC="d

ist
cc

gc
c"

(2
nd

)

m
ak

e
CC="d

ist
cc

gc
c"

-j5

m
ak

e
CC="d

ist
cc

gc
c"

-j2
0

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c"

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c"
(2

nd
)

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c"
-j5

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c"
-j2

0

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c -g
ch

"

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c -g
ch

" (2
nd

)

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c -g
ch

" -j5

m
ak

e
CC="c

ca
ch

e
dis

tcc
gc

c -g
ch

" -j2
0

m
ak

e
CC="ic

c"

m
ak

e
CC="ic

c"
(2

nd
)

m
ak

e
CC="ic

c"
-j5

m
ak

e
CC="ic

c"
-j2

0

m
ak

e
CC="d

ist
cc

icc
"

m
ak

e
CC="d

ist
cc

icc
" (2

nd
)

m
ak

e
CC="d

ist
cc

icc
" -j5

m
ak

e
CC="d

ist
cc

icc
" -j2

0

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

"

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

" (2
nd

)

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

" -j5

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

" -j2
0

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

-p
ch

"

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

-p
ch

" (2
nd

)

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

-p
ch

" -j5

m
ak

e
CC="c

ca
ch

e
dis

tcc
icc

-p
ch

" -j2
0

S
ec

on
ds

original
precompiled
restructured
componentized

GNU C/C++ Intel C/C++

Figure 4. Fresh build time of the original, precompiled, restructured and componentized VIM.

ing a header Hi or a compilation unit Ci is LHi∆L/L or
LCi∆L/L respectively. For each changed header Hi, one
can expect all the dependent compilation units D(i) need a
recompilation, whereas for each changed compilation unit,
only itself will be recompiled. In the original code base, a
compilation unit Ci needs a recompilation if either its im-
plementation is changed, or any of its dependent headers is
changed. If we measure the time for its recompilation as ti,
then the overall incremental build time is

∆t =
∑

i pitiwhere
pi = [L(Ci) +

∑
j|i∈D(Hj) L(Hj)]∆L/L

(1)

The precompiled code base uses the same FDG as the orig-
inal, but Equation (1) is adjusted to Equation (2) since the
directly changed compilation unit needs an overhead t′i of
redo the precompilation, while indirectly changed compila-
tion unit can recompile quicker with the precompiled code
to amortize the overhead.

∆t =
∑

i[p
c
i (ti + t′i) + (1 − pc

i)p
h
i ti] where

pc
i = L(Ci)∆L/L

ph
i =

∑
j|i∈D(Hj) L(Hj)∆L/L

(2)

For the restructured and componentized code base, equa-
tion (1) is used, since the restructuring and clustering needs
to be done only once before the incremental builds. Here, a
smaller size parameter L and a reduced FDG were used.

Having the LOC of source files (in Figure 3a) and the
timing of the compilation units (in Figure 3b), the incremen-
tal build analyses of the original, precompiled, restructured
and componentized code bases are shown in Figure 3c: for

each compilation unit, the estimated recompilation time per
incremental build is calculated using Equation (1) for the
original, restructured and componentized program or us-
ing Equation (2) for the precompiled program. In total, for
the original, precompiled, restructured and componentized
code base, an incremental build when changing one line of
code takes respectively 22.73, 10.06, 1.76 and 2.46 seconds
of recompilation (see Figure 3c), whereas their fresh build
including linking takes 97.89, 39.04, 41.1 and 40.91 sec-
onds respectively.

Testing We verified that both the header restructured and
componentized VIM programs have the same functionali-
ties as the original program using the 51 test cases accom-
panying the VIM source code under testdir directory.
Among them, the original VIM succeeded in 49 test cases
except for a test case for “gf” (case 17) and a test case “in-
sert expansion” (case 32). According to documentation in
VIM, they are designed for testing VIM on the WIN32 plat-
form. It is worth noting that the restructured and the compo-
nentized VIM also succeeded in the 49 test cases and failed
in the same 2 test cases.

3.2 Restructuring an industrial program

The overall gain in the build time, though significant,
may not impact productivity significantly. For instance, in
the VIM case study, the amount of activity and the absolute
value of the build time is not large enough to justify the re-
structuring effort. To conduct a more realistic evaluation of

our proposal, we applied it to shrink-wrap software prod-
uct 5 with 112 components (organized as directory of files)
and over 7 million lines of C++ code (Figure 1).

Over the years, the header dependencies in the code-
base have decayed to the extent that each program file in
our component, on average, includes 543 headers (directly
or indirectly). The average size of each compilation unit
is around 37 KB, expanding 53x to around 1.96 MB after
inclusions. Though the component under study only has
172KLOC in its compilation units, or 2.8% of the system,
the distinctly included headers have 20MB, almost 34.7%
of all the distinct headers in the system. The average build
time from scratch – including the preprocessing – for this
component is around 19 minutes. This number reduces to
around 14 minutes if the files are preprocessed. Applying
precompilation alone, the preprocessed size reduction was
182.1MB, or 50.42%. The build time was 4.35 minutes,
saving 9.57 minutes over preprocessed program.

4 Related work

A Makefile declares a set of dependency rules be-
tween targets [10]. Only the targets that transitively depends
on a more recent target will be executed. The make tar-
gets optimization finds truly dependent targets and removes
unnecessary ones in the transitive closure of the end tar-
get [11, 28]. Unless the code to compile is generated dur-
ing the build, most compilations can be fully parallelized
across different compilation units. Thus if the develop-
ment machine has multiple processors, a ‘-jN ’ option for
make can fork N processes to do the compilation tasks at
the same time6. Using a network of workstations (NOW),
pmake [7], pvmmake [8], mpimake [9], dmake [28],
lsmake [24] and distcc [25] all aim at dispatching par-
allel compilation jobs to a set of workstations. In particular,
distcc is a parallel C/C++ compilation tool that utilize
the available workstations in a compilation farm.

Usually parallel compilation tool should work along with
a caching mechanism for a compilation. It takes much more
time for a compiler to preprocess an input file and expand
them into a stream of text for parsing, than to load the pre-
processed file directly. Thus the preprocessed file can be
stored in a cache to speedup the preprocessing. Hashing the
cached entries can help locate the preprocessed files stored
in the cache even faster. ccache [29] implements the com-
piler cache by placing the preprocessed files into a directory
where each of them are hashed and shared, similar tech-
nique [15, 23] does caching within a server compiler.

The precompiled header (PCH) option is implemented

5Due to confidentiality issues, we cannot disclose the software name.
6Even on a single processor system, forking two parallel tasks usually

outperforms sequential make because the CPU can be better utilized rather
than waiting for the I/O devices.

in modern C/C++ compilers to cache the compiled head-
ers in order to reuse the compilation result7. Different from
ccache, PCH techniques deal with headers only and the
cached results are in object form, thus the cached headers
can not be shared among different compilers. Unlike in-
cluding all program units in the headers by the PCH ap-
proach, our header restructuring selectively includes the
program units that are necessary for the compilation units.
The program unit dependence graph is much finer than the
file dependencies, thus lead to an additional speedup to the
PCH. Our precompilation result is in source form, ready to
share among different C/C++ compilers.

A concept related to false dependency is the Ratio of
Use to Visibility (RUV) [4]. Here Use defines the num-
ber of compilation units where a declaration is used and
Visible defines the number of compilation units where the
declaration is used. RUV can be seen as an indicator of
false dependencies. After our header restructuring, the ratio
will be restored to 1. In [1], the cost to various recompila-
tion techniques was surveyed. The cascading recompilation
triggers recompilation whenever a change to the make tar-
get happens; the surface recompilation does not trigger a
cascading recompilation when changes are made to com-
ments; the cutoff recompilation triggers a cascading recom-
pilation only when changes are made to preprocessed im-
ages. The smart recompilation in [1] triggers a cascading
recompilation only when a change is made to the smallest
file dependency graph derived from the headers. Unlike us,
these techniques do not restructure the headers to reflect the
true dependencies, rather it maintains a dependency graph
using existing headers, thus the RUV they obtained was still
below 1; the link-time smartest recompilation has to rely on
the type inference to generalize types of undeclared identi-
fiers, and as noted by the author, it may be counterproduc-
tive because it slows the error removal.

Elsewhere [31] we presented an algorithm to remove all
false dependencies through header restructuring. The algo-
rithm relies on 3rd party parsers (also called fact extrac-
tors) such as CPPX [14], Datrix [3, 13], KLOCwork [26] or
the -fdump-translation-unit option in GCC [12],
to prepare a cumbersome abstract syntax graph, which
records all the direct symbol relations in a relational tuple
format. In [31], we developed a dependency extractor based
on the array of detailed entities generated from one of the
specialized fact extractors. The speed of the heavy-weight
dependency extraction was slow due to the large number
of excessive entities and relations extracted. For exam-

7Commercial compilers have implemented precompiled headers as an
advanced option, for example: Microsoft Visual C/C++’s /YX option [22]
generates precompiled headers as *.pch files, Intel C/C++ compiler’s
-pch option [27] generates *.pchi files. So does HP ANSI C/C++ com-
piler [17] and an NeXT implementation [20] where a detail explanation
the mechanism in the precompilation can be found. Starting from version
3.4.0, GNU GCC can also precompile headers into *.gch files [12].

ple, during the compilation of VIM 6.2 (Section 3), we
obtained 72,056 various dependencies among 22,489 pro-
gram units, whereas the fact extractor in Datrix would re-
port 3,008,664 various relations among 1,852,326 entities.
With the same objective to remove redundancies and false
dependencies, this paper reports efficient algorithms to ex-
tract a sequence of program units along with parsing im-
plemented in our adapted GCC compiler. Comparing with
the explicit program unit dependency graph, the program
units sequence has less complexity (lighter-weight) and re-
sult in an efficient precompilation and header restructuring.
In addition, the precompiled or restructured code base are
smaller than the precompiled headers as well as the pre-
processed files. Our precompilation results are compiler-
independent since the results are in source form and can be
reused by other C/C++ compilers. The adapted GCC com-
piler is also transparent to the make process as the precom-
pilation is implemented into a -fdump-program-unit
-fsyntax-only option and the header restructuring as
an additional -fdump-headers option.

5 Conclusion

This paper presented a set of algorithms and techniques
for improving the speed of compilation in large scale C/C++
programs. The need for such an approach was driven by a
study of large scale industrial programs. The presented al-
gorithms rely on syntactic dependencies and can be used
as a precompilation. Our experminents have shown that
this technique is orthogonal to other optimization tech-
niques such as parallel compilation, caching and precom-
piled headers. Apart from improving the fresh build pro-
cess, we also presented a light-weight fine-grain header re-
structuring technique that can achieve efficient incremental
builds. The overhead of preprocessing the generated head-
ers can be further reduced by a clustering-based componen-
tization. By adapting the GCC compiler to include our pre-
compilation as its options, no change is needed on the ex-
isting Makefile. Experiments showed that it can achieve
up to 8 times gain over the speed of compilation already
tuned with parallelism and locality and a large-scale C/C++
software can apply this precompilation technique.

References

[1] R. Adams, W. Tichy, and A. Weinert. The cost of selective
recompilation and environment processing. TOSEM, 3(1):3–
28, Jan. 1994.

[2] P. Andritsos and V. Tzerpos. Software clustering based on
information loss minimization. In 10th WCRE, pages 334–
344, Nov. 2003.

[3] Bell Canada. DATRIX abstract semantic graph reference
manual (version 1.4). Technical report, Bell Canada, 2000.

[4] E. A. Borison. Program Changes and the Cost of Selec-
tive Recompilation. PhD thesis, Carnegie Mellon University,
1989.

[5] H. Dayani-Fard. Quality-based software release manage-
ment. PhD thesis, Queen’s University, 2003.

[6] H. Dayani-Fard, Y. Yu, J. Mylopoulos, and P. Andritsos. Im-
proving the build architecture of legacy C/C++ software sys-
tems. In FASE 2005, pages 96–110.

[7] A. de Boor. Pmake - a parallel make. Technical report, U.C.
Berkeley, Fall 1987.

[8] J. Devaney, R. Lipman, M. Lo, W. Mitchell, M. Edwards,
and C. Clark. PADE - the parallel applications development
environment. Gaithersburg, Maryland 20899, 1995.

[9] J. E. Devaney. Converting pvmmake to mpimake under
LAM, and MPI and parallel genetic programming. In
A. Lumsdaine, editor, MPI Developers Conference, 22-23
June 1995.

[10] S. Feldman. Make - a program for maintaining computer
programs. SPE, pages 255–265, April 1979.

[11] C. J. Fleckenstein and D. Hemmendinger. A parallel ‘make’
utility based on Linda’s tuple-space. In 17th ACM confer-
ence on Comp. Sci., pages 216–220. ACM Press, 1989.

[12] GNU. http://gcc.gnu.org/gcc-3.4/.
[13] R. C. Holt. Structural manipulations of software architecture

using Tarski relational algebra. In WCRE, October 1998.
[14] R. C. Holt, A. E. Hassan, B. Lague, S. Lapierre, and

C. Leduc. E/R schema for the Datrix C/C++/Java exchange
format. In WCRE, pages 284–286, 2000.

[15] B. Koehler and R. N. Horspool. CCC: A caching compiler
for C. SPE, 27(2):155–165, 1997.

[16] G. E. Krasner and S.T.Pope. A cookbook for us-
ing the Model-View-Controller user interface paradigm in
Smalltalk-80. Journal of OOP, 1(3):26–49, 1988.

[17] T. Krishnaswamy. Automatic precompiled headers: Speed-
ing up C++ application build times. In WIESS’2000 in con-
junction with USENIX OSDI’2000. ACM, 2000.

[18] J. Lakos. Large-scale C++ software design. Addison-
Wesley, 1996.

[19] M. M. Lehman. Laws of software evolution revisited. Lec-
ture Notes in Computer Science, 1149:108–120, 1996.

[20] A. Litman. An implementation of precompiled headers.
SPE, 23(3):341–350, Mar. 1993.

[21] B. Moolenaar. Vim 6.2. In http://www.vim.org, 2003.
[22] MSDN. Visual C++ precompiled header compiler options.
[23] T. Onodera. Reducing compilation time by a compilation

server. SPE, 23(5):477–485, May 1993.
[24] Platform, Inc. Using lsmake. In LSF User’s Guide.
[25] M. Pool. distcc: a fast, free distributed C/C++ compiler. In

http://distcc.samba.org.
[26] N. Rajala, D. Campara, and N. Mansurov. InSight: reverse

engineer case tool. In ICSE, pages 630–633, 1999.
[27] D. Schouten, X. Tian, A. Bik, and M. Girkar. Inside the Intel

compiler. Linux Journal, 2003(106):4, 2003.
[28] Sun Microsystems. Distributed make:

http://wwws.sun.com/software/sundev/news/features/dmake.html.
[29] A. Tridgell. ccache: http://ccache.samba.org.
[30] H. van Vliet. Software Engineering: principles and practice,

2nd Ed. John Wiley, 2000.
[31] Y. Yu, H. Dayani-Fard, and J. Mylopoulos. Removing false

code dependencies to speedup software development pro-
cesses. In CASCON’03, pages 288–297, Oct. 2003.

