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University of Washington
Abstract

Improving Effectiveness of Automated Software Testing

in the Absence of Specifications
Tao Xie

Chair of Supervisory Committee:

Professor David Notkin
Computer Science and Engineering

This dissertation presents techniques for improving effectiveness of automated software testing in
the absence of specifications, evaluates the efficacy of these techniques, and proposes directions for
future research.

Software testing is currently the most widely used method for detecting software failures. When
testing a program, developers need to generate test inputs for the program, run these test inputs on
the program, and check the test execution for correctness. It has been well recognized that software
testing is quite expensive, and automated software testing is important for reducing the laborious
human effort in testing. There are at least two major technical challenges in automated testing: the
generation of sufficient test inputs and the checking of the test execution for cotrectness. Program
specifications can be valuable in addressing these two challenges. Unfortunately, specifications are
often absent from programs in practice.

This dissertation presents a framework for improving effectiveness of automated testing in the
absence of specifications. The framework supports a set of related techniques. First, it includes
a redundant-test detector for detecting redundant tests among automatically generated test inputs.
These redundant tests increase testing time without increasing the ability to detect faults or increas-
ing our confidence in the program. Second, the framework includes a non-redundant-test generator

that employs state-exploration techniques to generate non-redundant tests in the first place and uses



symbolic execution techniques to further improve the effectiveness of test generation. Third, be-
cause it is infeasible for developers to inspect the execution of a large number of generated test
inputs, the framework includes a test selector that selects a small subset of test inputs for inspection;
these selected test inputs exercise new program behavior that has not been exercised by manually
created tests. Fourth, the framework includes a test abstractor that produces succinct state transition
diagrams for inspection; these diagrams abstract and summarize the behavior exercised by the gen-
erated test inputs. Finally, the framework includes a program-spectra comparator that compares the
internal program behavior exercised by regression tests executed on two program versions, exposing
behavioral differences beyond different program outputs.

The framework has been implemented and empirical results have shown that the developed tech-
niques within the framework improve the effectiveness of automated testing by detecting high per-
centage of redundant tests among test inputs generated by existing tools, generating non-redundant
test inputs to achieve high structural coverage, reducing inspection efforts for detecting problems in

the program, and exposing more behavioral differences during regression testing.
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Chapter 1

INTRODUCTION

Software permeates many aspects of our life; thus, improving software reliability is becoming
critical to society. A recent report by National Institute of Standards and Technology found that
software errors cost the U.S. economy about $60 billion each year [NIS02]. Although much progress
has been made in software verification and validation, software testing is still the most widely used
method for improving software reliability. However, software testing is labor intensive, typically

accounting for about half of the software development effort [Bei90].

To reduce the laborious human effort in testing, developers can conduct automated software
testing by using tools to automate some activities in software testing. Software testing activities
typically include generating test inputs, creating expected outputs, running test inputs, and verifying
actual outputs. Developers can use some existing frameworks or tools such as the JUnit testing
framework [GB03] to write unit-test inputs and their expected outputs. Then the JUnit framework
can automate running test inputs and verifying actual outputs against the expected outputs. To
reduce the burden of manually creating test inputs, developers can use some existing test-input
generation tools [Par03,CS04,Agi04] to generate test inputs automatically. After developers modify
a program, they can conduct regression testing by rerunning the existing test inputs in order to assure
that no regression faults are introduced. Even when expected outputs are not created for the existing
test inputs, the actual outputs produced by the new version can be automatically compared with the

ones produced by the old version in order to detect behavioral differences.

However, the existing test-generation tools often cannot effectively generate sufficient test inputs
to expose program faults or increase code coverage. In addition, when these tools are used to
generate test inputs automatically, expected outputs for these test inputs are still missing, and it is

infeasible for developers to create expected outputs for this large number of generated test inputs.



Although specifications can be used to improve the effectiveness of generating test inputs and check
program correctness when running test inputs without expected outputs, specifications often do not
exist in practice. In regression testing, the existing approach of comparing observable outputs is
limited in exposing behavioral differences inside program execution; these differences could be
symptoms of potential regression faults.

Our research focuses on developing a framework for improving effectiveness of automated test-
ing in the absence of specifications. The framework includes techniques and tools for improving
the effectiveness of generating test inputs and inspecting their executions for correctness, two major
challenges in automated testing.

This chapter discusses activities and challenges of automated software testing (Section 1.1),
lists the contributions of the dissertation: a framework for improving effectiveness of automated
testing (Section 1.2), defines the scope of the research in the dissertation (Section 1.3), and gives an

organization of the remainder of the dissertation (Section 1.4).

1.1 Activities and Challenges of Automated Software Testing

Software testing activities consist of four main steps in testing a program: generating test inputs,
generating expected outputs for test inputs, run test inputs, and verify actual outputs. To reduce
the laborious human effort in these testing activities, developers can automate these activities to
some extent by using testing tools. Our research focuses on developing techniques and tools for
addressing challenges of automating three major testing activities: generating test inputs, generating
expected outputs, and verifying actual outputs, particularly in the absence of specifications, because
specifications often do not exist in practice. The activities and challenges of automated software

testing are described below.

Generate (sufficient) test inputs. Test-input generation (in short, test generation) often occurs when
an implementation of the program under test is available. However, before a program imple-
mentation is available, test inputs can also be generated automatically during model-based
test generation [DF93, GGSV02] or manually during test-driven development [Bec03], a key
practice of Extreme Programming [Bec00]. Because generating test inputs manually is often

labor intensive, developers can use test-generation tools [Par03,CS04, Agi04] to generate test



inputs automatically or use measurement tools [Qui03, JCo03, Hor02] to help developers de-
termine where to focus their efforts. Test inputs can be constructed based on the program’s
specifications, code structure, or both. For an object-oriented program such as a Java class, a

test input typically consists of a sequence of method calls on the objects of the class.

Although the research on automated test generation is more than three decades old [Hua75,
Kin76,Cla76,RHC76], automatically generating sufficient test inputs still remains a challeng-
ing task. Early work as well as some recent work [Kor90, DO91, KAY96, GMS98, GBR98,
BCMO04] primarily focuses on procedural programs such as C programs. More recent re-
search [KSGH94, BOPOO, Ton04, MKO1, BKM02, KPV03, VPK04] also focuses on gener-
ating test inputs for object-oriented programs, which are increasingly pervasive. Generat-
ing test inputs for object-oriented programs adds additional challenges, because inputs for
method calls consist of not only method arguments but also receiver-object states, which
are sometimes structurally complex inputs, such as linked data structures that must satisfy
complex properties. Directly constructing receiver-object states requires either dedicated al-
gorithms [BHR*00] or class invariants [LBR98,L.G00] for specifying properties satisfied by
valid object states; however, these dedicated algorithms or class invariants are often not read-
ily available in part because they are difficult to write. Alternatively, method sequences can
be generated to construct desired object states indirectly [BOP0O, Ton04); however, it is gen-
erally expensive to enumerate all possible method sequences even given a small number of

argument values and a small bound on the maximum sequence length.

Generate expected outputs (for a large number of test inputs). Expected outputs are generated
to help determine whether the program behaves correctly on a particular execution during
testing. Developers can génerate an expected output for each specific test input to form pre-
computed input/output pair [Pan78,Ham77]. For example, the JUnit testing framework [GB03]
allows developers to write assertions in test code for specifying expected outputs. Devel-
opers can also write checkable specifications [Bei90, BGM91, DF93, MKO01, CL02, BKMO2,
GGSV02] for the program and these specifications offer expected outputs (more precisely,

expected properties) for any test input executed on the program.



It is tedious for developers to generate expected outputs for a large number of test inputs. Even
if developers are willing to invest initial effort in generating expected outputs, it is expensive
to maintain these expected outputs when the program is changed and some of these expected

outputs need to be updated [KBP02, MS03].

Run test inputs (continuously and efficiently). Some testing frameworks such as the JUnit testing
framework [GB03] allow developers to structure several test cases (each of which comprises
a test input and its expected output) into a fest suite, and provide tools to run a test suite
automatically. For graphical user interface (GUI) applications, running test inputs especially

requires dedicated testing frameworks [OAFG98,MemO1, Rob03, Abb04].

In software maintenance, it is important to run regression tests frequently in order to make
sure that new program changes do not break the program. Developers can manually start the
execution of regression tests after having changed the program or configure to continuously
run regression tests in the background while changing the program [SE03]. Sometimes run-
ning regression tests is expensive; then developers can use mock objects [MFCO1, SE04] to
avoid rerunning the parts of the program that are slow and expensive to run. Developers can
also use regression test selection [RH97, GHK*01,HJL*01] to select a subset of regression
tests to rerun or regression test prioritization [WHLB97, RUCHO01,EMRO02] to sort regression
tests to rerun. Although some techniques proposed in our research can be used to address
some challenges in running test inputs, our research primarily addresses the challenges in the

other three steps.

Verify actual outputs (in the absence of expected outputs). A test oracle is a mechanism for check-
ing whether the actual outputs of the program under test is equivalent to the expected out-
puts [RAO92,Ric94, Hof98, MPS00,BY01]. When expected outputs are unspecified or spec-
ified but in a way that does not allow automated checking, the oracle often relies on de-
velopers’ eyeball inspection. If expected outputs are directly written as executable asser-
tions [And79,R0s92] or translated into runtime checking code [GMH81,Mey88,MKO01,CL02,
BKMO02, GGSVO02], verifying actual outputs can be automated. When no expected outputs

are available, developers often rely on program crashes [MFS90, KJS98] or uncaught excep-



tions [CS04] as symptoms for unexpected behavior. When no expected outputs are specified
explicitly, in regression testing, developers can compare the actual outputs of a new version

of the program with the actual outputs of a previous version [Cha82].

As has been discussed in the second step, it is challenging to generate expected outputs for a
large number of test inputs. In practice, expected outputs often do not exist for automatically
generated test inputs. Without expected outputs, it is often expensive and prone to error for
developers to manually verify the actual outputs and it is limited in exploiting these generated
test inputs by verifying only whether the program crashes [MFS90,KJS98] or throws uncaught
exceptions [CS04]. In regression testing, the actual outputs of a new version can be compared
with the actual outputs of its previous version. However, behavioral differences between
versions often cannot be propagated to the observable outputs that are compared between

versions.

A test adequacy criterion is a condition that an adequate test suite must satisfy in exercising a
program’s properties [GG75]. Common criteria [Bei90] include structural coverage: code coverage
(such as statement, branch, or path coverage) and specification coverage [CR99]. Coverage mea-
surement tools can be used to evaluate a test suite against a test adequacy criterion automatically.
A test adequacy criterion provides a stopping rule for testing (a rule to determine whether sufficient
testing has been performed and it can be stopped) and a measurement of test-suite quality (a degree
of adequacy associated with a test suite) [ZHM97]. A test adequacy criterion can be used to guide
the above four testing activities. For example, it can be used to help determine what test inputs are
to be generated and which generated test inputs are to be selected so that developers can invest ef-
forts in equipping the selected inputs with expected outputs, run these inputs, and verify their actual
outputs. After conducting these four activities, a test adequacy criterion can be used to determine if
the program has been adequately tested and to further identify which parts of the program have not

been adequately tested.
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Figure 1.1: Framework for improving effectiveness of automated testing.

1.2 Contributions

This dissertation presents a framework for improving effectiveness of automated testing, address-
ing the challenges discussed in the preceding section. As is shown in Figure 1.1, the framework
consists of two groups of components. The first group of components —the redundant-test detector
and non-redundant-test generator— address the issues in generating test inputs. The second group
of components (the test selector, test abstractor, and program-spectra comparator) infer program
behavior dynamically in order to address the issues in checking the correctness of test executions.
The second group of components further send feedback information to the first group to guide test

generation.

Redundant-test detector. Existing test generation tools generate a large number of test inputs! (in
short, tests) to exercise different sequences of method calls in the interface of the class under
test. Different combinations of method calls on the class under test result in a combinatorial
explosion of tests. Because of resource constraints, existing test generation tools often gener-

ate different sequences of method calls whose lengths range from one [CS04] to three [Par03].

'In the rest of the dissertation, we use rests to denote fest inputs for the sake of simplicity.



However, sequences of up-to-three method calls are often insufficient for detecting faults or
satisfying test adequacy criteria. In fact, a large portion of these different sequences of method
calls exercise no new method behavior; in other words, the tests formed by this large portion
of sequences are redundant tests. We have defined redundant tests by using method-input
values (including both argument values and receiver-object states). When the method-input
values of each method call in a test have been exercised by the existing tests, the test is con-
sidered as a redundant test even if the sequence of method calls in the test is different from the
one of any existing test. We have developed a redundant-test detector, which can post-process
a test suite generated by existing test generation tools and output a reduced test suite contain-
ing no redundant tests. Our approach not only presents a foundation for existing tools that
generate non-redundant tests [MK01,BKM02,KPV03, VPK04] but also enables any other test
generation tools [Par03,CS04,Agi04] to avoid generating redundant tests by incorporating the
redundant-test detection in their test generation process. We present experimental results that
show the effectiveness of the redundant-test detection tool: about 90% of the tests generated

by a commercial testing tool [Par03] are detected and reduced by our tool as redundant tests.

Non-redundant-test generator. Based on the notion of avoiding generating redundant-tests, we
have developed a non-redundant-test generator, which explores the concrete or symbolic
receiver-object state space by using method calls (through normal program execution or sym-
bolic execution). Like some other software model checking tools based on stateful explo-
ration [DIS99, VHBP0O, CDH'00, MPC*02,RDHO3], the test generator based on concrete-
state exploration faces the state explosion problem. Symbolic representations in symbolic
model checking [McM93] alleviate the problem by describing not only single states but sets
of states; however, existing software model checking tools [BRO1, HIMS03] based on sym-
bolic representations are limited for handling complex data structures. Recently, symbolic
execution [Kin76, Cla76] has been used to directly construct symbolic states for receiver ob-
jects [KPVO03, VPK04]; however, the application of symbolic execution requires the user to
provide specially constructed class invariants [LG0O], which effectively describe an over-
approximation of the set of reachable object graphs. Without requiring any class invariant, our

test generator can also use symbolic execution of method sequences to explore the symbolic



receiver-object states and prune this exploration based on novel state comparisons (compar-
ing both heap representations and symbolic representations). Our extension and application
of symbolic execution in state exploration not only alleviate the state explosion problem but
also generate relevant method arguments for method sequences automatically by using a con-
straint solver [SR02]. We present experimental results that show the effectiveness of the test
generation based on symbolic-state exploration: it can achieve higher branch coverage faster

than the test generation based on concrete-state exploration.

Test selector. Because it is infeasible for developers to inspect the actual outputs of a large num-
ber of generated tests, we have developed a test selector to select a small valuable subset of
generated tests for inspection. These selected tests exercise new behavior that has not been
exercised by the existing test suite. In particular, we use Daikon [Ern00] to infer program be-
havior dynamically from the execution of the existing (manually) constructed test suite. We
next feed inferred behavior in the form of specifications to an existing specification-based test
generation tool [Par03]. The tool generates tests to violate the inferred behavior. These vio-
lating tests are selected for inspection, because these violating tests exhibit behavior different
from the behavior exhibited by the existing tests. Developers can inspect these violating tests
together with the violated properties, equip these tests with expected outputs, and add them
to the existing test suite. We present experimental results to show that the selected tests have
a high probability of exposing anomalous program behavior (either faults or failures) in the

program.

Test abstractor. Instead of selecting a subset of generated tests for inspection, a test abstractor
summarizes and abstracts the receiver-object-state transition behavior exercised by all the
generated tests. Because the concrete-state transition diagram for receiver objects is too com-
plicated for developers to inspect, the test abstractor uses a state abstraction technique based
on the observers in a class interface; these observers are the public methods whose return
types are not void. An abstract state for a concrete state is represented by the concrete state’s
observable behavior, consisting of the return values of observer-method calls on the concrete

state. The abstract states and transitions among them are used to construct succinct state tran-



sition diagrams for developers to inspect. We present an evaluation to show that the abstract-
state transition diagrams can help discover anomalous behavior, debug exception-throwing

behavior, and understand normal behavior in the class interface.

Program-spectra comparator. In regression testing, comparing the actual outputs of two program
versions is limited in exposing the internal behavioral differences during the program ex-
ecution, because internal behavioral differences often cannot be propagated to observable
outputs. A program spectrum is used to characterize a program’s behavior [RBDL97]. We
propose a new class of program spectra, called value spectra, to enrich the existing pro-
gram spectra family, which primarily include structural spectra (such as path spectra [BL96,
RBDL97,HRS*00]). Value spectra capture internal program states during a test execution. A
deviation is the difference between the value of a variable in a new program version and the
corresponding one in an old version. We have developed a program-spectra comparator that
compares the value spectra from an old version and a new version, and uses the spectra differ-
ences to detect behavior deviations in the new version. Furthermore, value spectra differences
can be used to locate deviation roots, which are program locations that trigger the behavior
deviations. Inspecting value spectra differences can allow developers to determine whether
program changes introduce intended behavioral differences or regression faults. We present
experimental results to show that comparing value spectra can effectively expose behavioral
differences between versions even when their actual outputs are the same, and value spectra

differences can be used to locate deviation roots with high accuracy.

Dynamic behavior inference requires a good-quality test suite to infer behavior that is close
to what shall be described by a specification (if it is manually constructed). On the other hand,
specification-based test generation can help produce a good-quality test suite but requires specifi-
cations, which often do not exist in practice. There seems to be a circular dependency between
dynamic behavior inference and (specification-based) test generation. To exploit the circular de-
pendency and alleviate the problem, we propose a feedback loop between behavior inference and
test generation. The feedback loop starts with an existing test suite (constructed manually or au-
tomatically) or some existing program runs. By using one of the behavior-inference components

(the test selector, test abstractor, or program-spectra comparator), we first infer behavior based on
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the existing test suite or program runs. We then feed inferred behavior to a specification-based test
generation tool or a test generation tool that can exploit the inferred behavior to improve its test
generation. The new generated tests can be used to infer new behavior. The new behavior can be
further used to guide test generation in the subsequent iteration. Iterations terminate until a user-
defined maximum iteration number has been reached or no new behavior has been inferred from
new tests. We show several instances of the feedback loop in different types of behavior inference.
This feedback loop provides a means to producing better tests and better approximated specifica-
tions automatically and incrementally. In addition, the by-products of the feedback loop are a set of
selected tests for inspection; these selected tests exhibit new behavior that has not been exercised by

the existing tests.

1.3 Scope

The approaches presented in this dissertation focus on automated software testing. The activities
of automated software testing are not limited to automating the execution of regression tests, for
example, by writing them in the JUnit testing framework [GB03] or test scripts [Rob03, Abb04], or
by capturing and replaying them with tools [SCFP00]. Our focused activities of automated software
testing have been described in Section 1.1.

The approaches presented in this dissertation focus on testing sequential programs but not con-
current programs. Most approaches presented in this dissertation focus on testing a program unit
(such as a class) written in modern object-oriented languages (such as Java). But the regression
testing approach focuses on testing a system written in procedural languages (such as C). All the
approaches assume that the unit or system under test is a closed unit or system and there is a well-
defined interface between the unit or system and its environment. The approaches focus on testing
functional correctness or program robustness but not other quality attributes such as performance
and security. Chapter 8 discusses future directions of extending the approaches to test new types of

programs and new types of quality attributes.

1.4 Outline

The remainder of this dissertation is organized as follows.
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Chapter 2 introduces the background information of automated software testing and surveys
related work. Chapter 3 describes the techniques for detecting redundant tests among automatically
generated tests. Chapter 4 further presents the techniques for generating nonredundant tests in the
first place. Chapter 5 describes the techniques for selecting a small subset of generated tests for
inspection. Chapter 6 introduces the techniques that abstract the behavior of test executions for
inspection. Chapter 7 describes the techniques for comparing value spectra in regression testing in
order to expose behavioral differences between versions. Chapter 8 presents suggestions for future

work. Finally, Chapter 9 concludes with a summary of the contributions and lessons learned.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter presents background information and discusses how our research relates to other
projects in software testing. Section 2.1 discusses test adequacy criteria, which usually specify
the objectives of testing. Section 2.2 presents existing automated test generation techniques. Sec-
tion 2.3 describes existing test selection techniques. Section 2.4 reviews existing regression testing
techniques. Section 2.5 presents existing techniques in behavior inference, and Section 2.6 discusses

existing feedback loops in program analysis.

2.1 Test Adequacy Criteria

A test adequacy criterion provides a stopping rule for testing and a measurement of test-suite
quality [ZHM97]. (A test adequacy criterion can be used to guide test selection, which shall be
discussed in Section 2.3.) Based on the source of information used to specify testing require-
ments, Zhu et al. [ZHM97] classified test adequacy criteria into four groups: program-based crite-
ria, specification-based criteria, combined specification- and program-based criteria, and interface-
based criteria. Program-based criteria specify testing requirements based on whether all the iden-
tified features in a program have been fully exercised. Identified features in a program can be
statements, branches, paths, or definition-use paths. Specification-based criteria specify testing re-
quirements based on whether all the identified features in a specification have been fully exercised.
Combined specification- and program-based criteria specify testing requirements based on both
specification-based criteria and program-based criteria. Interface-based criteria specify testing re-
quirements based on only the interface information (such as type and range of program inputs) with-
out referring to any internal features of a specification or program. Random testing is often based on
interface-based criteria. Specification-based criteria and interface-based criteria are types of black-

box testing, whereas program-based criteria and combined specification- and program-based criteria
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are types of white-box testing.

Our testing research in this dissertation mostly relies on method inputs (both receiver-object
states and argument values in an object-oriented program) and method outputs (both receiver-object
states and return values in an object-oriented program). This is related to interface-based criteria.
But our research on test selection and abstraction is performed based on inferred behavior, which is
often in the form of specifications; therefore, the research is also related to specification-based crite-
ria (but without requiring specifications). Our research on test generation additionally uses symbolic
execution to explore paths within a method; therefore, the research is also related to program-based
criteria.

In particular, our testing research is related to program-based test adequacy criteria proposed to
operate in the semantic domain of program properties rather than the syntactic domain of program
text, which is the traditional focus of most program-based criteria. Hamlet’s probable correctness
theory [Ham87] suggests data-coverage testing to uniformly sample the possible values of all in-
ternal variables at each control point in a program. However, it is often difficult or undecidable to
determine the possible values for variables in a program; therefore, we cannot compute the goal of
100 percent coverage (denominator) for data coverage criteria like for code coverage criteria (such
as statement or branch coverage) but use the data coverage of a given test suite as a baseline for com-
parison. Harder et al. [HMEOQ3] use operational abstractions [ECGNO1] inferred from a test suite
to reduce the samples needed to cover the data values for variables in a program. Ball [Bal04] pro-
poses predicate-complete coverage with the goal of covering all reachable observable states defined
by program predicates (either specified by programmers or generated through automatic predication
abstractions [GS97, VPP00,BMMRO1]). These program predicates also partition the data values for
variables in a program.

Recently a specification-based test adequacy criterion called bounded exhaustive testing [MKO1,
BKMO02, SYC*04, Khu03, Mar05] has been proposed to test a program, especially one that has
structurally complex inputs. Bounded exhaustive testing tests a program on all valid inputs up to
a given bound; the numeric bound, called the scope, is defined for the size of input structures.
Experiments [MAD03,Khu03,SYC104,Mar05] have shown that exhaustive testing within a small
bound can produce a high-quality test suite in terms of fault detection capability and code coverage.

Test generation techniques for bounded exhaustive testing often require developers to specify a class
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invariant [LBR98,L1.G00], which describes the properties of a valid input structure, and a range of
(sampled) data values for non-reference-type variables in an input structure. In bounded exhaustive
testing, developers can specify a scope so that testing stops when a program is tested on all valid
inputs up to the scope. Alternatively, without requiring a predefined scope, exhaustive testing can
test a program on all valid inputs by starting from the smallest ones and iteratively increasing the
input size until time runs out. Our research on test generation is a type of bounded exhaustive testing

but does not require specifications.

2.2 Test Generation

Generating test inputs for an object-oriented program involves two tasks: (1) directly constructing
relevant receiver-object states or indirectly constructing them through method sequences, and (2)
generating relevant method arguments. For the first task, some specification-based approaches rely
on a user-defined class invariant [LBR98,1.G00] to know whether a directly-constructed receiver-
object state is valid, and to directly construct all valid receiver-object states up to a given bound.
TestEra [MKO1, Khu03] relies on a class invariant written in the Alloy language [JSS01] and sys-
tematically generates tests by using Alloy Analyzer [JSS00], which does bounded-exhaustive, SAT-
based checking. Korat [BKMO02, Mar05] relies on an imperative predicate, an implementation for
checking class invariants. Korat monitors field accesses within the execution of an imperative pred-
- icate and uses this information to prune the search for all valid object states up to a given bound.
Inspired by Korat, the AsmLT model-based testing tool [GGSV02, Fou] also includes a solver for
generating bounded-exhaustive inputs based on imperative predicates. Some other test generation
approaches rely on an application-specific state generator to construct valid receiver-object states.
Ball et al. [BHR*00] present a combinatorial algorithm for generating states based on a dedicated
generator for complex data structures. Different from these previous approaches, our test generation
approach does not require class invariants or dedicated state generators because our approach does
not directly construct receiver-object states but indirectly constructs receiver-object states through
bounded-exhaustive method sequences.

Some test generation tools also generate different method sequences for an object-oriented pro-

gram. Tools based on (smart) random generation include Jtest [Par03] (a commercial tool for
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Java) and Eclat [PEO5] (a research prototype for Java). Tonella [Ton0O4] uses a genetic algo-
rithm to evolve a randomly generated method sequence in order to achieve higher branch cov-
erage. Buy et al. [BOPOO] use data flow analysis, symbolic execution, and automated deduc-
tion to generate method sequences exercising definition-use pairs of object fields. Our test gen-
eration approach generates bounded-exhaustive tests, which can achieve both high code cover-
age and good fault-detection capability, whereas these previous approaches cannot guarantee the
bounded-exhaustiveness of the generated tests. Like our approach, both Java Pathfinder input gen-
erator [VPK04] and the AsmLT model-based testing tool [GGSV02,Fou] use state exploration tech-
niques [CGP99] to generate bounded-exhaustive method sequences but these two tools require de-
velopers to carefully choose sufficiently large concrete domains for method arguments and AsmLT
additionally requires developers to choose the right abstraction functions to guarantee the bounded-
exhaustiveness. Our approach uses symbolic execution to automatically derive relevant arguments
and explore the symbolic-state space, whose size is much smaller than the concrete-state space
explored by Java Pathfinder input generator and AsmLT.

Existing test generation tools use different techniques to achieve the second task in object-
oriented test generation: generating relevant method arguments. Both TestEra [MKO1, Khu03] and
Korat [BKMO02, Mar05] use a range of user-defined values for generating primitive-type arguments
(as well as primitive-type fields in receiver-object states) and use their bounded-exhaustive test-
ing techniques to generate reference-type arguments if their class invariants are provided. In order
to generate primitive-type arguments, some tools such as JCrasher [CS04] and Eclat [PEOS] use
predefined default values or random values for specific primitive types. For a non-primitive-type
argument, these tools use random method sequences where the last method call’s return is of the
non-primitive type. Jtest [Par03] uses symbolic execution [Kin76,Cla76] and constraint solving to
generate arguments of primitive types. Java Pathfinder input generator [KPV03, VPK04] can gen-
erate both method arguments and receiver-object states by using symbolic execution and constraint
solving; its test generation feature is implemented upon its explicit-state model checker [VHBPOQ].

Symbolic execution is also the foundation of static code analysis tools. These tools typically do
not generate test data, but automatically verify simple properties of programs. Recently, tools such
as SLAM [BMMRO1, Bal04] and Blast [HIMS03, BCMO04] were adapted for generating inputs to

test C programs. However, neither of them can deal with complex data structures, which are the
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focus of our test generation approach. Our test generation approach also uses symbolic execution;
however, in contrast to the existing testing tools that use symbolic execution, our test generation
approach uses symbolic execution to achieve both tasks (generation of receiver-object states and

method arguments) systematically without requiring class invariants.

2.3 Test Selection

There are different definitions of test selection. One definition of test selection is related to test
generation (discussed in Section 2.2): selecting which test inputs to generate. Some other definitions
of test selection focus on selecting tests among tests that have been generated because it is costly
to run, rerun, inspect, or maintain all the generated tests. Our test selection approach focuses on
selecting tests for inspection.

Test adequacy criteria (discussed in Section 2.1) can be directly used to guide test selection:
a test is selected if the test can enhance the existing test suite toward satisfying a test adequacy
criterion. In partition testing [Mye79], a test input domain is divided into subdomains based on
some criteria (such as those test adequacy criteria discussed in Section 2.1), and then we can select
one or more representative tests from each subdomain. If a subdomain is not covered by the existing
test suite, we can select a generated test from that subdomain.

Pavldpoulou and Young [PY99] proposed residual structural coverage to describe the structural
coverage that has not been achieved by the existing test suite. If the execution of a later gener-
ated test exercises residual structural coverage, the test is selected for inspection and inclusion in
the existing test suite. If we use residual statement coverage or branch coverage in test selection,
we may select only a few tests among generated tests although many unselected tests may provide
new value like exposing new faults or increasing our confidence on the program. But if we use
residual path coverage, we may select too many tests among generated tests although only some
of the selected tests may provide new value. Instead of selecting every test that covers new paths,
Dickinson et al. [DLPOla, DLPO1b] use clustering analysis to partition executions based on path
profiles, and use sampling techniques to select executions from clusters for observations. Regres-
sion test prioritization techniques [WHLB97,RUCO01, ST02], such as additional structural coverage

techniques, can produce a list of sorted tests for regression testing; the same idea can also be applied
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to prioritize tests for inspection. Our test selection approach complements these existing structural-
coverage-based test selection approaches because our approach operates in the semantic domain
of program properties rather than the syntactic domain of program text, which is used by previous
program-based test selection approaches.

Goodenough and Gerhart [GG75] discussed the importance of specification-based test selec-
tion in detecting errors of omission. Chang and Richardson use specification-coverage criteria for
selecting tests that exercise new aspects of a unit’s specifications [CR99]. Given algebraic specifica-
tions [GH78] a priori, several testing tools [GMHS81,BGM91, DF94, HS96, CTCC98] generate and
select a set of tests to exercise these specifications. Unlike these specification-based approaches, our
test selection approach does not require specifications a priori but uses Daikon [ECGNO1] to infer
operational abstractions, which are used to guide test selection.

Harder et al. [HMEO3] present a testing technique based on operational abstractions [ECGNO1].
Their operational difference technique starts with an operational abstraction generated from an ex-
isting test suite. Then it generates a new operational abstraction from the test suite augmented by
a candidate test case. If the new operational abstraction differs from the previous one, it adds the
candidate test case to the suite. This process is repeated until some number n of candidate cases
have been consecutively considered and rejected. Both the operational difference approach and our
approach use the operational abstractions generated from test executions. Our approach exploits
operational abstractions’ guidance to test generation, whereas the operational difference approach
operates on a fixed set of given tests. In addition, their operational difference approach selects tests
mainly for regression testing, whereas our approach selects tests mainly for inspection.

Hangal and Lam’s DIDUCE tool [HL02] detects bugs and tracks down their root causes. The
DIDUCE tool can continuously check a program’s behavior against the incrementally inferred op-
erational abstractions' during the run(s), and produce a report of all operational violations detected
along the way. A usage model of DIDUCE is proposed, which is similar to the unit-test selection
problem addressed by our test selection approach. Both DIDUCE and our approach make use of
violations of the inferred operational abstractions. The inferred abstractions used by our approach
are produced by Daikon [ECGNO1] at method entry and exit points, whereas DIDUCE infers a lim-
ited set of simpler abstractions from procedure call sites and object/static variable access sites. Also

DIDUCE does not investigate the effects of operational abstractions on test generation.
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Our redundant-test detection can be seen as a type of test selection: selecting non-redundant
tests out of automatically generated tests. Our test selection approach minimizes generated tests by
selecting a small number of most useful tests for inspection, whereas our redundant-test detection
approach tries to conservatively minimize generated tests from the other end: removing useless tests.
Our redundant-test detection detects no redundant tests among tests generated by some tools, such
as TestEra [MKO1], Korat [BKMO02], and Java Pathfinder input generator [VPK04], because these
tools intentionally avoid generating redundant tests in their test generation process. Different from
the redundant-test avoidance mechanisms built in these tools, the mechanisms in our redundant-test
detection are more general and can be embedded in any test generation tools as a part of the test

generation process or a post-processing step after the test generation process.

2.4 Regression Testing

Regression testing validates a modified program by retesting it. Regression testing is used to ensure
that no new errors are introduced to a previously tested program when the program is modified.
Because it is often expensive to rerun all tests after program modifications, one major research
effort in regression testing is to reduce the cost of regression testing without sacrificing the benefit
or sacrificing as little benefit as possible. For example, when some parts of a program are changed,
regression test selection techniques [CRV94, RH97, GHK T01] select a subset of the existing tests
to retest the new version of the program. A safe regression test selection technique [RH97] ensures
that the selected subset of tests contain all the tests that execute the code that was modified from the
old version to the new version. Sometimes the available resource might not even allow rerunning
the subset of regression tests selected by regression test selection techniques. Recently regression
test prioritization techniques [WHLB97, RUCHO01,EMRO02] have been proposed to order regression
tests such that their execution provides benefits such as earlier detection of faults.

Regression-test quality is not always sufficient in exhibiting output differences caused by newly
introduced errors in a program. Some previous test-generation approaches generate new tests to
exhibit behavior deviations caused by program changes. For example, DeMillo and Offutt [DO91]
developed a constraint-based approach to generate unit tests that can exhibit program-state devi-

ations caused by the execution of a slightly changed program line (in a mutant produced during
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mutation testing [DL.S78, How82]). Korel and Al-Yami [KAY98] created driver code that compares
the outputs of two program versions, and then leveraged the existing white-box test-generation ap-
proaches to generate tests for which the two versions will produce different outputs. However, this
type of test-generation problem is rather challenging and it is in fact an undecidable problem. Our
regression testing research tries to tackle the problem by exploiting the existing regression tests and
checking more-detailed program behavior exercised inside the program.

Regression testing checks whether the behaviors of two program versions are the same given the
same test input. Reps et al. [RBDL97] proposed a program spectrum! to characterize a program’s
behavior. One of the earliest proposed program spectra are path spectra [BL96,RBDL97,HRS100],
which are represented by the executed paths in a program. Harrold et al. [HRS*00] later proposed
several other types of program spectra and investigated their potential applications in regression
testing. Most of these proposed spectra are defined by using the structural entities exercised by
program execution. We refer to these types of program spectra as syntactic spectra. Harrold et
al. [HRS*00] empirically investigated the relationship between syntactic spectra differences and
output differences of two program versions in regression testing. Their experimental results show
that when a test input causes program output differences between versions, the test input is likely
to cause syntactic spectra differences. However their results show that the reverse is not true. Our
regression testing research takes advantage of this phenomenon to expose more behavioral devia-
tions by comparing program spectra instead of just comparing program outputs in regression testing.
To better characterize program behavior in regression testing, our research proposes a new class of
program spectra, value spectra, that enriches the existing program spectra family. Value spectra are
defined by using program states (variable values) and we refer to this type of program spectra as
semantic spectra. Ernst [Ern00, ECGNO1] developed the Daikon tool to infer operational abstrac-
tions from program execution and these dynamically inferred abstractions can also be considered as
a type of semantic spectra.

Memon et al. [MBNO03] model a GUI state in terms of the widgets that the GUI contains, their
properties, and the values of the properties. A GUI state corresponds to a function-entry or function-

exit state in our approach. Their experimental results show that comparing more-detailed GUI

"The name of spectrum comes from path spectrum [BL96, RBDL97], which is a distribution of paths derived from a
run of the program.
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states (e.g., GUI states associated with all or visible windows) from two versions can detect faults
more effectively than comparing less-detailed GUI states (e.g., GUI states associated with the active
window or widget). Our approach also shows that checking more-detailed behavior inside the black
box can more effectively expose behavioral deviations than checking just the black-box output.
Our approach differs from their approach in two main aspects: our approach is not limited to GUI
applications and our approach additionally investigates deviation propagation and deviation-root
localization.

Abramson et al. [AFMS96] developed the relative debugging technique that uses a series of user-
defined assertions between a reference program and a suspect program. These assertions specify
key data structures that must be equivalent at specific locations in two programs. Then a relative
debugger automatically compares the data structures and reports any differences while both versions
are executed concurrently. Our approach does not require user-defined assertions but compares
states at the entries and exits of user functions. The relative debugging technique mainly aims at
those data-centric scientific programs that are ported to, or rewritten for, another computer platform,
e.g., a sequential language program being ported to a parallel language. Our approach can be applied -
in the evolution of a broader scope of programs.

Jaramillo et al. [JGS02] developed the comparison checking approach to compare the outputs
and values computed by source level statements in the unoptimized and optimized versions of a
source program. Their approach requires the optimizer writer to specify the mappings between the
unoptimized and optimized versions in the optimization implementation. Their approach locates the
earliest point where the unoptimized and optimized programs differ during the comparison check-
ing. Our approach operates at the granularity of user-function executions and uses two heuristics to
locate deviation roots instead of using the earliest deviation points. Moreover, our approach does
not require any extra user inputs and targets at testing general applications rather than optimizers in

particular.

2.5 Behavior Inference

Ernst et al. [ECGNO1] developed the Daikon tool to dynamically infer operational abstractions

from test executions. Operational abstractions are reported in the form of axiomatic specifica-
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tions [Hoa69, Gri87]. Our test selection approach uses these operational abstractions to guide test
generation and selection. These abstractions describe the observed relationships among the values
of object fields, arguments, and returns of a single method in a class interface, whereas the ob-
server abstractions inferred in our test abstraction approach describe the observed state-transition
relationships among multiple methods in a class interface and use the return values of observers
to represent object states, without explicitly referring to object fields. Henkel and Diwan [HDO03]
discover algebraic abstractions (in the form of algebraic specifications [GH78]) from the execu-
tion of automatically generated unit tests. Their discovered algebraic abstractions usually present
a local view of relationships between two methods, whereas observer abstractions present a global
view of relationships among multiple methods. Observer abstractions are a useful form of behavior
inference, complementing operational or algebraic abstractions.

Whaley et al. [WMLO02] extract Java component interfaces from system-test executions. The
extracted interfaces are in the form of multiple finite state machines, each of which contains the
methods that modify or read the same object field. The observer abstractions inferred by our test
abstraction approach are also in the form of multiple finite state machines, each of which is with
respect to a set of observers (containing one observer by default). Their approach maps all concrete
states that are at the same state-modifying method’s exits to the same abstract state. Our test abstrac-
tion approach maps all concrete states on which observers’ return values are the same to the same
abstract state. Although their approach is applicable to system-test executions, it is not applicable
to the executions of automatically generated unit tests, because their resulting finite state machine
would be a complete graph of methods that modify the same object field. Ammons et al. [ABLO02]
mine protocol specifications in the form of a finite state machine from system-test executions. Yang
and Evans [YE04] also infer temporal properties in the form of the strictest pattern any two meth-
ods can have in execution traces. These two approaches face the same problem as Whaley et al.’s
approach when being applied on the executions of automatically generated unit tests. In summary,
the general approach developed by Whaley et al. [WMLO02], Ammons et al. [ABLO2], or Yang and
Evans [YE04] does not capture object states as accurately as our approach and none of them can be
applied to the executions of automatically generated unit tests.

Given a set of predicates, predicate abstraction [GS97, BMMRO1] maps a concrete state to an

abstract state that is defined by the boolean values of these predicates on the concrete state. Given a
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set of observers, observer abstraction maps a concrete state to an abstract state that is defined by the
return values (not limited to boolean values) of these observers on the concrete state. Concrete states
considered by predicate abstractions are usually those program states between program statements,
whereas concrete states considered by observer abstractions are those object states between method
calls. Predicate abstraction is mainly used in software model checking, whereas observer abstraction
in our approach is mainly used in helping inspection of test executions.

Kung et al. [KSGH94] statically extract object state models from class source code and use them
to guide test generation. An object state model is in the form of a finite state machine: the states
are defined by value intervals over object fields, which are derived from path conditions of method
source; the transitions are derived by symbolically executing methods. Our approach dynamically
extracts finite state machines based on observers during test executions.

Grieskamp et al. [GGSV02] generate finite state machines from executable abstract state ma-
chines. Manually specified predicates are used to group states in abstract state machines to hyper-
states during the execution of abstract state machine. Finite state machines, abstract state machines,
and manually specified predicates in their approach correspond to observer abstractions, concrete
object state machines, and observers in our approach, respectively. However, our approach is totally

automatic and does not require programmers to specify any specifications or predicates.

2.6 Feedback Loop in Program Analysis

There have been several lines of static analysis research that use feedback loops to get better pro-
gram abstractions and verification results. Ball and Rajamani construct a feedback loop between
program abstraction and model checking to validate user-specified temporal safety properties of in-
terfaces [BMMRO1]. Flanagan and Leino use a feedback loop between annotation guessing and
theorem proving to infer specifications statically [FLO1]. Guesses of annotations are automatically
generated based on heuristics before the first iteration. Human interventions are needed to insert
manual annotations in subsequent iterations. Giannakopoulou et al. construct a feedback loop be-
tween assumption generation and model checking to infer assumptions for a user-specified property
in compositional verification [CGP03, GPB02]. Given crude program abstractions or properties,

these feedback loops in static analysis use model checkers or theorem provers to find counterexam-
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ples or refutations. Then these counterexamples or refutations are used to refine the abstractions or
properties iteratively. Our work is to construct a feedback loop in dynamic analysis, correspond- .
ing to the ones in static analysis. Our work does not require users to specify properties, which are
inferred from test executions instead.

Naumovich and Frankl propose to construct a feedback loop between finite state verification
and testing to dynamically confirm statically detected faults [NFOO]. When a finite state verifier
detects a property violation, a testing tool uses the violation to guide test data selection, execution,
and checking. The tool hopes to find test data that shows the violation to be real. Based on the
test information, human intervention is used to refine the model and restart the verifier. This is an
example of a feedback loop between static analysis and dynamic analysis. Another example of a
feedback loop between static analysis and dynamic analysis is profile-guided optimization [PH90].
Our work focuses instead on the feedback loop on dynamic analysis.

Peled et al. present the black box checking [PVY99] and the adaptive model checking ap-
proach [GPY02]. Black box checking tests whether an implementation with unknown structure
or model satisfies certain given properties. Adaptive model checking performs model checking in
the presence of an inaccurate model. In these approaches, a feedback loop is constructed between
model learning and model checking, which is similar to the preceding feedback loops in static anal-
ysis. Model checking is performed on the learned model against some given properties. When
a counterexample is found for a given property, the counterexample is compared with the actual
system. If the counterexample is confirmed, a fault is reported. If the counterexample is refuted,
it is fed to the model learning algorithm to improve the learned model. Another feedback loop is
constructed between model learning and conformance testing. If no counterexample is found for
the given property, conformance testing is conducted to test whether the learned model and the sys-
tem conform. If they do not conform, the discrepancy-exposing test sequence is fed to the model
learning algorithm, in order to improve the approximate model. Then the improved model is used
to perform model checking in the subsequent iteration. The dynamic specification inference in our
feedback loop is corresponding to the model learning in their feedback loop, and the specification-
based test generation in our feedback loop is corresponding to the conformance testing in their
feedback loop. Our feedback loop does not require some given properties, but their feedback loop

requires user-specified properties in order to perform model checking.
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2.7 Conclusion

This chapter has laid out the background for the research developed in this dissertation and discussed
how our research is related to other previous research in software testing. In particular, our research
does not require specifications; therefore, it is related to program-based or interface-based test ade-
quacy criteria. However, our research operates on the semantic domain of program properties rather
than the syntactic domain of program text, which is often the focus of program-based criteria. From
test executions, our research infers behavior, which is often in the form of specifications, and further
uses the inferred behavior to aid testing activities. In this perspective, our research is also related
to specification-based testing. Our test generation approach is a type of bounded-exhaustive test-
ing; however, unlike previous research on bounded-exhaustive testing, our research does not require
specifications such as class invariants. Our test generation approach exploits symbolic execution
to achieve the generation of both receiver-object states (through method sequences) and relevant
method arguments; previous testing research based on symbolic execution either requires specifica-
tions or generates relevant arguments for a single method given a specific receiver object. Different
from previous testing approaches based on structural coverage, either our redundant-test detection
or test selection approach keeps or selects a test if the test exercises new behavior inferred in the
semantic domain of program properties; in addition, the inferred behavior is used to guide test gen-
eration. Different from previous regression testing approach, which compares the black-box outputs
between program versions, our regression testing approach compares the semantic spectra inside
the black box. Finally, we have proposed a feedback loop between test generation and behavior
inference by using behavior inferred from generated tests to guide better test generation and then

using new generated tests to achieve better behavior inference.
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Chapter 3

REDUNDANT-TEST DETECTION

Automatic test-generation tools for object-oriented programs, such as Jtest [Par03] (a commer-
cial tool for Java) and JCrasher [CS04] (a research prototype for Java), test a class by generating a
test suite for it. A test suite comprises a set of tests, each of which is a sequence of method invoca-
tions. When the sequences of two tests are different, these tools conservatively judge that these two
tests are not equivalent and thus both are needed. However, there are many situations where different
method sequences exercise the same behavior of the class under test. Two sequences can produce
equivalent states of objects because some invocations do not modify state or because different state
modifications produce the same state. Intuitively, invoking the same methods with the same inputs
(i.e., the equivalent states of receiver objects and arguments) is redundant. A test is redundant if
the test includes no new method invocation (i.e., method invocation whose input is different from
the input of any method invocation in previous tests). These redundant tests increase the cost of
generating, running, inspecting, maintaining a test suite but do not increase a test suite’s ability to
detect faults or increase developers’ confidence on the code under test.

This chapter presents our Rostra approach for detecting redundant tests based on state equiva-
lence. In the Rostra approach, we include five techniques for representing the incoming program
state of a method invocation. These five state-representation techniques fall into two types: one is
based on the method sequence that leads to the state, and the other is based on concrete states of the
objects in the program state. If the representations of two states are the same, we then determine that
two states are equivalent. Based on state equivalence, we have defined redundant tests and imple-
mented a tool that dynamically detects redundant tests in an existing test suite. We have evaluated
Rostra on 11 subjects taken from a variety of sources. The experimental results show that around
90% of the tests generated by Jtest for all subjects and 50% of the tests generated by JCrasher for
almost half of the subjects are redundant. The results also show that removing these redundant tests

does not decrease the branch coverage, exception coverage, and fault detection capability of the test
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suites.

The next section introduces a running example that is used to illustrate our approach. Section 3.2
presents the five techniques for representing states. Section 3.3 defines state equivalence based
on comparing state representation. Section 3.4 defines redundant tests based on state equivalence.
Section 3.5 describes the experiments that we conducted to assess the approach and then Section 3.6

concludes.

3.1 Example

We use an integer stack implementation (earlier used by Henkel and Diwan [HDO03]) as a running
example to illustrate our redundant-test detection techniques. Figure 3.1 shows the relevant parts
of the code. The array store contains the elements of the stack, and size is the number of the
elements and the index of the first free location in the stack. The method push/pop appropri-
ately increases/decreases the size after/before writing/reading the element. Additionally, push/pop
grows/shrinks the array when the size is equal to the whole/half of the array length. The method
isEmpty is an observer that checks if the stack has any elements, and the method equals compares
two stacks for equality.

The following is an example test suite (written in the JUnit framework [GB03]) with three tests

for the IntStack class:

public class IntStackTest extends TestCase {
public void testl() {
IntStack sl = new IntStack();
sl.isEmpty();
sl.push(3);
sl.push(2);
sl.pop();
sl.push(5);

public vold test2() {
IntStack s2 = new IntStack();
s2.push(3);
s2.push(5);



public class IntStack {

private int([] store;

private int size;

private static final int INITIAL_CAPACITY = 10;

publ

ic IntStack() {

this.store = new int{INITIAL_CAPACITY];

this.size = 0;

}
publ
if

}

ic void push(int value) {

(this.size == this.store.length) {
int{] store = new int([this.store.length * 2];
System.arraycopy (this.store, 0, store, 0, this.size);

this.store = store;

this.store{this.size++] = value;

}
publ
re
}
publ
re
}
publ
it

ic int pop() {

turn this.store[--this.size];

ic boolean isEmpty() {

turn (this.size == 0);

ic boolean equals(Object other) {

(! (other instanceof IntStack)) return false;

IntStack s = (IntStack)other;

if
fo

re

(this.size != s.size) return false;
r (int i = 0; i < this.size; i++)
1f (this.store[i] != s.store[i]) return false;

turn true;

Figure 3.1: An integer stack implementation
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publ

ic void test3() {

IntStack s3 = new IntStack();
s3.push(3);

s3.push(2);

s3.pop();
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Table.3.1: State representation and comparison

type technique representation comparison

method sequences | WholeSeq the entire method sequence | equality

ModifyingSeq | a part of the method sequence | equality

concrete states WholeState the entire concrete state isomorphism
MonitorEquals | a part of the concrete state isomorphism
PairwiseEquals | the entire concrete state equals

A test suite consists of a set of tests, each of which is written as a public method. Each tes? has
a sequence of method invocations on the objects of the class as well as the argument objects of the
class’s methods. For example, test2 creates a stack s2 and invokes two push methods on it. Some
existing test-generation tools such as Jtest [Par03] and JCrasher [CS04] generate tests in such a form
as specified by the JUnit framework [GBO3]. For these generated tests, the correctness checking
often relies on the code’s design-by-contract annotations [Mey92, LBR98], which are translated
into run-time checking assertions [Par03, CLO2]. If there are no annotations in the code, the tools
only check the robustness of the code: whether the test execution on the code throws uncaught

exceptions [CS04].

3.2 State Representation

To define a redundant test (described in Section 3.4), we need to characterize a method invocation’s
incoming program state, which is called method-entry state. A method-entry state describes the
receiver object and arguments before a method invocation. Table 3.1 shows the techniques that we
use to represent and compare states. Different techniques use different representations for method-
entry states and different comparisons of state representations. Each of these five techniques uses
one of the two types of information in representing states: 1) method sequences and 2) concrete

states of the objects. We next explain the details of these two types and all five techniques.
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3.2.1 Method Sequences

Each execution of a test creates several objects and invokes methods on these objects. The rep-
resentation based on method sequences represents states using sequences of method invocations,
following Henkel and Diwan’s representation [HDO03]. The state representation uses symbolic ex-

pressions with the concrete grammar shown below:

exp ::=prim | invoc “. state” | invoc “. retval”
args =€ | exp | args “,” exp
invoc ::=method ““ (" args “)”

prim::= “null” | “true” l “false” | uo” l ul” l “_ln l ,

Each object or value is represented with an expression. Arguments for a method invocation
are represented as sequences of zero or more expressions (separated by commas); the receiver of
a non-static, non-constructor method invocation is treated as the first method argument. A static
method invocation or constructor invocation does not have a receiver. The .state and .retval
expressions denote the state of the réceiver after the invocation and the return of the invocation,
respectively. For brevity, the grammar shown above does not specify types, but the expressions are
well-typed according to the Java typing rules [AGHO00]. A method is represented uniquely by its
defining class, name, and the entire signature. For brevity, we do not show a method’s defining class
or signature in the state-representation examples below.

For example, the state of s2 at the end of test2 is represented as

push (push(<init>() .state, 3) .state, 5).state,
where <init> represents the constructor that takes no receiver and <init>() . state represents
the object created by the constructor invocation. This object becomes the receiver of the method
invocation push (3), and so on.

A method-entry state is represented by using tuples of expressions (two tuples are equivalent if
and only if their expressions are component-wise identical). For example, the method-entry state
of the last method invocation of test?2 is represented by <push (<init>() .state, 3).state,
5>, where the first expression push (<init>() .state, 3).state denotes the receiver-object
state and the second expression 5 denotes the argument value. When collecting method sequences

for state representation, if a later-encountered expression (or sub-expression) is aliased with an



30

earlier-encountered expression (or sub-expression) in a method-entry state’s representation, we
can replace the representation of the later-encountered expression with the identifier of the first-
encountered aliased expression in the representation. Under this situation, each non-primitive-type
expression in the representation needs to be associated with a unique identifier. For example, con-
sider the following two tests test4 and test5:
public void testd() {
IntStack s4 = new IntStack();

IntStack s = new IntStack();

sd.equals(s);

public void test5() {
IntStack s5 = new IntStack();

s5.equals (s5);

If we do not consider aliasing relationships among expressions in state representation, the method-
entry states of the last method invocation (equals) of the both tests are represented by the same
expression: <<init>().state, <init>().state>. However, these two equals method in-
vocations may exhibit different program behaviors if object identities are compared during the
equals method executions. After aliasing relationships are considered, the method-entry state
representation of equals in test4 is different from the one in test$5, which is then represented
by <<init>().state@l, @1>, where @1 denotes the identifier of t5.

The state representation based on method sequences allows tests to contain loops, arithmetic,
aliasing, and/or polymorphism. Consider the following manually written tests test6 and test7:

public void test6() {

IntStack t = new IntStack():;
IntStack s6 = t;

for (int i = 0; i <= 1; i++)

s6.push(i);

public void test7() {
Int8tack s7 = new IntStack();
int i = 0;
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s7.push(i});
s7.push(i + 1);

Our implementation dynamically monitors the invocations of the methods on the actual objects
created in the tests and collects the actual argument values for these invocations.! It represents each
object using a method sequence; for example, it represents both s6 and s7 at the end of test6é and
test7 as push(push(<init>().state, 0).state, 1).state.

We next describe two techniques that include different methods in the method sequences for

state representation: WholeSeq and ModifyingSeq.

WholeSeq

This WholeSeq technique represents the state of an object with an expression that includes all meth-
ods invoked on the object since it has been created, including the constructor. Our implementation
obtains this representation by executing the tests and keeping a mapping from objects to their cor-
responding expressions.

Recall that each method-entry state is represented as a tuple of expressions that represent the
receiver object and the arguments. Two state representations are equivalent if and only if the tuples
are identical. For example, WholeSeq represents the states before push (2) in test3 and testl as
<push(<init>().state, 3).state, 2>and<push(isEmpty(<init>().state).state,
3) .state, 2>, respectively, and these two state representations are not equivalent.

The WholeSeq technique maintains a table that maps each object to a method sequence that
represents that object. At the end of each method call, the sequence that represents the receiver

object is extended with the appropriate information that represents the call.

ModifyingSeq

The ModifyingSeq technique represents the state of an object with an expression that includes only

those methods that modified the state of the object since it has been created, including the construc-

! Although our implementation needs to run the tests to detect redundant tests and the cost of running redundant tests
is not saved, Section 3.4 presents the practical applications of our approach.



32

tor. Our implementation monitors the method executions to determine at run time whether they
modify the state.

Similar to the WholeSeq technique, the ModifyingSeq technique also maintains a table that
maps each object to a method sequence that represents that object. The sequence is extended with
the appropriate information that represents the call only when the method execution has modified
the receiver. ModifyingSeq dynamically monitors the execution and determines that the receiver
is modified if there is a write to a field that is reachable from the receiver. ModifyingSeq builds
and compares method-entry states in the same way as WholeSeq; however, because ModifyingSeq
uses a coarser representation for objects than WholeSeq, ModifyingSeq can find the representations
of more method-entry states to be equivalent. For example, isEmpty does not modify the state
of the stack, so ModifyingSeq represents the states before push (2) in both test3 and testl as

<push (<init>() .state, 3).state, 2> and thus finds their representations to be equivalent.

3.2.2 Concrete States

The execution of a method operates on the program state that includes a program heap. The repre-
sentation based on concrete states considers only parts of the heap that are relevant for affecting a
method’s execution; we also call each part a “heap” and view it as a graph: nodes represent objects
and edges represent fields. Let P be the set consisting of all primitive values, including null, inte-
gers, etc. Let O be a set of objects whose fields form a set F. (Each object has a field that represents

its class, and array elements are considered index-labeled object fields.)

Definition 1. A heap is an edge-labelled graph (O, E), where E = {{o, f,0o')jo € O, f € F,0' €
OU P}.

Heap isomorphism is defined as graph isomorphism based on node bijection [BKMO02].

Definition 2. Two heaps (O1, E1) and (O2, E») are isomorphic iff there is a bijection p : O; — O2

such that:

Ey = {{p(0),f,p(c")) (0, f,0) € B1,0' € O1}U
{(p(0), £,9")|{o, f,0') € E1,0 € P}.
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Map ids; // maps nodes into their unique ids
int{] linearize(Node root, Heap <O,E>) {
ids = new Map();
return lin(root, <O,E>);
}
int[] lin(Node root, Heap <O,E>} {
if (ids.containsKey(root))
return singletonSequence(ids.get(root));
int id = ids.size{() + 1;
ids.put{root, id);
int[] seq = singletonSequence(id);
Edge(] fields = sortByField({ <root, £, o> in E });
foreach (<root, f, o> im fields) {
1f (isPrimitive (o))
seq.add(uniqueRepresentation(o));
else
seq.append(lin(o, <0,E>));
}

return seq;

Figure 3.2: Pseudo-code of linearization

The definition allows only object identities to vary: two isomorphic heaps have the same fields
for all objects and the same values for ali primitive fields.

Because only parts of the program heap before a method invocation are relevant for affecting the
method’s execution, a method-entry state of a method invocation is represented with rooted heaps,

instead of the whole program heap.

Definition 3. A rooted heap is a pair (r,h) of a root object v and a heap h whose all nodes are

reachable from r.

Although no polynomial-time algorithm is known for checking isomorphism of general graphs,
it is possible to efficiently check isomorphism of rooted heaps. Our implementation linearizes
rooted heaps into sequences such that checking heap isomorphism corresponds to checking sequence
equality. Figure 3.2 shows the pseudo-code of the linearization algorithm; similar linearization

algorithms [VHBP0O, RDHIO03, Ios02, AQR *04] have been used in model checking [CGP99]. The
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linearization algorithm traverses the entire rooted heap in the depth-first order, starting from the
root. When the algorithm visits a node for the first time, it assigns a unique identifier to the node,
keeping this mapping in ids to use again for nodes that appear in cycles. We can show that the

linearization normalizes rooted heaps into sequences.
Theorem 1. Tiwo rooted heaps (01, h1) and (03, hy) are isomorphic iff 1inearize(o1, h1) =linearize(og, hy).

We next describe three techniques that use concrete states in state representation: WholeState,

MonitorEquals, and PairwiseEquals.

WholeState

The WholeState technique represents the method-entry state of a method invocation using the heap
rooted from the receiver object and the arguments.? Two state representations are equivalent iff
the sequences obtained from their linearized rooted heaps are identical. Our implementation uses
Java reflection [AGHO0] to recursively collect all the fields that are reachable from the receiver and
arguments before a method invocation.

For example, the following left and right columns show the state representations of s1 and s2

before push (5) in testl and test2, respectively:

// sl before push(S) // s2 before push(5)
store = €1 store = €1
store.length = 10 store.length = 10
store[0] = 3 store[0] = 3
storell] = 2 store[l] = 0
store(2] =0 store[2] = 0
store(9] = 0 storel9] =0

size = 1 size = 1

In both state representations, being of the integer array type, the store field is considered as a

node (not being a primitive value); therefore, the linearization algorithm assigns a unique identifier

The linearization algorithm in Figure 3.2 assumes only one root; however, the method-entry state of a method in-
vocation is represented by the heap rooted from multiple nodes including both the receiver object and the arguments,
when some arguments are also object references. To handle multiple roots, we can create a virtual node that points to
the receiver object and the arguments, and then use the algorithm to linearize the heap rooted from this virtual node.
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.81 to store. These two state representations are not equivalent, because the primitive values of the

store[1] field are different.

MonitorEquals

Like WholeState, MonitorEquals also represents a state with a rooted heap, but this heap is only a
subgraph of the entire rooted heap. The MonitorEquals technique leverages user-defined equals
methods to extract only the relevant parts of the rooted heap. MonitorEquals obtains the values
{vo,...,vn) of a method invocation’s receiver and arguments. It then invokes v;.equals (v;)
for each non-primitive v; and monitors the field accesses that these executions make. Then the
linearization algorithm in Figure 3.2 is revised to linearize only nodes (fields) that are accessed
during the equals executions. The rationale behind MonitorEquals is that these executions access
only the relevant object fields that define an abstract state.

MonitorEquals represents each method-entry state as a rooted heap whose edges consist only
of the accessed fields and the edges from the root. Two state representations are equivalent iff the
sequences obtained from their linearized rooted heaps are identical.

For example, the following left and right columns show the state representations of s1 and s2

before push (5) in testl and test2, respectively:

// sl.equals(sl) // s2.equals(s2)

// before sl.push(5) // before s2.push(5)
store = @1 store = €l

store[0] = 3 store{0] = 3

size = 1 size = 1

The execution of sl.equals(sl) or s2.equals(s2) before push(5) accesses only the
fields size, store, and elements of store whose indices are up to the value of size. Then
although WholeState finds the state representations of the method-entry states before push (5) in
testl and test2 are not equivalent, MonitorEquals find them to be equivalent.

To collect the representation for the method-entry state of a method invocation, our implemen-
tation inserts at the method entry the code that invokes v;.equals (v;) for the receiver and each
non-primitive argument v; before a method invocation. It then inserts code before field-access byte-

code instructions to monitor their executions so that it can collect all fields that are accessed within
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the equals executions. The MonitorEquals technique needs to carefully avoid the common opti-
mization pattern that compares the receiver and the argument for identity this == other within
equals methods; if the pattern appears within equals methods, MonitorEquals may collect fewer

fields than desired.

PairwiseEquals

Like MonitorEquals, the PairwiseEquals technique also leverages user-defined equals methods
to consider only the relevant parts of the rooted heap. It implicitly uses the entire program heap
to represent method-entry states. However, it does not compare (parts of) states by isomorphism.
Instead, it runs the test to build the concrete objects that correspond to the receiver and arguments,
and then uses the equals method to compare pairs of states. It assigns a unique identifier to
a state s; as its state representation if there exists no previously encountered state s such that
81.equals(s2) returns true; otherwise, s;’s representation is the unique identifier assigned to so.
The state representations of two states s; and s; are equivalent iff the states’ assigned identifiers are
identical (that is, 81 . equals (s2) returns true).

PairwiseEquals can find more object’s representations to be equivalent than MonitorEquals. For
example, consider a class that implements a set using an array. PairwiseEquals reports the represen-
tations of two objects to be equivalent if they have the same set of array elements, regardless of the
order, whereas MonitorEquals reports the representations of two objects with the same elements but
different order to be nonequivalent. However, when representing the method-entry state of a method
invocation, unlike MonitorEquals, PairwiseEquals fails to include aliasing relationships among the
receiver, arguments, and their object fields. For example, the method-entry state representations
of equals in both test4 and test5 are the same, being <el, el>, where el is the identifier
assigned to s, s4, and s5.

Our implementation collects the objects for the receiver and arguments and then compares them
by using Java reflection [AGHO0] to invoke equals methods. Note that subsequent test execu-
tion can modify these objects, so PairwiseEquals needs to reproduce them for later comparison.
Our implementation re-executes method sequences to reproduce objects; an alternative would be to

maintain a copy of the objects.
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3.3 State Equivalence

In the previous section (Section 3.2), we have presented five techniques for representing the method-
entry state of a method invocation, and have also described how to determine whether two state
representations are equivalent. Our objective is to determine whether two method-entry states are
equivalent such that invoking the same method on these two method-entry states exhibits the same
program behavior, thus having the same fault-detection capability. Several previous projects [BGM91,
DF94, HDO03] defined state equivalence by using observational equivalence [DF94,L.G00]. How-
ever, checking it precisely is expensive: by definition it takes infinite time (to check all method
sequences), SO we use state-representation equivalence presented in the previous section to approx-
imate state equivalence. Observational equivalence, as well as our whole approach, assumes that
method executions are deterministic. For example, it is assumed that there is no randomness or
multi-threading interaction during method executions; otherwise, different executions for the same
method input may produce different results, so model-checking techniques [CGP99] may be more
applicable than testing.

When we use state-representation equivalence to approximate state equivalence, the five tech-

niques have different tradeoffs in the following aspects:

Safety. We want to keep two method executions if their method invocations are on two nonequiva-
lent method-entry states; otherwise, discarding one of them may decrease a test suite’s fault-
detection capability. Our approximation is safe (or conservative) if the approximation pro-
duces no false negative, where a false negative is defined as a state that is not equivalent to

another one but their state representations are equivalent.

Precision. We want to reduce the testing efforts spent on invoking methods on equivalent method-
entry states; therefore, we want to reduce false positives, where a false positive is defined as a

state that is equivalent to another one but their state representations are not equivalent.

Requirements. Different techniques have different requirements in the access of the bytecode un-

der test, time overhead, space overhead, etc.
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3.3.1 Safety

We next discuss under what conditions our techniques are not safe and propose extensions for our
techniques to make our techniques safe. Two techniques based on method sequences (WholeSeq
and ModifyingSeq) are not safe: because the grammar shown in Section 3.2.1 does not capture a
method execution’s side effect on an argument, a method can modify the state of a non-primitive-
type argument and this argument can be used for another later method invocation. Following Henkel
and Diwan’s suggested extension [HDO03), we can enhance the first grammar rule to address this

issue:
exp ::=prim | invoc “. state” | invoc “. retval” | invoc “.arg;”

where the added expression (invoc “. arg;”) denotes the state of the modified sth argument after the
method invocation.

Two techniques based on method sequences (WholeSeq and ModifyingSeq) are not safe if test
code modifies directly some public fields of an object without invoking any of its methods, because
these side effects on the object are not captured by method sequences. To address this issue, the
implementation of the techniques can be extended to create a public field-writing method for each
public field of the object, and monitor the static field access in the test code. If our implementation
detects at runtime the execution of a field-write instruction in test code, it inserts a corresponding
field-writing method invocation in the method-sequence representation.

WholeState, MonitorEquals, and PairwiseEquals are not safe when the execution of a method
accesses some public static fields that are not reachable from the receiver or arguments, or accesses
the content of a database or file uncontrolled through the receiver or arguments. We can use static
analysis to determine a method execution’s extra inputs besides the receiver and arguments, and
then collect the state of these extra inputs as a part of the method-entry state.

Two techniques based on user-defined equals methods (MonitorEquals and PairwiseEquals)
are not safe if the equals methods are implemented not to respect observation equivalence, such
as not respecting the contract in java.lang.Object [SM03]. The contract requires that each
equals implements an equivalence relation, i.e., it should be reflexive, symmetric, and transitive,
In practice, we have found most equals methods to implement observational equivalence; however,

if equals is weaker (i.e., returns true for some objects that are not observationally equivalent),
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our techniques based on equals may not be safe. Although the user need to carefully implement
the equals methods in order to guarantee the safety, our implementation can dynamically check an
approximation of observational equivalence for equals and help the user tune the method.
PairwiseEquals is not safe when aliasing relationships among the receiver, arguments, and their
object fields can affect the observational equivalence, because PairwiseEquals cannot capture alias-

ing relationships in its representation, as we discussed in Section 3.2.

3.3.2 Precision

When all five techniques are safe, determined by the mechanisms of representing states, their preci-
sion is in increasing order from the lowest to highest: WholeSeq, ModifyingSeq, WholeState, Moni-
torEquals, and PairwiseEquals. We next discuss under what conditions one technique may generally
achieve higher precision than its preceding technique in the list. ModifyingSeq may achieve higher
precision than WholeSeq when there are invocations of state-preserving methods (e.g., isEmpty)
and these invocations appear in method sequences that represent object states. WholeState may
achieve higher precision than ModifyingSeq when there are invocations of state-modifying meth-
ods (e.g., remove) that revert an object’s state back to an old state that was reached previously
with a shorter method sequence. MonitorEquals may achieve higher precision than WholeState
when some fields of an object are irrelevant for affecting observational equivalence. PairwiseE-
quals may achieve higher precision than MonitorEquals when there are two objects s; and sz where
81.equals (s2) returns true but they have different linearized heaps that consist of fields accessed
within s; . equals (S1) or s2.equals (s2). The precision of MonitorEquals or PairwiseEquals re-
lies on the user-defined equals method. If equals is stronger (i.e., returns false for two objects
that are observationally equivalent), MonitorEquals or PairwiseEquals may not achieve 100% pre-

cision.

3.3.3 Requirements

Our implementations of five techniques operate on Java bytecode without requiring Java source
code. Unlike WholeState or MonitorEquals, our implementation of WholeSeq, ModifyingSeq, or

PairwiseEquals does not require to access the internal states or the bytecode of the class under test.
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These three techniques can be applied when the internal states or the bytecode of the class under
test are not available, for example, when testing components [HCO01] or web services [ACKMO02].
Although our implementation of WholeSeq or ModifyingSeq uses dynamic analysis, we can per-
form a static analysis on the test code to gather the method sequence without executing the test code.
Although this static analysis would be conservative and less precise than the dynamic analysis, it
would enable the determination of state equivalence and the detection of redundant tests (described

in the next section) without executing them.

Generally WholeSeq and MddifyingSeq require less analysis time than WholeState and Mon-
itorEquals, because WholeSeq and ModifyingSeq do not require the collection of object-field val-
ues. ModifyingSeq requires more time than WholeSeq, because our implementation of Modify-
ingSeq also needs to dynamically determine whether a method execution is a state-modifying one.
When there are a relatively large number of nonequivalent states, PairwiseEquals typically requires
more time than MonitorEquals because PairwiseEquals compares the state under consideration with
those previously encountered nonequivalent objects one by one, whereas our implementation of
MonitorEquals uses efficient hashing and storing to check whether the state under consideration
is equivalent to one of those previously encountered states, because we know the representation

(sequence).

ModifyingSeq requires less space than WholeSeq. When tests contain relatively short sequences,
WholeSeq or ModifyingSeq may require less space than WholeState or MonitorEquals for storing
the state representation of a single nonequivalent state; however, the total number of nonequivalent
states determined by thleSeq or ModifyingSeq is larger than the total number of nonequiva-
lent states determined by WholeState or MonitorEquals. MonitorEquals requires less space than
WholeState. PairwiseEquals may require less space for storing state representations (being just
unique identifiers) than WholeState or MonitorEquals, whose state representations consist of se-
quences linearized from object fields; however, our implementation of PairwiseEquals needs to keep

a copy of each nonequivalent object around for later comparison, as was described in Section 3.2.
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3.4 Redundant Tests

‘We next show how equivalent states give rise to equivalent method executions and define redundant
tests and test-suite minimization.

Each test execution produces several method executions.
Definition 4. A method execution {(m, s) is a pair of a method m and a method-entry state s.

We denote by [t] the sequence of method executions produced by a test ¢, and we write (m, s) €
[t] when a method execution (m, s} is in the sequence for t. We define equivalent method executions

based on equivalent states.

Definition 5. Two method executions (my, $1) and (my, ss) are equivalent iff my = mq and s; and

8o are equivalent.
We further consider minimal test suites that contain no redundant tests.

Definition 6. A test ¢ is redundant for a test suite S iff for each method execution of [t], there exists

an equivalent method execution of some test from S.
Definition 7. A test suite S is minimal iff there is no t € S that is redundant for S\{t}.

Minimization of a test suite S’ finds a minimal test suite S C S’ that exercises the same set of

nonequivalent method executions as S’ does.

Definition 8. A fest suite S minimizes a test suite S' iff S is minimal and for eacht' € S’ and each

(m/!, s’y € [t'], there exist t € S and (m, s) € [t] such that (m/, s') and (m, s) are equivalent.

Given a test suite S/, there can be several test suites S C S’ that minimize $’. Among the test
suites that minimize 57, we could find a test suite that has the smallest possible number of tests or the
smallest possible total number of method executions for the tests. Finding such test suites reduces to
optimization problems called “minimum set cover” and “minimum exact cover”, respectively; these
problems are known to be NP complete, and in practice approximation algorithms are used [Joh74].
Our implementation runs the tests in a given test suite with its default test-execution order (such
as the one controlled by the JUnit framework [GB03]) and then minimizes the test suite by using

a greedy algorithm. Running the tests in different orders can cause our implementation to produce
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different minimized test suites; however, these different minimized test suites produce the same total
number of nonequivalent method executions.

In particular, our implementation collects method-entry states dynamically during test execu-
tions. We use the Byte Code Engineering Library [DvZ03] to instrument the bytecodes of the
classes under test at the class-loading time. The instrumentation adds the code for collecting state
representations at the entry of each method call in a test. For some techniques, it also adds the code
for monitoring instance-field reads and writes. Our instrumentation collects the method signature,
the receiver-object reference, and the arguments at the beginning of each method call in the test. The
receiver of these calls is usually an instance object of the class under test. The instrumentation does
not collect the method-entry states for calls that are internal to these objects. Different techniques
also collect and maintain additional information. After finishing running the given test suite, our
implementation outputs a minimized test suite in the form of a JUnit test class [GB03].

Our redundant-test detection techniques can be used in the following four practical applications:
test-suite assessment, test selection, test-suite minimization, and test generation.

Assessment: Our techniques provide a novel quantitative comparison of test suites, especially
those generated by automatic test-generation tools. For each test suite, our techniques can find
nonequivalent object states, nonequivalent method executions, and non-redundant tests. We can
then use their metrics to compare the quality of different test suites.

Selection: Our techniques can be used to select a subset of automatically generated tests to
augment an existing (manually or automatically generated) test suite. We feed the existing test suite
and the new tests to our techniques, running the existing test suite first. The minimal test suite that
our techniques then produce will contain those new tests that are non-redundant with respect to the
existing test suite.

Minimization: Our techniques can be used to minimize an automatically generated test suite
for correctness inspection and regression executions. Without a priori specifications, automatically
generated tests typically do not have test oracles for correctness checking, and the tester needs to
manually inspect the correctness of (some) tests. Our techniques help the tester to focus only on the
non-redundant tests, or more precisely the nonequivalent method executions. Running redundant
tests is inefficient, and our techniques can remove these tests from a regression test suite. However,

we need to be careful because changing the code can make a test that is redundant in the old code
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to be non-redundant in the new code. If two method sequences in the old code produce equivalent
object states, and the code changes do not impact these two method sequences [RT01], we can still
safely determine that the two sequences in the new code produce equivalent object states. Addition-
ally, we can always safely use our techniques to perform regression test prioritization [RUC01,ST02]
instead of test-suite minimization.

Generation: Existing test-generation tools can incorporate our techniques to avoid generating
and executing redundant tests. Although our implementations of the techniques are using dynamic
analysis, they can determine whether a method execution me is equivalent to some other execution
before running me; the method-entry state required for determining equivalence is available before
the execution. Test-generation tools that execute tests, such as Jtest [Par03] or AsmLT [GGSVO02],
can easily integrate our techniques. Jtest executes already generated tests and observes their behav-
ior to guide the generation of future tests. Running Jtest is currently expensive—it spends over 10
minutes generating the tests for relatively large classes in our experiments (Section 3.5)—but much
of this time is spent on redundant tests. In the next chapter, we will present how our techniques can

be incorporated to generate only non-redundant tests.

3.5 Evaluation

This section presents two experiments that assess how well Rostra detects redundant tests: 1) we
investigate the benefit of applying Rostra on tests generated by existing tools; and 2) we validate
that removing redundant tests identified by Rostra does not decrease the quality of test suites. We
have performed the experiments on a Linux machine with a Pentium IV 2.8 GHz processor using

Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

3.5.1 Experimental Setup

Table 3.2 lists the 11 Java classes that we use in our experiments. The IntStack class is our running
example. The UBStack class is taken from the experimental subjects used by Stotts et al. [SLAO2].
The ShoppingCart class is a popular example for JUnit [Cla00]. The BankAccount class is
an example distributed with Jtest [Par03]. The remaining seven classes are data structures used to

evaluate Korat [BKM02, MAD103]. The first four columns show the class name, the number of
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Table 3.2: Experimental subjects

class meths | public | ncnb | Jtest | JCrasher
meths | loc | tests tests
IntStack 5 5 44 94 6
UBStack 11 11 | 106 | 1423 14
ShoppingCart 9 8 70 | 470 31
BankAccount 7 7 34| 519 135
BinSearchTree 13 8| 246 | 277 56
BinomialHeap 22 17 | 535 | 6205 438
DisjSet 10 71 166 | 779 64
FibonacciHeap 24 14 | 468 | 3743 150
HashMap 27 19 1 597 | 5186 47
LinkedList 38 32| 398 | 3028 86
TreeMap 61 25 | 949 | 931 1000

methods, the number of public methods, and the number of non-comment, non-blank lines of code

for each subject.

We use two third-party test generation tools, Jtest [Par03] and JCrasher [CS04], to automatically
generate test inputs for program subjects. Jtest allows the user to set the length of calling sequences
between one and three; we set it to three, and Jtest first generates all calling sequences of length
one, then those of length two, and finally those of length three. JCrasher automatically constructs
method sequences to generate non-primitive arguments and uses default data values for primitive
arguments. JCrasher generates tests as calling sequences with the length of one. The last two

columns of Table 3.2 show the number of tests generated by Jtest and JCrasher.

Our first experiment uses the five techniques to detect redundant tests among those generated
by Jtest and JCrasher. Our second experiment compares the quality of original and minimized
test suites using 1) branch coverage, 2) nonequivalent, uncaught-exception count, and 3) fault-
detection capability. We adapted Hansel [Han03] to measure branch coverage and nonequivalent,

uncaught-exception count. (Two exceptions are equivalent if they have the same throwing location
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and type.) To estimate the fault-detection capability, we use two mutation-analysis tools for Java:
Jmutation [MKOO02] and Ferastrau [MAD103]. We select the first 300 mutants (i.e., 300 versions
each of which is seeded with a bug) produced by Jmutation and configure Ferastrau to produce
around 300 mutants for each subject. We estimate the fault-detection capability of a test suite by
using the mutant killing ratio of the test suite, which is the number of the killed mutants divided by
the total number of mutants. To determine whether a test kills a mutant, we have written specifica-
tions and used the JML runtime verifier [CL02] to compare the method-exit states and returns of the

original and mutated method executions.

3.5.2  Experimental Results

Figures 3.3 and 3.4 show the results of the first experiment—the percentage of redundant tests
generated—for Jtest and JCrasher, respectively. We also measured the percentages of equivalent
object states and equivalent method executions; they have similar distributions as the redundant
tests. We observe that all techniques except WholeSeq identify around 90% of Jtest-generated tests
to be redundant for all subjects and 50% of JCrasher-generated tests to be redundant for five out
of 11 subjects. Possible reasons for higher redundancy of Jtest-generated tests include: 1) Jtest

generates more tests; and 2) Jtest-generated tests have longer call length.

We observe a significant improvement achieved by ModifyingSeq over WholeSeq in detecting
redundant tests. In Figure 3.3, this improvement for IntStack is not so large as the one for other
subjects, because IntStack has only one state-preserving method (i sEmpty), whereas other sub-
jects have a higher percentage of state-preserving methods in their class interfaces. There are some
improvements achieved by the last three techniques based on concrete states over ModifyingSeq.
But there is no significant difference in the results for the last three techniques. We hypothesize that
our experimental subjects do not have many irrelevant object fields for defining object states and/or
the irrelevant object fields do not significantly affect the redundant test detection.

Figures 3.5 and 3.6 show the elapsed real time of running our implementation to detect redundant
tests generated by Jtest and JCrasher, respectively. We observe that the elapsed time is reasonable:
it ranges from a couple of seconds up to several minutes, determined primarily by the class com-

plexity and the number of generated tests. In Figures 3.5, the elapsed time of MonitorEquals for
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BinomialHeap is relatively expensive, because the number of generated tests for BinomialHeap
is relatively large and invoking its equals is relatively expensive.

To put the analysis time of our techniques into perspective, we need to consider the whole
test generation: if test-generation tools such as Jtest incorporated our techniques into generation,
the time savings achieved by avoiding redundant tests would significantly exceed the extra cost of
running our techniques. The next chapter will show how we can avoid generating redundant tests

based on our techniques.

Table 3.3 shows the results of the second experiment: nonequivalent, uncaught-exception counts
(columns 2 and 3), branch-coverage percentages (columns 4 and 5), killing ratios for Ferastrau mu-
tants (columns 6 and 7), and killing ratios for Jmutation mutants (columns 8 and 9). The columns
marked “jte” and “jer” correspond to Jtest and JCrasher, respectively. The original Jtest-generated
and JCrasher-generated test suites have the same measures as their corresponding Rostra-minimized
test suites in all cases except for the four cases whose entries are marked with “*”, The differences
are due only to the MonitorEquals and PairwiseEquals techniques. The minimized Jtest-generated
test suites for IntStack and TreeMap cannot kill three Ferastrau-generated mutants that the origi-
nal test suites can kill. This shows that minimization based on equals can reduce the fault-detection
capability of a test suite, but the probability is very low. The minimized Jtest-generated test suites
for HashMap and TreeMap cannot cover two branches that the original test suites can cover. We
have reviewed the code and found that two fields of these classes are used for caching; these fields
do not affect object equivalence (defined by equals) but do affect branch coverage. These four
cases suggest a further investigation on the use of equals methods in detecting redundant tests as

future work.

3.5.3 Threats to Validity

The threats to external validity primarily include the degree to which the subject programs and
third-party test generation tools are representative of true practice. Our subjects are from various
sources and the Korat data structures have nontrivial size for unit tests. Of the two third-party tools,
one—Jtest—is popular and used in industry. These threats could be further reduced by experiments

on various types of subjects and third-party tools. The main threats to internal validity include
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Table 3.3: Quality of Jtest-generated, JCrasher-generated, and minimized test suites

class excptn | branch | Ferastrau | Jmutation
count | cov [%] | kill [%] | kill [%)]

jte |jer| jte| jer| jte| jer| jte| jer
IntStack 1| 1| 67| 50i*45; 40| 24| 23
UBStack 2|1 0| 94| 56| 57| 25 78| 37
ShoppingCart | 2| 1| 93| 71| 57| 51| 80| 20
BankAccount | 3| 3|100(100| 98| 98| 89 89
BinSearchTree | 3| 0| 67| 14| 33| 5| 57| 11
BinomialHeap | 3| 3| 90| 66| 89| 34| 64| 48
DisjSet 0{ 0| 61 51 26| 18| 40| 29
FibonacciHeap | 2| 2| 86| 58| 73| 21| 68| 35
HashMap 1] 1(*72| 43| 52 23| 48| 24
LinkedList 19110 79| 48| 24| 7| 25 9
TreeMap 4| 3|*33| 11{*16| 4| 16 7

instrumentation effects that can bias our results. Faults in our implementation, Jtest, JCrasher,
or other measurement tools might cause such effects. To reduce these threats, we have manually

inspected the collected execution traces for several program subjects.

3.6 Conclusion

Object-oriented unit tests consist of sequences of method invocations. Behavior of an invocation
depends on the state of the receiver object and method arguments at the beginning of the invocation.
Existing tools for automatic generation of object-oriented test suites, such as Jtest and JCrasher for
Java, typically ignore this state and thus generate redundant tests that exercise the same method
behavior, which increases the testing time without increasing the ability to detect faults.

We have developed five fully automatic techniques for detecting redundant object-oriented unit
tests. We have proposed four practical applications of the framework. We have conducted exper-

iments that evaluate the effectiveness of our techniques on detecting redundant tests in test suites
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generated by two third-party test-generation tools. The results show that our techniques can sub-
stantially reduce the size of these test suites without decreasing their quality. These results strongly
suggest that tools and techniques for generation of object-oriented test suites must consider avoiding

redundant tests.
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Chapter 4

NON-REDUNDANT-TEST GENERATION

Unit tests are becoming an important component of software development. The Extreme Pro-
gramming discipline [Bec00, Bec03], for example, leverages unit tests to permit continuous and
controlled code changes. Although manually created unit tests are valuable, they often do not cover
sufficient behavior of the class under test, partly because manual test generation is time consuming
and developers often forget to create some important test inputs. While recognizing the impor-
tance of unit tests, many companies have provided tools, frameworks, and services around unit
tests, ranging from specialized test frameworks, such as JUnit [GBO03] or Visual Studio’s new team
server {Mic04], to automatic unit-test generation tools, such as Parasoft’s Jtest [Par03] and Aigtar’s
Agitator [Agi04]. However, within constrained resources, existing test-generation tools often do
not generate sufficient unit tests to fully exercise the behavior of the class under test, for exam-
ple, by satisfying the branch-coverage test criterion [Bei90], let alone a stronger criterion, such as
the bounded intra-method path coverage [BLOO] of the class under test. As we have discussed in
Chapeter 3, wasting time on generating and running redundant tests is one main reason for existing
tools not to generate sufficient unit tests given constrained resources.

In order not to be redundant, a test needs to exercise at least one new method execution (one that
is not equivalent to any of those exercised by earlier executed tests). Assume that we have a fixed set
of values for method arguments, then in order to generate a non-redundant test, we need to exercise
at least one new receiver-object state. In other words, we need to explore (new) receiver-object states
in order to generate non-redundant tests. In this chapter, we first present a test-generation approach
that explores concrete states with method invocations (the approach was developed by us [XMNO04a]
and Visser et al. [VPK04] independently). Roughly this approach generates non-redundant tests
only. However, this approach has two issues. First, this approach assumes that a fixed set of relevant
values for method arguments are provided beforehand; supplying these relevant argument values is

often a challenging task for either developers or a third-party testing tool. Second, this approach
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faces a similar state exploration problem as in explicit-state model checking [CGP99].

To tackle these two issues, we have developed a test-generation approach, called Symstra, that
uses symbolic execution [Kin76] of methods to explore symbolic states. Symbolic states, symbolic
representations of states, describe not only single concrete states, but sets of concrete states, and
when applicable, symbolic representations can yield large improvements, also previously witnessed
for example by symbolic model checking [McM93]. We use symbolic execution to produce sym-
bolic states by invoking a method with symbolic variables for primitive-type arguments, instead of
requiring argument values to be provided beforehand. Each symbolic argument represents a set of
all possible concrete values for the argument. We present novel techniques for comparing symbolic
states of object-oriented programs. These techniques allow our Symstra approach to prune the ex-
ploration of object states and thus generate tests faster, without compromising the exhaustiveness of
the exploration. In particular, the pruning preserves the intra-method path coverage of the generated
test suites. We have evaluated our Symstra approach on 11 subjects, most of which are complex
data structures taken from a variety of sources. The experimental results show that our Symstra
approach generates tests faster than the existing concrete-state approaches [VPK04, XMN04b]. Fur-
ther, given the same time for generation, our new approach can generate tests that achieve better
branch coverage than the existing approaches.

The remainder of this chapter is structured as follows: Section 4.1 presents a running example.
Section 4.2 describes the concrete-state approach that generates tests by exploring concrete states.
Section 4.3 introduces the representation of symbolic states produced by symbolic execution. Sec-
tion 4.4 presents the subsumption relationship among symbolic states and Section 4.5 introduces
the Symstra approach that uses state subsumption relationship to prune symbolic-state exploration.
Section 4.6 presents the experiments that we conducted to assess the approach and then Section 4.7

concludes.

4.1 Example

We use a binary search tree implementation as a running example to illustrate our Symstra approach.
Figure 4.1 shows the relevant parts of the code. The binary search tree class BST implements a set

of integers. Each tree has a pointer to the root node. Each node has an element and pointers to the
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class BST implements Set {
Node root;
static class Node {
int value;
Node left;
Node right;
}
public void add{int value) {
if (root == null) { root = new Node(); root.value = value; }
else {
Node t = root;
vwhile (true) {
if (t.value < value) { /* ¢l */
if (t.right == null) {
t.right = new Node(); t.right.value = value;
break;
} else { t = t.right; }
} else if (t.value > value) { /* c2 */
if (t.left == null) {
t.left = new Node(); t.left.value = value;
break;
} else { t = t.left; }

} else { /* no duplicates*/ =returm; } /* c3 */

}
}
}
public void remove(int value) { ... }
public boolean contains(int value) { ... }

Figure 4.1; A set implemented as a binary search tree

left and right children. The class also implements the standard set operations: add adds an element,
if not already in the tree, to a leaf; remove deletes an element, if in the tree, replacing it with the
smallest larger child if necessary; and contains checks if an element is in the tree. The class also

has a default constructor that creates an-empty tree.

Some tools such as Jtest [Par03] or JCrasher [CS04] test a class by generating random sequences

of methods; for BST, they could for example generate the following tests (written in the JUnit
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framework [GBO03]):

public class BSTTest extends TestCase {
public veoid testl() {
BST tl = new BST();
tl.add(0);
tl.add(-1);

tl.remove(0);

public void test2() {
BST t2 = new BST();
t2.add(2147483647) ;
t2.remove(2147483647);
t2.add(-2147483648);

Each test has a method sequence on the objects of the class, e.g., testl creates a tree t1,
invokes two add methods on it, and then one remove. One strategy adopted by existing tools is
to exhaustively explore all method sequences or randomly explore some method sequences up to a
given length. These tools consider that two tests are both generated if they have different method
sequences. As we have shown in Chapter 3, the conservative strategy produces a high percentage
of redundant testes. The remainder of the chapter shows how to effectively generate non-redundant
tests that exercise the same program behavior as exercised by those tests generated by exhaustively

exploring all method sequences up to a given length.

4.2 Concrete-State Exploration

Unit-test generation for object-oriented programs consists of two parts: setting up receiver-object
states and generating method arguments. The first part puts an object of the class under test into a
particular state before invoking methods on it. The second part produces particular arguments for
a method to be invoked on the receiver-object state. The concrete-state approach presented in this
section assumes a fixed set of method arguments have been provided beforehand and invoke these

method arguments to explore and set up object states.
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A method-argument state is characterized by a method and the values for the method arguments,
where a method is represented uniquely by its defining class, name, and the entire signature. Two
method-argument states are equivalent iff their methods are the same and the heaps rooted from
their method arguments are equivalent (isomorphic).

Each test execution produces several method executions.

Definition 9. A method execution (s, s,) is a pair of a method-argument state s, and a receiver-

object state s.!
Then we define equivalent method executions based on equivalent states.

Definition 10. Two method executions (3q1,5r1) and (342, 8r2) are equivalent iff sq1 and sq2 are

equivalent, and 8,1 and sy are equivalent.2

Our test generation approach is a type of combinatorial testing. We generate tests to exer-
cise each possible combination of nonequivalent receiver-object states and nonequivalent method-
argument states. In order to generate method-argument states, our implementation monitors and
collects method arguments from the executions of existing tests. This mechanism complements
existing method argument generation based on a dedicated test data pool, which contains default
data values [Par03,CS04] or user-defined data values [Par03]. In practice, programmers often write
unit tests [Bec00, Bec03], and these tests often contain some representative argument values. Our
approach takes advantage of these tests, rather than requiring programmers to explicitly define rep-
resentative argument values. When there are no manually written tests for a class, we collect method
arguments exercised by tests generated by existing test-generation tools, such as Jtest [Par03] and
JCrasher [CS04]. |

In order to prepare nonequivalent receiver-object states, initially we generate a set of tests each
of which consist of only one constructor invocation. These initial tests set up “empty” receiver-

object states. Then we generate new tests to exercise each nonequivalent “empty” object state with

The definition of a method execution is different from the one presented in Section 3.4 of Chapter 3. This chapter rep-
resents the states of argument states and receiver states separately for the convenience of test generation, whereas Chap-
ter 3 represents the states of argument states and receiver states in a single representation for the safety of redundant-test
detection, because there may be some aliasing relationships between an argument and the receiver object, and repre-
senting them in a single representation is needed to capture these relationships conveniently.

2We can show that if two method executions are nonequivalent based on the preceding definition, then these two
method executions are nonequivalent based on the previous definition in Section 3.4 of Chapter 3.
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all nonequivalent method-argument states. After we execute the new generated tests, from the exe-
cution, we collect new object states that are not equivalent to any of those object states that have been
exercised by all all nonequivalent method-argument states. Then we generate new tests to exercise
each new object state with all nonequivalent method-argument states. The same iteration continues
until we tun of memory or time, encounter no new object state, or reach a user-specified iteration
number. The iterations of generating tests are basically a process of exploring object states with
method invocations in a breadth-first manner. The pseudo-code of the test-generation algorithm is
presented in Figure 4.2.

The inputs to our test-generation algorithm include a set of existing tests and a user-defined max-
imum iteration number, which is the maximum length of method sequences in the generated tests.
Our algorithm first runs the existing tests and collects runtime information, including nonequivalent
constructor-argument states and nonequivalent method-argument states. We also collect the method
sequence that leads to a nonequivaleni object state or an argument in a method-argument state. We
use these method sequences to reproduce object states or arguments.

Then for each collected nonequivalent constructor-argument state, we create a new test that
invokes the constructor with the arguments. We run the new test that produces an “empty” receiver-
object state. From the runtime information collected from running the new test, we determine
whether the receiver-object state produced by the constructor execution is a new one (not being
equivalent to any previously collected one); if so, we put it into a frontier set.

Then we iterate each object state in the frontier set and invoke each nonequivalent method-
argument state on the object state. Each combination of an object state and a method argument list
forms a new test. We run the new test and collect runtime information. If the receiver-object state
produced by the last method execution in the new test is a new one, we put the new receiver-object
state into the new frontier set for the next iteration. In the end of the current iteration, we replace
the content of the current frontier set with the content of the new frontier set. We next start the
subsequent iteration until we have reached the maximum iteration number or the frontier set has no
object state. In the end of the algorithm, we return the generated tests collected over all iterations.
These tests are exported to a test class written in the JUnit framework [GB03].

Since invoking a state-preserving method on an object state does not change the state, we can

still invoke other methods on the object state in the same test. We merge generated tests as much
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Set testGenConcreteExp (Set existingTests, int maxIterNum) {
Set newTests = new Set();
RuntimeInfo runtimeInfo = execAndCollect(existingTests);
Set nonEgConstructorArgStates = runtimeInfo.getNonEqConstructorArgStates();
Set nonEgMethodArgStates = runtimeInfo.getNonEgMethodArgStates();
//create empty symbolic states
Set frontiers = new Set();
foreach (constructorArgState in nonEqConstructorArgStates) {
Test newTest = makeTest{constructorArgState);
newTests.add(newTest) ;
runtimeInfo = execAndCollect (newTest);
frontiers.add(runtimeInfo.getNonEqObjState());
}
//exercise new states from each iteration with each method-argument state
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {
Set frontiersForNextIter = new Set();
foreach (objState im frontiers) {
foreach (argState in nonEgMethodArgStates) {
Test newTest = makeTest (objState, argState);
newTests.add (newTest) ;
runtimeInfo = execAndCollect (newTest);

frontiersForNextIter.add(runtimeInfo.getNonEqObjState());

}

frontiers.clear();

frontiers.addall (frontiersForNextlIter) ;

}

return newlests;

Figure 4.2: Pseudo-code implementation of the test-generation algorithm based on exploring con-
crete states.

as possible by reusing and sharing the same object states among multiple method-argument state.
This reduces the number of the generated tests and the execution cost of the generated test suite.
The generated test suite contains no redundant tests, since our combinatorial generation mechanism
guarantees that the last method execution produced by each test is not equivalent to any method

execution produced by earlier executed tests.

Our implementation uses Java reflection mechanisms [AGHO00] to generate and execute new
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Figure 4.3: A part of the explored concrete states

tests online. In the end of test generation, we export the tests generated after each iteration to a
JUnit test class code [GBO3], based on JCrasher’s test code generation functionality [CS04].

When we test BST by using the test generation algorithm in Figure 4.2, we can provide three
values for add’s argument: add (1), add (2), and add (3), and set the maximum iteration number
as three. Figure 4.3 shows a part of the explored concrete states for the BST class. Each explored
state has a heap, which is shown graphically in the figure. The constructor first creates an empty tree.
In the first iteration, invoking add on the empty tree with three arguments (1, 2, and 3) produces
three new states (S2, S3, and Sy), respectively. In the second iteration, invoking add (1) on S, does
not modify the receiver-object state, still being S3. Invoking add (2) and add (3) on S produces
two new states (S5 and Sg), respectively. Similar cases occur on S3 and Sy.

After exploring an edge (state transition), we generate a specific test to exercise this edge. We
generate the test by traversing the shortest path starting from the edge of constructor invocation (new

BST()) to the current edge, and outputting the method invocations along the path. For example, the

test that we generate to exercise the edge from S5 to Ss is:
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public void testEdgeFromS5ToS8() {
BST t = new BST();
t.add(1l);
t.add(3);
t.add(2});

We can see that there are two major issues when we use the test generation algorithm in Fig-
ure 4.2 to test BST. First, the algorithm assumes that developers or third-party tools provide a set of
relevant values for the method arguments. For example, if we want to generate tests to reach a BST
object with eight elements, we need to provide at least eight different values for add’s argument. For
complex classes, it is often a challenging task for developers or third-party tools to produce relevant
values for their method arguments. Second, the algorithm faces the state explosion problem when
exploring concrete states with a even relatively small number of provided method-argument values.
For example, the algorithm runs out of memory when it is used to test BST with seven different
values for the arguments of add and remove and with the maximum iteration number as seven.

In fact, invoking three add method invocations on the empty tree to reach Sy, S, and S3 exercise
the same program behavior: basically these method invocations put an integer into an empty binary
search tree. Invoking add(3) on Sy exercises the same program behavior as invoking add (3)
on S3: basically each method invocation inserts an integer into a binary search tree containing a
smaller integer. To tackle the state exploration problem, we can construct an abstraction function
that maps similar concrete states into a single abstract state. One challenge here is to construct this
abstraction function automatically. The next section presents our new approach, called Symstra,
that uses symbolic execution to automatically group several concrete states into a single symbolic
state, if these concrete states are isomorphic in an abstract level and they are reached by executing

the same path of the program.

4.3 Symbolic-State Representation

The symbolic execution [Kin76] of a method accepts method inputs in the form of symbolic vari-
ables, instead of actual arguments values. In the symbolic execution of an object-oriented program,

the receiver object of a method invocation can be in symbolic states. Symbolic states differ from
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concrete states, on which the usual program executions operate, in that symbolic states contain
a symbolic heap that includes symbolic expressions with symbolic variables (such as symbolic
variables connected with their associated types’ operators), and contain also constraints on these
variables.

We view a symbolic heap as a graph: nodes represent objects (as well as primitive values and
symbolic expressions) and edges represent object fields. Let O be some set of objects whose fields
form a set F'. Each object has a field that represents its class. We consider arrays as objects whose

fields are labelled with (integer) array indexes and point to the array elements.

Definition 11. A symbolic heap is an edge-labelled graph (O, E), where E C O x F x (O U
{nu11} U U) such that for each field f of each o € O exactly one (o, f,0') € E. A concrete heap

has only concrete values: o' € O U {nuli} U P.
Given the definition of a symbolic heap, we can then define a symbolic state formally:
Definition 12. A symbolic state (C, H) is a pair of a constraint and a symbolic heap.

The usual execution of a method starts with a concrete state of the receiver object and method-
argument values, and then produces one return value and one concrete state of the receiver object.
In contrast, the symbolic execution of a method starts with a symbolic state of the receiver object
and symbolic variables of method arguments, and then produces several return values and several
symbolic states of the receiver object. A symbolic execution tree characterizes the execution paths
followed during the symbolic execution of a program. An edge represents a method invocation
whose symbolic execution follows a specific path. A node in the tree represents a symbolic state
produced by symbolically executing a specific path of a method. Figure 4.4 shows a part of the
symbolic execution tree for BST when we invoke a method sequence consisting of only the add
method.

The constructor of BST first creates an empty tree S1, whose constraint is true. Then we invoke
add on S; with symbolic variable z; as the argument. The symbolic execution of add on S can
explore one Path, producing a symbolic state Sz whose heap contains the element 21 and constraint
is still true. In general, while an execution of a method with concrete arguments produces one

state, the symbolic execution of a method with symbolic arguments can produce several states, thus
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Figure 4.4: A part of the symbolic execution tree

resulting in an execution tree. For example, the symbolic execution of the add on Sz with symbolic
variable x5 as the argument produces three symbolic states (S3, Sy, and Ss), which are produced
by following three different paths within add, in particular, taking three different branches (cl, ¢2,
and ¢3) labeled in the method body of add (Figure 4.1): if 21 = x5, the tree does not change, and if

9 > 1 (or z2 < 1), 2 is added in the right (or left) subtree.

Following the typical symbolic executions [Kin76, KPV03, VPK04], our implementation sym-
bolically explores both branches of if statements, modifying the constraint with a conjunct that
needs to hold for the execution to take a certain branch. In this context, the constraint is called path
condition, because it is a conjunction of conditions that need to hold for the execution to take a
certain path and reach the current address. This symbolic execution directly explores every path of
the method under consideration. The common issue in the symbolic execution is that the number of
paths may be infinite (or too large as it grows exponentially with the number of branches). In such

cases, we can use the standard set of heuristics to explore only some of the paths [VPK04, BPS00].

Our implementation executes code on symbolic states by rewriting the code to operate on sym-
bolic expressions [KPV03, VPK04]. Furthermore, Symstra implements the exploration of different
branches by re-executing the method from the beginning for each path, without storing any inter-

mediate states. Note that Symstra re-executes only one method (for different paths), not the whole
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method sequence. This effectively produces a depth-first exploration of paths within one method,
while the exploration of states between methods is breadth-first as explained in the next section.
Our Symstra prototype also implements the standard optimizations for symbolic execution. First,
Symstra simplifies the constraints that it builds at branches; specifically, before conjoining the path
condition so far C and the current branch condition C’ (where C' is a condition from an if or its
negation), Symstra checks if some of the conjuncts in C' implies C'; if so, Symstra does not conjoin
C". Second, Symstra checks if the constraint C&&C" is unsatisfiable; if so, Symstra stops the cur-
rent path of symbolic execution, because it is an infeasible path. The current Symstra prototype can

use the Simplify [DNS03] theorem prover or the Omega library [Pug92] to check unsatisfiability.

4.4 Symbolic-State Subsumption

This section presents techniques that compare two symbolic states: checking isomorphism of their
symbolic heaps and checking implication relationships between their constraints. These techniques
help determine symbolic-state subsumption: whether one symbolic state subsumes the other. We

use symbolic-state subsumption to effectively prune the exploration of symbolic states (Section 4.5).

4.4.1 Heap-Isomorphism Checking

We define heap isomorphism as graph isomorphism based on node bijection [BKM02]. We want
to detect isomorphic heaps because invoking the same methods on them leads to equivalent method
behaviors and redundant tests; therefore, it suffices to explore only one representative from each
isomorphism partition. Nodes in symbolic heaps contain symbolic variables, so we first define a
renaming of symbolic variables. Given a bijection 7 : V — V, we extend it to the whole 7 :
U — U as follows: 7(p) = pforallp € P, and 7(Qui,...,un) = O7(u1),...,7(uy,) for all
u1,...,Un € U and operations ©. We further extend 7 to substitute free variables in formulas with

bound variables, avoiding capture as usual.

Definition 13. Two symbolic heaps (O1, E1) and (O3, E2) are isomorphic iff there are bijections
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p:01— Ogandr:V — V such that:

E, = {(p(o),f, p(01)>|<0,fa OI> € El’ol € 01} U {(p(O),f,null>|(o, f’nu-11> € El} U
{(p(o),f,7‘(o’))|<o, fs OI> € E1,0, € U}

The definition allows only object identities and symbolic variables to vary: two isomorphic
heaps have the same fields for all objects and equal (up to renaming) symbolic expressions for all
primitive fields.

Our test generation based on state exploration does not consider the entire program heap but
focuses on the state of several objects (including the receiver object and arguments of a method
invocation); in this context, the state of an object o is a rooted heap, which is characterized by the
values of the fields of o and fields of all objects reachable from o.

We linearize rooted symbolic heaps into integer sequences such that checking symbolic-heap
isomorphism corresponds to checking sequence equality. Figure 4.5 shows the linearization algo-
rithm for a symbolic rooted heap. It starts from the root and traverses the heap in a depth-first
manner. It assigns a unique identifier to each object that is visited for the first time, keeps this map-
ping in objs, and reuses it for objects that appear in cycles. It also assigns a unique identifier to
each symbolic variable, keeps this mapping in vars, and reuses it for variables that appear several
times in the heap.

This algorithm extends the linearization algorithm shown in Figure 3.2 of Chapter 3 with 1 inSymExp
that handles symbolic expressions; this improves on the approach of Khurshid et al. [KPV03,
VPKO04] that does not use any comparison for symbolic expressions. We can show that ouf lin-

earization normalizes rooted heaps.

Theorem 2. Two rooted heaps (O1, E1) (with root 1) and (O3, E2) (with root r3) are isomorphic

iff 1inearize(ry, (01, E1))=1inearize(ry, (O2, E2)).

4.4.2 State-Subsumption Checking

When the rooted heaps in two symbolic states are isomorphic, these two symbolic states are not
necessarily equivalent (based on the observational equivalence [DF94, .GOO]), because the con-

straints in these two symbolic states may not be equivalent (two constraints are equivalent if they
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Map<Object,int> objs; // maps objects to unique ids

Map<SymVar,int> vars; // maps symbolic variables to unique ids

int[] linearize (Object root, Heap <O,E>) {
objs = new Map(); vars = new Map();

return lin(root, <OQ,E>>;

int[] lin(Object root, Heap <O,E>) {
if (objs.containsgKey(root))
return singletonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
int(]) seq = singletonSequence(id);
Edge(] fields = sortByField({ <root, £, o> in E });
foreach (<root, £, o> in fields) {
if (isSymbolicExpression{o)) seq.append(linSymExp(o));
elself (o == null) seq.append(0);
else seq.append(lin(o, <0,E>)); // pointer to an object
}

return seq;

int[] linSymExp(SymExp e) {
if (issymvar(e)) {
1f (!vars.containsKey(e))
vars.put(e, vars.size() + 1);
return singletonSequence(vars.get(e));
} elseif (isPrimitive(e)) return uniqueRepresentation(e);
else { // operation with operands
int[] seq = singletonSequence(uniqueRepresentation(e.getOperation()));
foreach (SymExp e’ in e.getOperands())
seq.append (linSymExp(e’));

return seq;

Figure 4.5: Pseudo-code of linearization for a symbolic rooted heap

have the same set of solutions). Two symbolic states are equivalent if they represent the same set of

concrete states. To effectively prune the exploration of symbolic states, we define the subsumption
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boolean checkSubsumes (Constraint Cl, Heap H1,
Constraint C2, Heap H2) {

int[] il = linearize(root(Hl), H1l);
Map<SymvVar,int> vl = vars; // at the end of previous linearization
Set<Symvar> nl = variables(Cl) - vl.keys(); // variables not in the heap
int([] i2 = linearize(root(H2), H2);
Map<SymVar,int> v2 = vars; // at the end of previous linearization
Set<SymvVar> n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return false;
Renaming 7 = v2 o vi~! // compose v2 and the inverse of vl

return checkvalidity (7(3nz. C2) = 3ny. C1);

Figure 4.6: Pseudo-code of subsumption checking for symbolic states

relationships among symbolic states. Intuitively a symbolic state S subsumes another one S’ if the
concrete states represented by S are a superset of the concrete states represented by S'; then if we
have explored S, we do not need to explore S, because the behaviors exercised by invoking meth-
ods on S’ would have been exercised by invoking methods on S. We can more effectively prune the
exploration of symbolic states based on symbolic-state subsumption than based on symbolic-state
equivalence.

We next formally define symbolic state subsumption based on the concrete heaps that each
symbolic state represents. To instantiate a symbolic heap into a concrete heap, we replace the

symbolic variables in the heap with primitive values that satisfy the constraint in the symbolic state.

Definition 14. An instantiation Z({C, H)) of a symbolic state (C, H) is a set of concrete heaps H'
such that there exists a valuation 1 : V. — P for which n(C) is true and H' is the evaluation n{H)

of all expressions in H according to n.

Definition 15. A symbolic state (C1, H1) subsumes another symbolic state (Cy, Hy), in notation
(C1,H1) D (Ca, Ha), iff for each concrete heap Hy € I((Ca, Ha)), there exists a concrete heap

H} € Z((Cy, H1)) such that H and H} are isomorphic.

We use the algorithm in Figure 4.6 to check if the constraint of (C2, Ha), after suitable renaming,

implies the constraint of (Cy, H1). When some symbolic variables are removed from the heaps, for
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example, by a remove method, these symbolic variables do not appear in the heaps but may appear
in a constraint. Therefore, the implication is universally quantified over only the (renamed) symbolic
variables that appear in the heaps and existentially quantified over the symbolic variables that do not
appear in the heaps (more precisely only in Hi, because the existential quantifier for ny in the
premise of the implication becomes a universal quantifier for the whole implication).

We can show that this algorithm is a conservative approximation of subsumption.
Theorem 3. If checkSubsumes((C1, H1),(C2, Ha)) then (C1, H1) subsumes (Ca, Ha).

For example, we can show that the heaps in Sz and Sy (Figure 4.4) are isomorphic and the
implication (Va13xa(z1 = x2) => true) holds. Then we can determine Sy subsumes Sy. Similarly
we can determine Sg subsumes S7. Note that the renaming operation on constraints (shown in
Figure 4.6) is necessary for us to show that the constraint of .S7 implies the constraint of Sg.

Our Symstra approach gains the power and inherits the limitations from the technique used
to check the implication on the (renamed) constraints. Our implementation uses the Omega li-
brary [Pug92], which provides a complete decision procedure for Presburger arithmetic, and CVC
Lite [BB04], an automatic theorem prover, which has decision procedures for several types of con-
straints, including real linear arithmetic, uninterpreted functions, arrays, etc. Because these checks
can consume a lot of time, our implementation further uses the following conservative approxima-
tion: if free-variables(3n;. C) are not a subset of free-variables(r (3ng. C5)), return false without

checking the implication.

4.5 Symbolic-State Exploration

We next present how our Symstra approach systematically explores the symbolic-state space. The
state space consists of all symbolic states that are reachable with the symbolic execution of a method
for the class under test. Our Symstra approach exhaustively explores a bounded part of the sym-
bolic state space using a breadth-first search. The pseudo-code of the test-generation algorithm is
presented in Figure 4.7.

The inputs to our test-generation algorithm include a set of constructor C and non-constructor
methods M of the class under test, and a user-defined maximum iteration number, which is the

maximum length of method sequences in the generated tests. We first invoke each constructor on
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Set testGenSymExp(Set C, Set M, int maxIterNum) {
Set newTests = new Set();
//create empty symbolic states
Set frontiers = new Set():;
foreach (constructor im C) {
RuntimeInfo runtimeInfo = symExecAndCollect (constructor);
newTests.addAll (runtimeInfo.solveAndGenTests () );
frontiers.addall (runtimelInfo.getNonSubsumedObjStates());
}
//exercise non-subsumed symbolic states with symbolic execution of methods
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {
Set frontiersForNextIter = new Bet();
foreach (objState in frontiers) {
foreach (method in M) {
RuntimeInfo runtimeInfo = symExecAndCollect(objState, method);
newTests.addAll (runtimeInfo.solveAndGenTests () ) ;
frontiersForNextIter.addAll (runtimeInfo.getNonSubsumedObjStates());
}
frontiers.clear():
frontiers.addall (frontiersForNextlIter) ;

}

return newlests;

Figure 4.7: Pseudo-code implementation of the test-generation algorithm based on exploring sym-
bolic states.

the initial symbolic state, which is sp = (true, {}): the constraint is true, and the heap is empty.
The symbolic execution of the constructor produces some “empty” receiver-object states. Then
for each symbolic state produced by the symbolic execution, we generate a test. We also determine
whether the symbolic state is subsumed by any previously collected symbolic state; if not, we collect

it into a frontier set.

Then we iterate each symbolic-object state collected in the frontier set and invoke each method
in M on the object state. We create a new test for each symbolic state S produced by the symbolic
execution of the method. If S is not subsumed by any previously collected symbolic state, we collect

S into the new frontier set for the next iteration. Otherwise, we prune the further exploration of S: S
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represents only a subset of the concrete heaps that are represented by some symbolic state previously
collected for exploration; it is thus unnecessary to explore S further. Pruning based on subsumption
plays the key role in enabling our algorithm to explore large state spaces. For example, Sy and S;
in Figure 4.4 are pruned because we have collected and explored S and Sg, which subsume S4 and
Sy, respectively.

In the end of the current iteration, we replace the content of the current frontier set with the
content of the new frontier set. We next start the subsequent iteration until we have reached the
maximum iteration number or the frontier set has no symbolic state. In the end of the algorithm, we
return the generated tests collected over all iterations. These tests are exported to a test class written
in the JUnit framework [GBO3].

During the symbolic-state exploration, we build specific concrete tests that lead to the states
explored through the symbolic execution of a method. Whenever we finish a method m’s symbolic
execution that generates a symbolic state (C, H), we first generate a symbolic test, which consists
of the constraint C' and the sequence of method invocations along the shortest path starting from
the edge of constructor invocation to the edge for m’s symbolic execution. We then instantiate the
symbolic test using the POOC constraint solver [SR02] to solve the constraint C' over the symbolic
arguments for methods in the sequence. Based on the produced solution, we obtain concrete argu-
ments for the sequence leading to (C, H). We export such concrete test sequences into a JUnit test
class [GBO03]. We also export the constraint C' associated with the test as a comment for the test in
the JUnit test class.

For example, the tests that we generate to exercise the edge from S, to S3 and the edge from S
to S5 in Figure 4.4 are:

public void testEdgeFromS2ToS3 () {
/* x1 > x2 */
int x1 = -999999;
int x2 = -1000000;
BST t = new BST();
t.add(xl);
t.add(x2) ;

public void testEdgeFromS2ToS5() {
/* x1 < x2 */
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int x1 = -1000000;
int x2 = -999999;
BST t = new BST();
t.add(xl);
t.add(x2);

A realistic suite of unit tests contains more sequences that test the interplay between add,
remove, and contains methods. Section 4.6 summarizes such suites.

At the class-loading time, our implementation instruments each branching point of the class
under test for measuring branch coverage at the bytecode level. It also instruments each method
of the class to capture uncaught exceptions at runtime. Given a symbolic state at the entry of
a method execution, our implementation uses symbolic execution to achieve structural coverage
within the method, because symbolic execution systematically explores all feasible paths within the
method. If the user of Symstra is interested in only the tests that achieve new branch coverage,
our implementation selects only the generated tests that increase branch coverage or throw new
uncaught exceptions. Our implementation can also be extended for selecting tests that achieve new

bounded intra-method path coverage [BL.0O].

4.6 Evaluation

This section presents our evaluation of Symstra for exploring states and generating tests. We com-
pare Symstra with the concrete-state approach shown in Section 4.2. We have developed both
approaches within the same infrastructure, so that the comparison does not give an unfair advan-
tage to either approach because of unrelated improvements. In these experiments, we have used
the Simplify [DNSO03] theorem prover to check unsatisfiability of path conditions, the Omega li-
brary [Pug92] to check implications, and the POOC constraint solver [SR02] to solve constraints.
We have performed the experiments on a Linux machine with a Pentium IV 2.8 GHz processor
using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

Table 4.1 lists the 11 Java classes that we use in the experiments. The first six classes were
previously used in evaluating our redundant-test detection approach presented in Chapter 3, and the

last five classes were used in evaluating Korat [BKMO02]. The columns of the table show the class
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Table 4.1: Experimental subjects

class methods under test some private methods #ncnb #

lines | branches

IntStack push,pop - 30 9

UBStack push,pop - 59 13

BinSearchTree add,remove removeNode 91 34

BinomialHeap insert,extractMin findMin,merge 309 70
delete unionNodes,decrease

LinkedList add,remove,removeLast addBefore 253 12

TreeMap put,remove fixAfterIns 370 170
fixAfterDel,delEntry

HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

name, the public methods under test (that the generated sequences consist of), some private methods
invoked by the public methods, the number of non-comment, non-blank lines of code in all those

methods, and the number of branches for each subject.

We use both approaches to explore states up to IV iterations; in other words, we generate tests
that consist of sequences with up to N methods. The concrete-state approach also requires concrete
values for arguments, so we set it to use N different arguments (the integers from O to N — 1)
for methods under test. Table 4.2 shows the comparison between Symstra and the concrete-state
approach. We consider NV in the range from five to eight. (For N' < 5, both approaches generate
tests really fast, usually within a couple of seconds, but those tests do not have good quality.) We
tabulate the time to generate the tests (measured in seconds, Columns 3 and 7), the number of
explored symbolic and concrete object states (Columns 4 and 8), the number of generated tests
(Columns 5 and 9), and the branch coverage® achieved by the generated tests (Columns 6 and 10).
In Columns 5 and 9, we report the total number of generated tests and, in the parentheses, the

cumulative number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration of the breadth-first ex-

3We measure the branch coverage at the bytecode level during the state exploration of both approaches, and calculate
the total number of branches also at the bytecode level.
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ploration: when an iteration exceeds three minutes, the exhaustive exploration of each approach is
stopped and the system proceeds with the next iteration. We use a “*” mark for each entry where
the test-generation process timed out; the state exploration of these entries is no longer exhaustive.
We use a “~” mark for eaéh entry where its corresponding approach exceeded the memory limit.
The results indicate that Symstra generates method sequences of the same length N often much
faster than the concrete-state approach, thus enabling Symstra to generate longer method sequences
within a given time limit. Both épproaches achieve the same branch coverage for method sequences
of the same length N. However, Symstra achieves higher coverage faster. It also takes less memory
and can finish generation in more cases. These results are due to the fact that each symbolic state,
which Symstra explores at once, actually describes a set of concrete states, which the concrete-state
approach must explore one by one. The concrete-state approach often exceeds the memory limit

when N = 7 or N = 8, which is often not enough to guarantee full branch coverage.

4.7 Conclusion

We have proposed Symstra, an approach that uses symbolic execution to generate a small number
of non-redundant tests that achieve high branch and intra-method path coverage for complex data
structures. Symstra exhaustively explores symbolic states with symbolic arguments up to a given
length. It prunes the exploration based on state subsumption,; this pruning speeds up the exploration,
without compromising its exhaustiveness. We have implemented the approach and evaluated it on
11 subjects, most of which are complex data structures. The results show that Symstra generates
tests faster than the existing concrete-state approaches, and given the same time limit, Symstra can
generate tests that achieve better branch coverage than these existing approaches.

We finally discuss how Symstra can be leveraged in specification-based testing, and extended to

improve performance and address some inherent limitations of symbolic execution.

Specifications.  Although the work in this dissertation including the Symstra approach has been
developed to be used in the absence of specifications, Symstra’s test generation can be guided by
specifications if they are provided. These specifications can include method pre- and post-conditions

and class invariants, written in the Java Modelling Language (JML) [LBR98]. The JML tool-set
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transforms these constructs into run-time assertions that throw JML-specific exceptions when vi-
olated. Specification-based testing normally needs to generate legal method invocations whose
method-entry states satisfy pre-conditions and class invariants, i.e., no exceptions for these con-
structs are thrown at method entries. By default, Symstra does not explore further a state resulting
from an exception-throwing method execution; therefore, Symstra explores legal method sequences.
If during the exploration Symstra finds a method invocation that violates a post-condition or invari-
ant, Symstra has discovered a bug; Symstra can be configured to generate such tests and continue or
stop test generation. If a class implementation is correct with respect to its specification, paths that
throw post-condition or invariant exceptions should be infeasible. |
Our implementation for Symstra operates on the bytecode level. It can perform testing of the
specifications woven into method bytecode by the JML tool-set or by similar tools. Note that in this
setting Symstra essentially uses black-box testing [VPK04] to explore only those symbolic states
that are produced by method executions that satisfy pre-conditions and class invariants; conditions
that appear in specifications simply propagate into the constraints associated with a symbolic state
explored by Symstra. Using symbolic execution, Symstra thus obtains the generation of legal test

sequences “for free”.

Performance. Based on state subsumption, our current implementation for Symstra explores one
or more symbolic states that have the isomorphic heap. We can extend our implementation to
explore exactly one union symbolic state for each isomorphic heap. We can create a union state
using a disjunction of the constraints for all symbolic states with the isomorphic heap. Each union
state subsumes all the symbolic states with the isomorphic heap, and thus exploring only union
states can further reduce the number of explored states without compromising the exhaustiveness of
the exploration. (Subsumption is a special case of union; if C = Cj, then C; V C; simplifies to
C1.) ’
Symstra enables exploring longer method sequences than the concrete-state approaches. How-
ever, users may want to have an exploration of even longer sequences to achieve some test purpose.
In such cases, the users can apply several techniques that trade the guarantee of the intra-method
path coverage for longer sequences. For example, the users may provide abstraction functions for

states [LGOQ], as used for instance in the AsmLT generation tool [Fou), or binary methods for com-
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paring states (e.g. equals), as used for instance in our Rostra approach (Chapter 3). Symstra can
then generate tests that instead of subsumption use these user-provided functions for comparing
state. This leads to a potential loss of intra-method path coverage but enables faster, user-controlled
exploration. To explore longer sequences, Symstra can also use standard heuristics [ VPK04,BPS00]

for selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it cannot pre-
cisely handle array indexes that are symbolic variables. This situation occurs in some classes, such
as DisjSet and HashMap used previously in evaluating Rostra (Chapter 3). One solution is to
combine symbolic execution with (exhaustive or random) exploration based on concrete arguments:
a static analysis would determine which arguments can be symbolically executed, and for the rest,
the user would provide a set of concrete values [Fou].

So far we have discussed only methods that take primitive arguments. We cannot directly trans-
form non-primitive arguments into symbolic variables of primitive type. However, we can use
the standard approach for generating non-primitive arguments: generate them also as sequences of
method calls that may recursively require more sequences of method calls, but eventually boil down
to methods that have only primitive values (or null). (Note that this also handles mutually recursive
classes.) JCrasher [CS04] and Eclat [PE0OS] take a similar approach. Another solution is to trans-
form these arguments into reference-type symbolic variables and enhance the symbolic execution to
support heap operations on symbolic references. Concrete objects representing these variables can
be generated by solving the constraints and setting the instance fields using reflection. However, the
collected constraints are often not sufficient to generate legal instances, in which case an additional

object invariant is required.
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Table 4.2: Experimental results of test generation using Symstra and the concrete-state approach

Symstra Concrete-State Approach
class N time| states tests| %cov time statesl testsl Jbcov
UBStack 5 095 22 43(5)| 923 498, 656| 1950(6)| 92.3
6 4.38| 30 67(6)( 100.0 31.83| 3235( 13734(7)| 100.0
7 7.20) 41 91(6)| 100.0 | *269.68|*10735 | *54176(7)|*100.0
8 10.64| S5 124(6){ 100.0 - - - -
IntStack 5 0.23 12 18(3)| 55.6 12.76| 4836| 5766(4)| 55.6
6 042, 16 24(4)| 66.7 - - - -
7 050 20 32(5)| 88.9 | *689.02(*30080{*52480(5)| *66.7
8 062 24 40(6)| 100.0 - - - -
BinSearchTree | 5 706 65| 350(15)| 971 4.80 188] 1460(16)| 97.1
6 28.53| 197| 1274(16)| 100.0 23.05{ 731} 7188(17){ 100.0
7| 136.82| 626| 4706(16) 100.0 - - - -
8 | *317.76|*1458| *8696(16) | *100.0 - - - -
BinomialHeap | 5 1.39 6| 40(13)| 843 497\  380| 1320(12)] 84.3
6 2.55 7| 66(13)] 84.3 50.92| 3036(12168(12)| 84.3
7 3.80 8  86(15)| 90.0 - - - -
8 8.85 9| 157(16)| 914 - - - -
LinkedList 5 0.56 6 25(5)| 100.0 32.61| 3906 8591(6)| 100.0
6 0.66 7 33(5)| 100.0 | *412.00( *9331|*20215(6)|*100.0
7 0.78 8 42(5)| 100.0 - - - -
8 0.95 9 52(5)| 100.0 - - - -
TreeMap 5 3.20 16| 11429)| 76.5 3.52 72| 560(31)| 76.5
6 7.78| 28| 260(35)| 82.9 12.42 185| 2076(37)| 82.9
7 19.45; 59| 572(37)| 84.1 41.89(  537| 6580(39)| 84.1
8 63.21( 111) 1486(37)| 84.1 - - - -
HeapArray 5 1.36 14 36(9) 759 375 664 1296(10) 75.9
6 259 20 65(11) 89.7 - - - -
7 478 35| 109(13)| 100.0 - - - -
8 1120\ 54| 220(13)| 100.0 - - - -
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Chapter 5

TEST SELECTION FOR INSPECTION

In practice, developers tend to write a relatively small number of unit tests, which in turn tend to
be useful but insufficient for high software quality assurance. Some automatic test-generation tools,
such as Parasoft Jtest [Par03], attempt to fill the gaps not covered by any manually generated unit
tests; these tools can automatically generate a large number of unit test inputs to exercise the pro-
gram. However, there are often no expected outputs (oracles) for these automatically generated test
inputs and the tools generally only check the program’s robustness: checking whether any uncaught
exception is thrown during test executions [KJS98,CS04]. Manually verifying the outputs of such
a large number of test inputs requires intensive labor, which is usually impractical. Unit-test selec-
tion is a means to address this problem by selecting the most valuable subset of the automatically
generated test inputs. Then programmers can inspect the executions of this much smaller set of test
inputs to check the correctness or robustness, and to add oracles.

If a priori specifications are provided with a program, the execution of automatically gener-
ated test inputs can be checked against the specifications to determine the correctness. In addition,
specifications can guide test generation tools to generate test inputs. For example, the precondi-
tions in specifications can guide test generation tools to generate only valid test inputs that satisfy
the preconditions [Par03, BKMO02]. The postconditions in specifications can guide test generation
tools to generate test inputs to try to violate the postconditions, which are fault-exposing test in-
puts [Par03,KAY96,Gup03]. Although specifications can bring us many benefits in testing, specifi-
cations often do not exist in practice.

We have developed the operational violation approach: a black-box test generation and selec-
tion approach that does not require a priori specifications. An operational abstraction describes the
actual behavior during program execution of an existing unit test suite [HMEO3]. We use the gen-
erated operational abstractions to guide test generation tools, so that the tools can more effectively

generate test inputs that violate these operational abstractions. If the execution of an automati-
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cally generated test input violates an operational abstraction, we select this test input for inspection.
The key idea behind this approach is that the violating test exercises a new feature of program
behavior that is not covered by the existing test suite. We have implemented this approach by in-
tegrating Daikon [ECGNO1] (a dynamic invariant detection tool) and the commercial Parasoft Jtest
4.5 [Par03].

The next section describes the example that we use to illustrate our approach. Section 5.2
presents the operational violation approach. Section 5.3 describes the experiments that we con-

ducted to assess the approach and then Section 5.4 concludes.

5.1 Example

This section presents an example to illustrate how programmers can use our approach to test their
programs. The example is a Java implementation UBStack of a bounded stack that stores uniqﬁe
elements of integer type. Figure 5.1 shows the class including several method implementations that
we shall refer to in the rest of the chapter. Stotts et al. coded this Java implementation to experiment
with their algebraic-specification-based approach for systematically creating unit tests [SLA02];
they provided a web link to the full source code and associated test suites. Stotts et al. also specified
formal algebraic specifications for the bounded stack.

In the class implementation, the array field elems contains the elements of the stack, and the
integer field numberOfElements is the number of the elements and the index of the first free
location in the stack. The integer field max is the capacity of the stack. The pop method simply
decreases numberOfElements. The top method returns the element in the array with the index
of numberOfElements-1 if numberOfElements >= 0. Otherwise, the method prints an error
message and returns -1 as an error indicator. The getSize method returns numberCfElements.
Given an element, the isMember method returns true if it finds the same element in the subarray
of elems up to numberofElements, and returns false otherwise.

Stotts et al. have created two unit test suites for this class: a basic JUnit [GB03] test suite (8
tests), in which one test method is generated for a public method in the target class; and a JAX test
suite (16 tests), in which one test method is generated for an axiom in UBStack’s algebraic specifi-

cations. The basic JUnit test suite does not expose any fault but one of the JAX test cases exposes
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public class UBStack {
private int([] elems;
private int numberOfElements;
private int max;
public UBStack() {
numberOfElements = 0;
max = 2;

elems = new int[max];

}
public void push(int k) { ... }
public void pop() { numberofElements--; }

public int top() {
if (numberOfElements < 1) {
System.out.println("Empty Stack");
return -1;
} else {

return elems[numberOfElements-1};

}

public int getSize() { return numberOfElements; }
public boolean isMember (int k} {
for (int index=0; index<numberOfElements; index++)
if (k==elems[index])
return true;

return false;

Figure 5.1: The UBStack program

one fault (handling a pop operation on an empty stack incorrectly). In practice, programmers usu-
ally fix the faults exposed by the existing unit tests before they augment the unit test suite. In this
example and for our analysis of our approach, instead of fixing the exposed fault, we remove this

fault-revealing test case from the JAX test suite to make all the existing test cases pass.
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5.2 Operational Violation Approach

In this work, the objective of unit-test selection is to select the most valuable subset ofautomatically
generated tests for inspection and then use these selected tests to augment the existing tests for a
program unit. More precisely, we want to select generated tests to exercise a program unit’s new
behavior that is not exercised by the existing tests. Since manual effort is required to verify the
results of selected test inputs, it is important to select a relatively small number of tests. This is
different from the problems that traditional test selection techniques address [CR99, HMEO3]. In
those problems, there are test oracles for unselected test inputs. Therefore, selecting a relatively
large number of tests during selection is usually acceptable for those problems, but is not practical
in this work. More formally, the objective of unit-test selection in this context is to answer the

following question as inexpensively as possible:

Problem. Given a program unit u, a set S of existing tests for u, and a test t from a set S’ of
generated tests for u, does the execution of t exercise at least one new feature that is not exercised

by the execution of any test in §?

If the answer is yes, t is removed from S and put into S. Otherwise, t is removed from s’ and
discarded. In this work, the initial set S comprises the existing unit tests, which are usually manually
written. The set S’ of unselected tests is automatically generated tests.

The term feature is intentionally vague, since it can be defined in different ways. For example, a
new feature could be fault-revealing behavior that does not occur during the execution of the existing
tests. A new feature could be a predicate in the specifications for the unit [CR99]. A new feature
could be program behavior exhibited by executing a new structural entity, such as statement, branch,
or def-use pair.

Our operational violation approach uses operational abstractions to characterize program fea-
tures. An operational abstraction is a collection of logical statements that abstract the program’s
runtime behavior [HMEO3]. It is syntactically identical to a formal specification. In contrast to a for-
mal specification, which expresses desired behavior, an operational abstraction expresses observed
behavior. Daikon [ECGNO1], a dynamic invariant detéction tool, can be used to infer operational
abstractions (also called invariants) from program executions of test suites. These operational ab-

stractions are in the form of DbC annotations [Mey92, LBR98, Par02]. Daikon examines variable
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values computed during executions and generalizes over these values to obtain operational abstrac-
tions. Like other dynamic analysis techniques, the quality of the test suite affects the quality of the
analysis. Deficient test suites or a subset of sufficient test suites may not help to infer a generaliz-
able program property. Nonetheless, operational abstractions inferred from the executed test suites
constitute a summary of the test execution history. In other words, the executions of the test suites

all satisfy the properties in the generated operational abstractions.

Our approach leverages an existing specification-based test generation tool to generate new tests
and selects those generated tests that violate the operational abstractions inferred from the existing
tests. Our implementation uses Parasoft Jtest 4.5 [Par03]. Jtest can automatically generate unit
tests for a Java class. When specifications are provided with the class, Jtest can make.use of them
to perform black-box testing. The provided preconditions, postconditions, or class invariants give
extra guidance to Jtest in its test generation. If the code has preconditions, Jtest tries to generate
test inputs that satisfy all of them. If the code has postconditions, Jtest generates test inputs that
verify whether the code satisfies these conditions. If the code has class invariants, Jtest generates
test inputs that try to make them fail. By default, Jtest tests each method by generating arguments
for them and calling them independently. In other words, Jtest basically tries the calling sequences
of length one by default. Tool users can set the length of calling sequences in the range of one to
three. If a calling sequence of length three is specified, Jtest first tries all calling sequences of length

one followed by all those of length two and three sequentially.

Section 5.2.1 next explains the basic technique of the approach. Section 5.2.2 presents the
precondition removal technique to complement the basic technique. Section 5.2.3 describes the

iterative process of applying these techniques.

5.2.1 Basic technique

In the basic technique (Figure 5.2), we run the existing unit test suite on the program that is instru-
mented by the Daikon front end. The execution produces a data trace file, which contains variable
values computed during execution. Then we use Daikon to infer operational abstractions from the
data trace file. We extend the Daikon toolset to insert the operational abstractions into the source

code as DbC annotations. We feed the resulting annotated code to Jtest, which automatically gener-
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Figure 5.2: An overview of the basic technique

ates and executes new tests. The two symptoms of an operational violation are that an operational
abstraction is evaluated to be false, or that an exception is thrown while evaluating an operational
abstraction. When a certain number of operational violations have occurred before Jtest exhausts
its testing repository, Jtest stops generating test inputs and reports operational violations. Jtest ex-
ports all the operational violations, including the violating test inputs, to a text file. Given the
exported text file, we automatically comment out the violated operational abstractions in the source
code. At the same time, we collect the operational violations. Then we invoke Jtest again, which
is given the program with reduced operational abstractions. We repeat the preceding procedure it-
eratively until we cannot find any operational violations. We call these iterations as inner iterations
to avoid their being confused with the iterations described in Section 5.2.3. The inner iterations
mainly comprise the activities of Jtest’s test generation and execution, Jtest’s violation report, and
our violated-operational-abstraction collection and removal. These inner iterations enable Jtest to

fully generate violating tests.

Given the collected operational violations, we select the first encountered test for each violated
operational abstraction. So when there are multiple tests that violate the same operational abstrac-

tion, we select only the first encountered one instead of all of them. Since a selected violating test
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might violate multiple operational abstractions, we group together all of the operational abstractions
violated by the same test. Then we sort the selected violating tests based on the number of their vi-
olated operational abstractions. We put the tests that violate more operational abstractions before
those that violate fewer ones. The heuristic behind this is that a test that violates more opefational
abstractions might be more valuable than a test that violates fewer ones. When programmers cannot

afford to inspect all violating tests, they can inspect just the top parts of the prioritized tests.

We finally produce a JUnit [GBO03] test class, which contains the sorted list of violating test in-
puts as well as their violated operational abstractions. We developed a set of integration tools in Perl
to fully automate the preceding steps, including invoking Daikon and Jtest, and postprocessing the
text file. After running the integration tools, programmers can then execute or inspect the resulting
sorted tests to verify the correctness of their executions. Optionally, programmers can add assertions

for the test inputs as test oracles for regression testing.

One example of operational violations is shown in Figure 5.3. The example indicates a defi-
ciency of the JAX test suite. The top part of Figure 5.3 shows two relevant tests (JAX Tests 1 and 2)
used for inferring the isMember method’s two violated postconditions (assertTrue in the tests is
JUnit’s built-in assertion method). The postconditions are followed by the violating test input gen-
erated by Jtest. In the postconditions, @post is used to denote postconditions. The $pre keyword is
used to refer to the value of an expression immediately before calling the method; the syntax to use
$pre is $pre (expressionType, expression). The $result keyword is used to represent

the return value of the method.

The violated postconditions show the following behavior exhibited by the existing tests:

e The isMember (3) method is invoked iff its return value is true.

e The isMember (3) method is invoked iff the numberOfElements (after the method invoca-

tion) is 1.

The test input of invoking isMember (3) method on an empty stack violates these two ungeneral-

izable postconditions.
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JAX Test 1:
UBStack stack = new UBStack();
assertTrue(!stack.isMember(2));
JAX Test 2:
UBStack stackl = new UBStack(};
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue (stackl.isMember (3));
stackl.push(2);
stackl.push(l);//because max is 2, this push cannot put 1 into stackl
stack2.push(3);
stack2.push(2);
//the following assertion makes sure 1 is not in stackl

assertTrue (stackl.isMember (1) == stack2.isMember(1));

Inferred postconditions for isMember:
@post: [($pre(int, k) == 3) == ($result == true)]
@post: [(S$pre(int, k) == 3) == (this.numberOfElements == 1)}
Violating Jtest-generated test input:
UBStack THIS = new UBStack {():

boolean RETVAL = THIS.isMember (3);

Figure 5.3: An example of operational violations using the basic technique

5.2.2  Precondition removal technique

In the basic technique, when the existing test suite is deficient, the inferred preconditions might
be overconstrained so that Jtest filters out valid test inputs during test generation and execution.
However, we often need to exercise the unit under more circumstances than what is constrained
by the inferred overconstrained preconditions. To address this, before we feed the annotated code
to Jtest, we use a script to automatically remove all inferred preconditions, and we thus enable
Jtest to exercise the unit under a broader variety of test inputs. Indeed, removing preconditions can
make test generation tools less guided, especially those tools that generate tests mainly based on
preconditions [BKMO2]. Another issue with this technique is that removing inferred preconditions
allows test generation tools to generate invalid test inputs if some values of a parameter type are

invalid.
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Figure 5.4 shows one example of operational violations and the use of this technique. @invariant
is used to denote class invariants. The example indicates a deficiency of the basic JUnit test suite,
and the violating test exposes the fault detected by the original JAX test suite. The violated post-

conditions and invariant show the following behavior exhibited by the existing tests:

e After the invocation of the pop () method, the element on top of the stack is equal to the

element on the second to top of the stack before the method invocation.
o After the invocation of the pop () method, the numberOfElements is equal to 0 or 1.

o In the entries and exits of all the public methods, the numberOfElements is equal to 0, 1,

or 2.

Since the capacity of the stack is 2, the inferred behavior seems to be normal and consistent
with our expectation. Jtest generates a test that invokes pop () on an empty stack. In the exit of
the pop () method, the numberofElements is equal to ~1. This value causes the evaluation of
the first postcondition to throw an exception, and the evaluation of the second postcondition or the
invariant to get the false value. By looking into the specifications [SLAQ2] for UBStack, we can
know that the implementation does not appropriately handle the case where the pop () method is
invoked on an empty stack; the specifications specify that the empty stack should maintain the same
empty state when the pop () method is invoked.

The example in Figure 5.5 shows a deficiency of the JAX test suite, and the violating test exposes
another new fault. This fault is not reported in the original experiment [SLAO2]. The inferred
postcondition states that the method return is equal to -1 iff the numberOfElements is equal to
0. The code implementer uses -1 as the error indicator for calling the top () method on an empty
stack instead of an topEmptyStack exception specified by the specifications [SLA02] . According
to the specifications, this stack should also accommodate negative integer elements; this operational
violation shows that using -1 as an error indicator makes the top method work incorrectly when
the -1 element is put on top of the stack. This is a typical value-sensitive fault and even a full-
path-coverage test suite cannot guarantee to expose this fault. The basic technique does not report
this violation because of the overconstrained preconditions. The existing tests push only positive

integers into the stack, so Daikon infers several preconditions for the top method, which prevent
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Basic JUnit Test 1:
UBStack stack = new UBStack();
stack.push(3);
stack.pop();
Basic JUnit Test 2:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop(};

Inferred postconditions for pop:
@post: [( this.elems{this.numberOfElements] ==
this.elems[$pre(int, this.numberOfElements)-1] )]
@post: [this.numberOfElements == 0 ||
this.numberOfElements == 1]
Inferred class invariant for UBStack:
@invariant: [this.numberOfElements == |
this.numberOfElements == 1 ||
this.numberOfElements == 2]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();
THIS.pop {);

Figure 5.4: The first example of operational violations using the precondition removal technique

the -1 element from being on top of the stack. One such precondition is:
@pre: for (int i = 0 ; 1 <= this.elems.length-1; i++)
Sassert ((this.elems([i] >= 0));
where @pre is used to denote a precondition and $assert is used to denote an assertion statement

within the loop body. Both the loop and the assertion statement form the precondition.

5.2.3 [Iterations

After we perform the test selection using the techniques in Sections 5.2.1 and 5.2.2, we can further
run all the violating tests together with the existing ones to infer new operational abstractions. By

doing so, we can automatically remove or weaken the operational abstractions violated by the vi-
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JAX Test 3:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop();
stack.pop();
stack.push(3);
stack.push(2);
int oldTop = stack.top();
JAX Test 4:
UBStack stack = new UBStack();
assertTrue(stack.top() == -1);
JAX Test 5:
UBStack stackl = new UBStack();
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue(stackl.top() == 3);
stackl.push(2);
stackl.push(1);
stack2.push(3);
stack2.push(2);
assertTrue(stackl.top{) == stack2.top());
stackl.push(3);

assertTrue(stackl.top() == 3);

Inferred postcondition for top:

@post: [(Sresult == -1) == (this.numberOfElements == 0}]

violating Jtest-generated test input:
UBStack THIS = new UBStack (};
THIS.push (-1});
int RETVAL = THIS.top ():

Figure 5.5: The second example of operational violations using the precondition removal technique

olating tests. Based on the new operational abstractions, Jtest might generate new violating tests
for the weakened or other new operational abstractions. We repeat the process described in Sec-
tions 5.2.1 and 5.2.2 until there are no reported operational violations or until the user-specified

maximum number of iterations has been reached. We call these iterations as outer iterations. Dif-
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(1lst iteration)
Inferred postcondition for isMember:

@post: [($result == true) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.top ():

THIS.push (2);
boolean RETVAL = THIS.isMember (1);

(2nd iteration)
Inferred postcondition for isMember:

@post: [ (Sresult == true) S$implies (this.numberOfElements == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.push (2);

THIS.push (0);
boolean RETVAL = THIS.isMember (0);

Figure 5.6: Operational violations during iterations

ferent from the inner iterations described in Section 5.2.1, these outer iterations operate in a larger
scale. They mainly comprise the activities of the existing tests’ execution, Daikon’s operational-
abstraction generation, our DbC annotation insertion, the inner iterations, and our test selection and
augmentation. We have used a script to automate the outer iterations. In the rest of the chapter, for

the sake of brevity, iterations will refer to outer iterations by default.

Figure 5.6 shows two operational violations during the first and second iterations on the JAX
test suite. The JAX test suite exhibits that the return of the isMember () method is true iff the
numberOfElements after the method execution is equal to 1. In the first iteration, a violating
test shows that if the numberOfElements after the method execution is equal to 1, the return of
the isMember () method is not necessarily true (it can be false). After the first iteration, we
add this violating test to the existing test suite. In the second iteration, with the augmented test
suite, Daikon infers an updated postcondition by weakening the == predicate (meaning iff or <) to

the $implies predicate (meaning =>). The updated postcondition shows that if the return of the
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isMember () method is true, the numberOfElements after the method execution is equal to 1.
In the second iteration, another violating test shows that if the return of the isMember () method
is true, the numberOfElements after the method execution is not necessarily equal to 1 (it can
be equal to 2). After the second iteration, we add this violating test to the existing test suite. In
the third iteration, Daikon eliminates this $implies predicate since Daikon does not observe any

correlation between the return of the isMember () method and the numberOfElements.

5.3 Evaluation

Testing is used not only for finding bugs but also for increasing our confidence in the code under test.
For example, generating and selecting tests for achieving better structural coverage can increase our
confidence in the code although they do not find bugs; indeed, these tests can be used as regression
tests executed on later versions for detecting regression bugs. Although our approach tries to fill
gaps in the existing test suite or to identify its weakness in order to improve its quality, our approach
does not intend to be considered as a general approach for generating and selecting tests (based on
the current program version) to increase the existing test suite’s capability of exposing future arbi-
trarily introduced bugs (on future program versions) during program maintenance. Therefore, when
we designed our experiments for assessing the approach, we did not use mutation testing [BDLS80]
to measure the capability of the selected tests in finding arbitrary bugs in general. Instead, we con-
ducted experiments to primarily measure the capability of the selected tests in revealing anomalous
behavior on the real code, such as revealing a fault in terms of correctness or a failure in terms of
robustness. We do not distinguish these two types of anomalous behavior because in the absence of
specifications we often could not distinguish these two cases precisely. For example, the violating
tests shown in Figure 5.4 and Figure 5.5 would have been considered as invalid tests for reveal-
ing failures if the actual precondition for pop () were (this.numberOfElements > 0) and the
actual precondition for push (int k) were (k >= 0); however, these two tests are valid fault-
revealing tests based on UBStack’s specifications [SLA02]. Indeed, we could try to hand-construct
specifications for these programs; however, the code implementation and comments for these pro-
grams alone are not sufficient for us to recover the specifications (especially preconditions) easily

and we do not have easy access to the program intentions originally residing in code authors’ mind.
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Note that if a selected test does not expose anomalous behavior, it might still provide value in filling
gaps in the existing test suite. However, in the absence of specifications, it would be too subjective
in judging these tests in terms of providing value; therefore, we did not perform such a subjective
judgement in our experiments.

In particular, the general questions we wish to answer include:

1. Is the number of automatically generated tests large enough for programmers to adopt unit-

test selection techniques?

2. Is the number of tests selected by our approach small enough for programmers to inspect

affordably?

3. Do the tests selected by our approach have a high probability of exposing anomalous program

behavior?

4. Do the operational abstractions guide test generation tools to better generate tests for violating

the operational abstractions?

We cannot answer all of these questions easily, so we designed experiments to give an initial
sense of the general questions of efficacy of this approach. In the remaining of this section, we first
describe the measurements in the experiments. We then present the experiment instrumentation. We

finally describe the experimental results and threats to validity.

5.3.1 Measurements

In particular, we collected the following measurements to address these questions directly or indi-

rectly:

¢ Automatically generated test count in the absence of any operational abstraction (#AutoT):
We measured the number of tests automatically generated by Jtest alone in the absence of any
operational abstraction. We call these tests as unguided-generated tests. This measurement is

related to the first question.

o Selected test count (#Sel1T): We measured the number of the tests selected by a test selection

technique. This measurement is related to the second question, as well as the fourth question.
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¢ Anomaly-revealing selected test count (#ART): We measured the number of anomaly-revealing
tests among the selected tests. These anomaly-revealing tests expose anomalous program be-
havior (related to either faults in terms of correctness or failures in terms of robustness). After
all the iterations terminate, we manually inspect the selected tests, violated postconditions,
and the source code to determine the anomaly-revealing tests. Although our test selection
mechanism described in Section 5.2.1 guarantees that no two selected tests violate the same
set of postconditions, multiple anomaly-revealing tests might suggest the same precondition
or expose the same fault in different ways. This measurement is related to the third question,

as well as the fourth question.

We collected the #autoT measurement for each subject program. We collected the #SelT and
#ART measurements for each combination of the basic/precondition removal techniques, subject
programs, and number of iterations. These measurements help answer the first three questions.

To help answer the fourth question, we used Jtest alone to produce unguided-generated tests,
then ran the unguided-generated tests, and check them against the operational abstractions (keeping
the preconditions) generated from the existing tests. We selected those unguided-generated tests
that satisfied preconditions and violated postconditions. We then collected the #SelT and #ART
measurements for each subject program, and compared the measurements with the ones for the
basic technique.

In addition, we used Jtest alone to produce unguided-generated tests, then ran the unguided-
generated tests, and check them against the operational abstractions (removing the preconditions)
generated from the existing tests. We selected those unguided-generated tests that violated post-
conditions. We then collected the #SelT and #ART measurements for each subject program, and

compared the measurements with the ones for the precondition removal technique.

5.3.2 Experiment instrumentation

Table 5.1 lists the subject programs that we used in the experiments. Each subject program is a
Java class equipped with a manually written unit test suite. The first column shows the names
of the subject programs. The second and third columns show the number of public methods, and

the number of lines of executable code for each program, respectively. The fourth column shows
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Table 5.1: Subject programs used in the experiments.

program #pmethod | #loc | #tests | #AutoT | HEXT
UB-Stack (JUnit) 11 47 8 96 1
UB-Stack (JAX) 11 47 15 96 1
RatPoly-1 13 | 161 24 223 1
RatPoly-2 13| 191 24 227 1
RatPolyStack-1 13 48 11 128 4
RatPolyStack-2 12 40 11 90 3
BinaryHeap 10 31 14 166 2
BinarySearchTree 16 50 15 147 0
DisjSets 4 11 3 24 4
QueueAr 7 27 11 120 1
StackAr 8 20 16 133 1
StackLi 9 21 16 99 0

the number of test cases in the test suite of each program. The last two columns present some

measurement results that we shall describe in Section 5.3.3.

Among these subjects, UB-Stack (JUnit) and UB-Stack (JAX) are the example (Section 5.1)
with the basic JUnit test suite and the JAX test suite (with one failing test removed), respec-
tively [SLAO2]. RatPoly-1/RatPoly-2 and RatPolyStack-1/RatPolyStack-2 are the stu-
dent solutions to two assignments in a programming course at MIT. These selected solutions passed
all the unit tests provided by instructors. The rest of the subjects come from a data structures text-
book [Wei99]. Daikon group members developed unit tests for 10 data structure classes in the
textbook. Most of these unit tests use random inputs to extensively exercise the programs. We ap-
plied our approach on these classes, and five classes (the last five at the end of Table 5.1) have at

least one operational violation.

In the experiments, we used Daikon and Jtest to implement our approach. We developed a set
of Perl scripts to integrate these two tools. In Jtest’s configuration for the experiments, we set the
length of calling sequence as two. We used Daikon’s default configuration for the generation of op-

erational abstractions except that we turned on the inference of conditional invariants. In particular,
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we first ran Jtest on each subject program to collect the #AutoT measurement in the absence of any
operational abstraction. We exported the unguided-generated tests for each program to a JUnit test
class. Then for each program, we conducted the experiment using the basic technique, and repeated
it until we reached the third iteration or until no operational violations were reported for the opera-
tional abstractions generated from the previous iteration. At the end of each iteration, we collected
the #Se1T and #ART measurements. We performed a similar procedure for the precondition removal

technique.

5.3.3 Experimental results

The fifth column of Table 5.1 shows the #AutoT results. From the results, we observed that except
for the especially small DisjSets program, Jtest automatically generated nearly 100 or more tests.
We also tried setting the length of the calling sequence to three, which caused Jtest to produce
thousands of tests for the programs. This shows that we need test selection techniques since it is not

practical to manually check the outputs of all these automatically generated tests.

The last column (#ExT) of Table 5.1 shows the number of the automatically generated tests that
cause uncaught runtime exceptions. In the experiments, since all the test selection methods under
comparison additionally select this type of tests, the #SelT and #ART measurements do not count
them for the sake of better comparison.

Table 5.2 and Table 5.3 show the #SelT and #ART measurements for the basic technique and
the precondition removal technique, respectively. In either table, the iteration 1, iteration 2, and
iteration 3 columns show the results for three iterations. In Table 5.2, the unguided column shows
the results for selecting unguided-generated tests that satisfy preconditions and violate postcondi-
tions. In Table 5.3, the unguided column shows the results for selecting unguided-generated tests
that violate postconditions (no matter whether they satisfy preconditions). In either table, for those
#SelT with the value of zero, their entries and their associated #ART entries are left blank. The
bottom two rows of either table show the median and average percentages of #ART among #SelT.
In the calculation of the median or average percentage, the entries with a #SelT value of zero are

not included.

The numbers of tests selected by both techniques vary across different programs but on average
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Table 5.2: The numbers of selected tests and anomaly-revealing selected tests using the basic tech-
nique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT | #ART | #SelT | #ART | #SelT | #ART | #SelT | #ART

UB-Stack(JUnit) 1 0 2 0
UB-Stack (JAX) 3 0
RatPoly-1 2 2
RatPoly-2 1 1 1 1
RatPolyStack-~1
RatPolyStack-2 1 0
BinaryHeap 3 2 1 0 2 2
BinarySearchTree
DisjSets 1 1 ‘ 1 1
QueueAr 6 1 2 1
Stackar 5 1 1 0 _ 1 1
StackLi

median(#ART/#SelT) 20% 0% 0% 100%

average(#ART/#SelT) 45% 25% 0% 88%

their numbers are not large, so their executions and outputs could be verified with affordable human
effort. The basic technique selects fewer tests than the precondition removal technique. This is
consistent with our hypothesis that the basic technique might overconstrain test generation tools.
We observed that the number of tests selected by either technique is higher than the number of
tests selected by checking unguided-generated tests against operational abstractions. This indicates
that operational abstractions guide Jtest to better generate tests to violate them. Specifically, the
precondition removal technique gives more guidance to Jtest for generating anomaly-revealing tests
than the basic technique. There are only two subjects for which the basic technique generates
anomaly-revealing tests but Jtest alone does not generate any (shown in Table 5.2); however, the
precondition removal technique generates more anomaly-revealing tests than Jtest alone for most

subjects (shown in Table 5.3).

We observed that, in the experiments, the selected tests by either technique have a high probabil-

ity of exposing anomalous program behavior. In the absence of specifications, we suspect that many
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Table 5.3: The numbers of selected tests and anomaly-revealing selected tests using the precondition
removal technique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT | #ART | #SelT | #ART | #SelT | #ART | #SelT | #ART

UB-Stack (JUnit) 15 5 6 1 1 0 4 1
UB-Stack (JAX) 25 9 4 0 3 1
RatPoly-1 1 1
RatPoly-2 1 1 1 1
RatPolyStack-1 12 8 5 2 1 0
RatPolyStack-2 10 7 2 0
BinaryHeap 8 6 8 6 0 4 3
BinarySearchTree 3 3 1 1
DisjSets 2 2 1 1
QueueAr 11 1 4 1 4 1
StackaAr 9 1 1 0 1 1
StackLi 2 0 1 0

median(#ART/#SelT) 68% 17% 0% 75%

average(#ART/#SelT) 58% 22% 0% 62%

of these anomaly-revealing tests are failure-revealing test inputs; programmers can add precondi-
tions, condition-checking code, or just pay attention to the undesirable behavior when the code’s

implicit assumptions are not written down.

We describe a concrete case for operational violations in the experiments as follows. RatPoly-1
and RatPoly-2 are two student solutions to an assignment of implementing RatPoly, which rep-
resents an immutable single-variate polynomial expression, such as “0”, “z — 10”, and “z3 — 2 *
22 + 53 x  + 3”. In RatPoly’s class interface, there is a method div for RatPoly’s division
operation, which invokes another method degree; degree returns the largest exponent with a non-
zero coefficient, or 0 if the RatPoly is “0”. After we ran with Daikon the instructor-provided test
suite on both Rat Poly-1 and RatPoly-2, we got the same DbC annotations for both student solu-
tions. The precondition removal technique selects one violating test for each student solution. The
selected violating test for RatPoly-1 is different from the one for RatPoly-2; this result shows

that Jtest takes the code implementation into account when generating tests to violate the given DbC
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Inferred postcondition for degree:

$result >= 0

Violating Jtest-generated test input (for RatPoly-1):
RatPoly t0 = new RatPoly(-1l, -1);//represents -1*x"-1
RatPoly THIS = new RatPoly (-1, 0);//represents -1*x"0
RatPoly RETVAL = THIS.div (tO)}//represents (-1*x"0) /(-1*x"-1)

Violating Jtest-generated test input (for RatPoly-2):
RatPoly t0 = new RatPoly(l, 0);//represents 1*x"0
RatPoly THIS = new RatPoly (1, -1);//represents 1*x"-1
RatPoly RETVAL = THIS.div (t0);//represents (1*x"-1)/(1*x"0)

Figure 5.7: Operational violations for RatPoly-1/RatPoly-2

annotations. The selected test for RatPoly-1 makes the program infinitely loop until a Java out-
of-memory error occurs and the selected test for RatPoly-2 runs normally with termination and
without throwing exceptions. These tests are not generated by Jtest alone without being guided with
operational abstractions. After inspecting the code and its comments, we found that these selected
tests are invalid, because there is a precondition e >= 0 for RatPoly(int <, int e). This case
shows that the operational abstraction approach can help generate test inputs to crash a program and

then programmers can improve their code’s robustness when specifications are absent.

We obser{lcd that although those non-anomaly-revealing selected tests do not expose any fault,
most of them represent some special class of inputs, and thus may be valuable if selected for re-
gression testing. We observed, in the experiments, that a couple of iterations are good enough in
our approach. Jtest’s test generation and execution time dominates the running time of applying our
approach. Most subjects took several minutes, but the BinaryHeap and RatPolyStack programs
took on the order of 10 to 20 minutes. We expect that the execution time can be optimized if fu-
ture versions of Jtest can better support the resumption of test generation and execution after we

comment out the violated operational abstractions.
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5.3.4  Threats to validity

The threats to external validity primarily include the degree to which integrated third-party tools, the
subject programs, and test cases are representative of true practice. These threats could be reduced
by more experiments on wider types of subjects and third-party tools. Parasoft Jtest 4.5 is one of
the testing tools popularly used in industry and the only specification-based test generation tool
available to us at the moment. Daikon is the only publicly available tool for generating operational
abstractions. Daikon’s scalability has recently been tackled by using incremental algorithms for
invariant detection [PE04]. In our approach, we use Daikon to infer invariants based on only manual
tests in addition to selected violating tests; the size of these tests is often small. However, Jtest 4.5
is not designed for being used in an iterative way; if some operational abstractions can be violated,
we observed that the number of inner iterations can be more than a dozen and the elapsed time
could be longer than five minutes for some subjects. We expect that the scalability of Jtest in
our setting could be addressed by enhancing it to support incremental test generation when DbC
annotations are being changed. Furthermore, the elapsed time for Jtest’s test generation can be
reduced by enhancing it to avoid generating redundant tests (described in Chapter 4). Alternatively
we can use other specification-based tools with more efficient mechanisms for test generation, such

as Korat [BKMO02].

We mainly used data structures as our subject programs and the programs are relatively small
(the scalability of Jtest 4.5 poses difficulties for us to try large subjects, but note that this is not
the inherent limitation of our approach but the limitation of one particular implementation of our
approach). Although data structures are better suited to the use of invariant detection and design-
by-contract specifications, Daikon has been used on wider types of programs [Dai04]. The success
of our approach on wider types of programs also depends on the underlying testing tool’s capabil-
ity of generating test inputs to violate specifications if there exist violating test inputs. We expect
that the potential of our approach for wider types of programs could be further improved if we
use specification-based testing tools with more powerful test generation capability, such as Ko-

rat [BKMO02], CnC [CS05], and our Symstra tool presented in Chapter 4.

The main threats to internal validity include instrumentation effects that can bias our results.

Faults in our integration scripts, Jtest, or Daikon might cause such effects. To reduce these threats,
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we manually inspected the intermediate results of most program subjects. The main threats to
construct validity include the uses of those measurements in our experiments to assess our approach.
We measured the number of anomaly-revealing tests to evaluate the value of selected tests. In future

work, we plan to measure some other possible attributes of the selected tests.

5.4 Conclusion

Selecting automatically generated test inputs to check correctness and augment the existing unit
test suite is an important step in unit testing. Inferred operational abstractions act as a summary of
the existing test execution history. These operational abstractions can guide test generation tools to
better produce test inputs to violate the abstractions. We have developed the operational violation
approach for selecting generated tests that violate operational abstractions; these selected violating
tests are good candidates for inspection, since they exercise new program features that are not cov-
ered by the existing tests. We have conducted experiments on applying the approach on a set of
data structures. Our experimental results have shown that the size of the selected tests is reasonably
small for inspection, the selected tests generally expose new interesting behavior filling the gaps
not covered by the existing test suite, and the selected tests have a high probability of exposing
anomalous program behavior (either faults or failures) in the code.

Our approach shows a feedback loop between behavior inference and test generation. The feed-
back loop starts with existing tests (constructed manually or automatically) or some existing pro-
gram runs. After running the existing tests, a behavior inference tool can infer program behavior
exercised by the existing tests. The inferred behavior can be exploited by a test-generation tool in
guiding its test generation, which generates new tests to exercise new behavior. Some generated
tests may violate the inferred proprieties (the form of the inferred behavior) and these violating tests
are selected for inspection. Furthermore, these selected tests are added to the existing tests. The ex-
isting tests augmented by the new selected tests can be used by the behavior inference tool to infer
behavior that is closer to what shall be described by a specification (if it is manually constructed)
than the behavior inferred from the original existing tests. The new inferred behavior can be further
used to guide test generation in the subsequent iteration. Iterations terminate until a user-defined

maximum iteration number has been reached or no new behavior has been inferred from new tests.
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This feedback 1oop provides a means to producing better tests and better approximated specifica-
tions automatically and incrementally. The feedback loop not only allows us to gain benefits of
specification-based testing in the absence of specifications, but also tackles one issue of dynamic
behavior inference: the quality of the analysis results (inferred behavior) heavily depends on the

quality of the executed tests.
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Chapter 6

TEST ABSTRACTION FOR INSPECTION

Automatic test-generation tools can generate a large number of tests for a class. Without a prior
specifications, developers usually rely on uncaught exceptions or inspect the execution of gcnerated
tests to determine program correctness. However, relying on only uncaught exceptions for catching
bugs is limited and inspecting the execution of a large number of generated tests is impractical.
The operational violation approach presented in Chapter 5 selects a subset of generated tests for
inspection; these selected tests exhibit new behavior that has not been exercised by the existing
tests. In this chapter, we present the observer abstraction approach that abstracts and summarizes
the object-state-transition information collected from the execution of generated tests. Instead of
inspecting the execution of individual tests, developers can inspect the summarized object-state-
transition information for various purposes. For example, developers can inspect the information to
determine whether the class under test exhibits expected behavior. Developers can also inspect the
information to investigate causes of the failures exhibited by uncaught exceptions. Developers can
inspect the information for achieving better understanding of the class under test or even the tests
themselves.

From the execution of tests, we can construct an object state machine (OSM): a state in an OSM
represents the state that an object is in at runtime. A transition in an OSM represents method calls
invoked through the class interface transiting the object from one state to another. States in an OSM
can be represented by using concrete or abstract representation. The concrete-state representation of
an object, in short as concrete object state, is characterized by the values of all the fields transitively
reachable from the object (described in Section 3.2.2 of Chapter 3). A concrete OSM is an OSM
whose states are concrete object states. Because a concrete OSM is often too complicated to be
useful for understanding, we extract an abstract OSM that contains abstract states instead of concrete
states. An abstract state of an object is defined by an abstraction function [LGO00]; the abstraction

function maps each concrete state to an abstract state. Our observer abstraction approach defines
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abstraction functions automatically by using an observer, which is a public method with a non-void
return.! In particular, the observer abstraction approach abstracts a concrete object state exercised
by tests based on the return values of a set of observers that are invoked on the concrete object
state. An observer abstraction is an OSM whose states are represented by abstract representations
that are produced based on observers. We have implemented a tool, called Obstra, for the observer
abstraction approach. Given a Java class and its initial unit test (either manually constructed or
auotmatically generated), Obstra identifies concrete object states exercised by the tests and generates
new tests to augment these initial tests. Based on the return values of a set of observers, Obstra maps
each concrete object state to an abstract state and constructs an OSM.

The next section describes the example that we use to illustrate our approach. Section 6.2
presents the observer abstraction approach. Section 6.3 describes our experiences of applying the

approach on several data structures and then Section 6.4 concludes.

6.1 Example

We use a binary search tree implementation as a running example to illustrate our observer abstrac-
tion approach. Figure 6.1 shows the relevant parts of the code. The class has 246 non-comment,
non-blank lines of code and its interface includes eight public methods (five of them are observers),
some of which are a constructor (denoted as [init] ()), boolean contains(MyInput info),
void add(MyInput info), and boolean remove (MyInput info). The MyInput argu-
ment type contains an integer field v, which is set through the class constructor. MyInput imple-
ments the Comparable interface and two MyInput are compared based on the values of their v

fields. Parasoft Jtest 4.5 [Par03] generates 277 tests for the class.

6.2 Observer Abstraction Approach

We first discuss the test argumentation technique that enables the dynamic extraction of observer

abstractions (Section 6.2.1). We next describe object state machines, being the representations of

'We follow the definition by Henkel and Diwan [HD03]. The definition differs from the more common definition that
limits an observer to methods that do not change any state. We have found that state-modifying observers also provide
value in our approach and state modification does not harm our approach.
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class BST implements Set {
Node root;
static class Node {
MyInput info;

Node left;
Node right;
}
public void add(MyInput info) {
if (root == null) { root = new Node(); root.info = info; }
else {

Node t = root;
vwhile (true} {
i1f (t.info.compareTo(info) < 0) { ... }
else if (t.value.compareTo(info) > 0) { ... }

else { /* no duplicates*/ return; }

}
public boolean remove (MyInput info) {
Node parent = null; Node current = root;

while (current != null) {

if (info.compareTo(current.info) < 0) { ... }
else if (info.compareTo(current.info) > 0) { ... }
else { break; }

}

if (current == null) return false;

return true;

}

public boolean contains (MyInput info) { ... }

Figure 6.1: A set implemented as a binary search tree

observer abstractions (Section 6.2.2). We then define observer abstractions and illustrate dynamic

extraction of them (Section 6.2.3).



101

6.2.1 Test Augmentation

We use the WholeState technique to represent the concrete state of an object (Section 3.2.2 of Chap-
ter 3). The technique represents the concrete object state of an object as the heap rooted from the
object; the rooted heap is further linearized to a sequence of the values of the fields transitively
reachable from the object. Two concrete object states are equivalent iff their rooted heaps are iso-
morphic. A set of nonequivalent concrete object states contain concrete object states any two of
which are not equivalent. A method-argument state is characterized by a method and the values for
the method arguments (Section 4.2 of Chapter 4). Two method-argument states are equivalent iff
their methods are the same and the heaps rooted from their method arguments are isomorphic. A set
of nonequivalent method-argument states contain method-argument states any two of which are not

equivalent.

After we execute an initial test suite, the WholeState technique identifies all nonequivalent ob-
ject states and nonequivalent method-argument states that were exercised by the test suite. We then
apply the test augmentation technique that generates new tests to exercise each possible combina-
tion of nonequivalent object states and nonequivalent non-constructor-method-argument states. A
combination of a receiver-object state and a method-argument state forms a method invocation. We
augment the initial test suite because the test suite might not invoke each observer on all nonequiv-
alent object states; invoking observers on a concrete object state is necessary for us to know the
abstract state that encloses the concrete object state. The augmented test suite guarantees the invo-
cation of each nonequivalent non-constructor method-argument state on each nonequivalent object
state at least once. In addition, the observer abstractions extracted from the augmented test suite can
better help developers to inspect object-state-transition behavior. The complexity of the test aug-
mentation algorithm is O(|CS| x |MC|), where CS is the set of the nonequivalent concrete states
exercised by the initial test suite 7" for the class under test and M C is the set of the nonequivalent

method calls exercised by 7.
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6.2.2 Object State Machine

We define an object state machine for a class:2

Definition 16. An object state machine (OSM) M of a class c is a sextuple M = (I, O, S, §,
A INIT) where I, O, and S are nonempty sets of method calls in c’s interface, returns of these
method calls, and states of c’s objects, respectively. INIT € 8 is the initial state that the machine
is in before calling any constructor method of c. § : S x I — P(S) is the state transition function
and X : § x I — P(O) is the output function where P(S) and P(O) are the power sets of S and O,
respectively. When the machine is in a current state s and receives a method call i from I, it moves

to one of the next states specified by 6(s, 1) and produces one of the method returns given by \(s,1).

In the definition, a method call is characterized by a method-argument state (a method and
the arguments used to invoke the method), not including the receiver-object state. A method call
together with a receiver-object state affects the behavior of a method invocation. When a method
call in a class interface is invoked on a receiver-object state, an uncaught exception might be thrown.
To represent the state where an object is in after an exception-throwing method call, we introduce
a special type of states in an OSM: exception states. After a method call on a receiver-object state
throws an uncaught exception, the receiver object is in an exception state represented by the type
name of the exception. The exception-throwing method call transits the object from the object state

before the method call to the exception state.

6.2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. The observer abstraction approach automat-
ically constructs abstraction functions to map a concrete state to an abstract state. These abstraction
functions are defined based on observers. We first define an observer following previous work on

specifying algebraic specifications for a class [HDO03]:

Definition 17. An observer of a class c is a method ob in ¢’s interface such that the return type of

ob is not void.

The definition is adapted from the definition of finite state machine [LY96]; however, an object state machine is not
necessarily finite.
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For example, BST’s observers include boolean contains(MyInput info) and boolean
remove (MyInput info) but [init] () and void add(MyInput info) are not observers.

An observer call is a method call whose method is an observer. Given a class ¢ and a set
of observer calls OB = {oby, 0ba, ...,0b,} of ¢, the observer abstraction approach constructs an
abstraction of ¢ with respect to OB. In particular, a concrete state cs is mapped to an abstract state
as defined by n values OBR = {obry, obry, ..., 0bry, }, where each value obr; represents the return

value of observer call ob; invoked on cs.

Definition 18. Given a class c and a set of observer calls OB = {o0b;, 0bs, ..., 0b, } of ¢, an observer
abstraction with respect to OB is an OSM M of ¢ such that the states in M are abstract states defined
by OB.

For example, consider one of BST’s observer contains (MyInput info). Jtest generates tests
that exercise two observer calls for contain: contains(a0.v:7;) and contains (a0:null;),
where ai represents the (i + 1)th argument and ai.v represents the v field of the (i 4 1)th argu-
ment. Argument values are specified following their argument names separated By “:” and different
arguments are separated by “;.” Now consider a BST object’s concrete state cs produced by invok-
ing BST’s constructor. Because invoking contains(a0.v:7;) or contains(a0:null;) oncs
returns £alse, the abstract state as for cs is represented by {false, false}.

Figure 6.2 shows the observer abstraction of BST with respect to the two contains observer
calls and augmented Jtest-generated tests. In the figure, nodes represent abstract states and edges
represent state transitions (method calls). The top state in the figure is marked with INIT, indicating
the object state before invoking a constructor. The second-to-top state is marked with two observer
calls and their false return values. This abstract state encloses those concrete states such that
when we invoke these two observer calls on those concrete states, their return values are false. In
the central state, the observer calls throw uncaught exceptions and we put the exception-type name
NullPointerException in the positions of their return values. The bottom state is an exception
state, which is marked with the exception-type name NullPointerException. An object is in
such a state after a method call on the object throws the NullPointerException. In the next
section, we shall describe transitions in observer abstractions while we present the technique for

extracting observer abstractions.
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[int]02+[(11]

contains(a0.v.7;)=false
contains(a0:null;)=false

add(a0:null;)?~{2/2) add(a0.v.7))?4[1/1]

contalns(a0.v:7;)=true
contains(a0:null;)=false

add(a0.v:7;)?/[2/2] /
'::((:::',“’ﬁ'l’l':));ﬁ [['2’,221] / remave(a0:nully?{1/]
ALL_ARGS[5/6]

remove(a0.v:7;)?Aruel[1/1]

contains(a0.v:7;)=NullPolnterException
contains(a0:null;)=NuliPointerException

remove(a0:null;)?/-[1/2]

contains{al.v:7;)?~[2/2]
contains(a0:null;)?/-[2/2]
ALL_ARGS [4/4]

remove(ao:null;)?~[2/2)

-
—

Figure 6.2: contains observer abstraction of BST

An OSM can be deterministic or nondeterministic. In a nondeterministic OSM, nondeterministic
transitions can offer insights into some irregular object behavior (Section 6.3 shows some examples
of exploring nondeterministic transitions). To help characterize nondeterministic transitions, we
have defined two numbers in a dynamically extracted OSM: transition counts and emission counts.
Assume a transition t transits state Ssup: t0 Seng, the transition count associated with ¢ is the
number of concrete states enclosed in Sy, that are transited to Sep,q by £. Assume m is the method
call associated with ¢, the emission count associated with Sgq+ and m is the number of concrete
states enclosed in Sgqr¢+ and being at entries of m (but not necessarily being transited to Sepq).
If the transition count of a transition is equal to the associated emission count, the transition is
deterministic and nondeterministic otherwise.

Each transition from a starting abstract state to an ending abstract state is marked with method
calls, their return values, and some counts. For example, the Jtest-generated test suite for BST
includes two tests:

public class BSTTest extends TestCase {
public void testl{) {
BST bl = new BST():
MyInput ml = new MyInput (0);

bl.add(ml);

bl.remove (null) ;
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public void test2() {
BST b2 = new BST();

b2 .remove (null) ;

The execution of bl.remove (null) in testl does not throw any exception. Both before
and after invoking bl .remove (null) in testl, if we invoke the two observer calls, their return
values are false; therefore, there is a state-preserving transition on the second-to-top state. (To
present a succinct view, by default we do not show state-preserving transitions.) The execution of
bl.remove (null) in testl throws a NullPointerException. If we invoke the two observer
calls before invoking bl.remove (null) in test2, their return values are false; therefore, given
the method execution of bl.remove (null) in test2, we extract the transition from the second-
to-top state to the bottom state and the transition is marked with remove (a0:null;) ?/—. In the
mark of a transition, when return values are void or method calls throw uncaught exceptions, we
put “—" in the position of their return values. We put “?” after the method calls and “!” after
return values if return values are not “—.” We also attach two numbers for each transition in the
form of [N/M], where N is the transition count and M is the emission count. If these two numbers
are equal, the transition is deterministic, and is nondeterministic otherwise. Because there are two
different transitions from the second-to-top state with the same method call remove (a0:null;)
(one transition is state-preserving being extracted from test1), the transition remove (a0:null;)
from the second-to-top state to the bottom state is nondeterministic, being attached with [1/2]. We
display thicker edges and bold-font texts for nondeterministic transitions so that developers can

easily identify them based on visual effect.

6.2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-test executions. The number of
the concrete states exercised by an augmented test suite is finite and the execution of the test suite is

assumed to terminate; therefore, the dynamically extracted observer abstractions are also finite.
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Given an initial test suite T for a class ¢, we first identify the nonequivalent concrete states C'S
and method-argument states MC exercised by 7. We then augment 7" with new tests to exercise
CS with MC exhaustively, producing an augmented test suite 7. We have described these steps
in Section 6.2.1. T" exercises each nonequivalent concrete state in C'S with each method-argument
state in M C’; therefore, each nonequivalent observer call in MC is guaranteed to be invoked on
each nonequivalent concrete state in C'S at least once. We then collect the return values of observer
calls in M for each nonequivalent concrete state in C'S. We use this test-generation mechanism
to collect return values of observers, instead of inserting observer method calls before and after any
call site to the c class in T', because the latter does not work for state-modifying observers, which
change the functional behavior of 7.

Given an augmented test suite 7" and a set of observer calls OB = {obj, obs, ..., ob,}, we go
through the following steps to produce an observer abstraction M in the form of OSM. Initially
M is empty. During the execution of 7", we collect the following tuple for each method execution
in ¢’s interface: (cSentry, M, M, CSezit), Where CSentrys ™, M7, and cseyy are the concrete object
state at the method entry, method call, return value, and concrete object state at the method exit,
respectively. If m’s return type is void, we assign “—" to mr. If m’s execution throws an uncaught
exception, we also assign “— to mr and assign the name of the exception type to ¢Sez:, called an
exception state. The concrete object state at a constructor’s entry is INIT, called an initial state.

After the test execution terminates, we iterate on each distinct tuple (CSentry, M, MT, CSexit)
to produce a new tuple (asentry, M, MT, ASexit), Where @Sentry and aseqi: are the abstract states
mapped from csentry and cseqi based on OB, respectively. If cs. is an exception state, its mapped
abstract state is the same as csez4t, Whose value is the name of the thrown-exception type. If CSentry
is an initial state, its mapped abstract state is still INIT. If ¢y is not exercised by the initial
tests before test augmentation but exercised by new tests, we map csezi to a special abstract state
denoted as /A, because we have not invoked OB on c¢sez;; yet and do not have a known abstract
state for cSezqt.

After we produce (asentrys M, M7, 8egit) from (CSentry, M, MT, CSezit), We then add asentry
and asezit to M as states, and put a transition from asentry t0 aSeqit in M. The transition is denoted
by a triple (asentry, m?/mrl, asezit). If GSentry, 0Seqsts OF (@Sentry, M?/Mr!, aSerst) is already

present in M, we do not add it. We also increase the transition count for (asentry, m?/mr!, asezit )
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denoted as Clqq,,,,,,m?/mrlases:;)» Which is initialized to one when (asentry, m?/mr!, asesst) is
added to M at the first time. We also increase the emission count for asentry and m, denoted as
Clasentry,m)- After we finish processing all distinct tuples (CSentry, M, MT, CSezit), We postfix the
label of each transition (asentry, m?/mr!, asezit) With [Clasensry m?/mrtasesis) Clasentry,m)]- The
complexity of the extraction algorithm for an observer abstraction is O(|C'S| x |OB|), where C'S is
the set of the nonequivalent concrete states exercised by an initial test suite 7" and OB is the given

set of observers.

To present a succinct view, we do not display N/A states and the transitions leading to N/A
states. In addition, we combine multiple transitions that have the same starting and ending abstract
states, and whose method calls have the same method names and signatures. When we combine
multiple transitions, we calculate the transition count and emission count of the combined transi-
tions and show them in the bottom line of the transition label. When a combined transition contains
all nonequivalent method calls of the same method name and signature, we add ALL_ARGS in
the bottom line of the transition label. For example, in Figure 6.2, the contains edge from the
central state to the bottom state is labeled with ALL_ARGS, because the contains edge com-
prises contains (a0.v:7;) and contains (a0:null;), which are the only ones for contains

exercised by the initial test suite.

When a transition contains only method calls that are exercised by new generated tests but not
exercised by the initial tests, we display a dotted edge for the transition. For example, in Figure 6.2,
there is a dotted edge from the right-most state to the bottom state because the method call for the

edge is invoked in the augmented test suite but not in the initial test suite.

To focus on understanding uncaught exceptions, we create a special exception observer and
construct an observer abstraction based on it. Figure 6.3 shows the exception-observer abstraction of
BST extracted from the augmented Jtest-generated tests. The exception observer maps the concrete
states that are not I NIT or exception states to an abstract state called NORMAL. The mapped abstract
state of an initial state is still INIT and the mapped abstract state of an exception state is still the

same as the exception-type name.
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[init]()?/-[1/1]

add(a0.v.7;)/-[2/4]
add(a0.v:0;)?/-[1/4)
ladd(a0:null;)?/-[2/4]
ALL_ARGS [5/12)]

contains(a0.v:7;)?/-[2/5]
contains(a0:null;)?/-[2/5]
ALL_ARGS [4/10]

emove(a0:null;)?/-[4/5]

Figure 6.3: exception observer abstraction of BST

6.3 Evaluation

We have used Obstra to extract observer abstractions from a variety of programs, most of which
were used to evaluate our work in the preceding chapters. Many of these programs manipulate
nontrivial data structures. In this section, we illustrate how we applied Obstra on two complex data
structures and their automatically generated tests. We applied Obstra on these examples on a MS
Windows machine with a Pentium IV 2.8 GHz processor using Sun’s Java 2 SDK 1.4.2 JVM with
512 Mb allocated memory.

6.3.1 Binary Search Tree Example

We have described BST in Section 6.1 and two of its extracted observer abstractions in Figure 6.2
and 6.3. Jtest generates 277 tests for BST. These tests exercise five nonequivalent concrete ob-
ject states in addition to the initial state and one exception state, 12 nonequivalent non-constructor
method calls in addition to one constructor call, and 33 nonequivalent method executions. Obstra
augments the test suite to exercise 61 nonequivalent method executions. The elapsed real time for
test augmentation and abstraction extraction is 0.4 and 4.9 seconds, respectively.

Figure 6.3 shows that NullPointerException is thrown by three nondeterministic transi-
tions. During test inspection, we want to know under what conditions the exception is thrown.

If the exception is thrown because of illegal inputs, we can add necessary preconditions to guard
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against the illegal inputs. Alternatively, we can perform defensive programming: we can add input
checking at method entries and throw more informative exceptions if the checking fails. How-
ever, we do not want to over-constrain preconditions, which would prevent legal inputs from being
processed. For example, after inspecting the exception OSM in Figure 6.3, we should not con-
sider that illegal arguments include all arguments for add, the null argument for remove, or all
arguments for contains, although doing so indeed prevents the exceptions from being thrown.
After we inspected the contains OSM in Figure 6.2, we gained more information about the ex-
ceptions and found that calling add (a0:null;) after calling the constructor leads to an unde-
sirable state: calling contains on this state deterministically throws the exception. In addition,
calling remove (a0:null;) also deterministically throws the exception and calling add throws
the exception with a high probability of 5/6. Therefore, we had more confidence in considering
null as an illegal argument for add and preventing it from being processed. After we prevented
add(al:null;), two remove (a0:null;) transitions still throw the exception: one is determin-
istic and the other is with 1/2 probability. We then considered null as an illegal argument for
remove and prevented it from being processed. We did not need to impose any restriction on the
argument of contains. Note that this process of understanding the program behavior does not

need the access to the source code.

We found that there are three different arguments for add but only two different arguments
for contains, although these two methods have the same signatures. We could add a method
call of contain(a0.v:0;) to the Jtest-generated test suite; therefore, we could have three ob-
server calls for the contains OSM in Figure 6.2. In the new OSM, the second-to-top state in-
cludes one more observer call contains (a0.v:0)=false and the nondeterministic transition of
remove (al:null;) ?/-[1/2] from the second-to-top state to the bottom state is turned into a
deterministic transition remove (a0:null;)?/-{1/1]. In general, when we add new tests to a
test suite and these new tests exercise new observer calls in an OSM, the states in the OSM can
be refined, thus possibly turning some nondeterministic transitions into deterministic ones. On the
other hand, adding new tests can possibly turn some deterministic transitions into nondeterministic

ones.
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InO7-111] [initi)P/-[141]

repOk()=true

setLoadFactar(a0:7.0;)2/+{17/17]
PUtAll(a0:nul;)?/-{58/58) | setl.oadFactor(a0:0.0;)?/-[6/6]
ALL_ARGS [23/23]

repOk()=false

Figure 6.4: exception observer abstraction and repOk observer abstraction of HashMap
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Figure 6.5: get observer abstraction of HashMap

6.3.2 Hash Map Example

A HashMap class was given in java.util.HashMap from the standard Java libraries [SM03]. A
repOK and some helper methods were added to this class for evaluating Korat [BKMO2]. The class
has 597 non-comment, non-blank lines of code and its interface includes 19 public methods (13 ob-
servers), some of which are [init] (), void setLoadFactor (float f),void putaAll (Map
t), Object remove (MyInput key), Object put (MyInput key, MyInput value), and
void clear(}. Jtest generates 5186 tests for HashMap. These tests exercise 58 nonequivalent
concrete object states in addition to the initial state and one exception state, 29 nonequivalent non-
constructor method calls in addition to one constructor call, and 416 nonequivalent method execu-

tions. Obstra augments the test suite to exercise 1683 nonequivalent method executions. The elapsed
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® istmpty()Z observer abstraction of Hashidap

[init)()

ISEmpLy()=true clear)

put{ad,a1) |remove(a0)

IsEmpty()=faIse pUK(a0,a1)

Figure 6.6: isEmpty observer abstraction of HashMap (screen snapshot)

real time for test augmentation and abstraction extraction is 10 and 15 seconds, respectively.

We found that the exception OSM of HashMap contains one deterministic transition, which is
putaAll (a0:null;) from NORMAL to NullPointerException, as is shown in the left part of
Figure 6.4. Therefore, we considered null as an illegal argument for putall. We checked the
Java API documentation for HashMap [SMO03] and the documentation states that putall throws

' NullPointerException if the specified map is null. This description conﬁfmed our judgment.
In other observer abstractions, to provide a more succinct view, by default Obstra does not dis-
play any deterministic transitions leading to an exception state in the exception OSM, because the

information conveyed by these transitions has been reflected in the exception OSM.

We found an error in setLoadFactor (float £), a method that was later added to facil-
itate Korat’s test generation [BKMO2]. The right part of Figure 6.4 shows the repok OSM of
HashMap. repOk is a predicate used to check class invariants [LGOO]. If calling repOk on
an object state returns false, the object state is invalid. By inspecting the repOK OSM, we
found that calling setLoadFactor with any argument value deterministically leads to an invalid
state. We checked the source code of setLoadFactor and found that its method body is simply
loadFactor = f;,where loadFactor is an object field and £ is the method argument. The com-

ments for a private field threshold states that the value of threshold shall be (int) (capacity
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* loadFactor). Apparently this property is violated when setting loadFactor without updat-
ing threshold accordingly. We fixed this error by appending a call to an existing private method
void rehash() in the end of setLoadFactor’s method body; the rehash method updates the
threshold field using the new value of the loadFactor field.

Figure 6.5 shows the get OSM of HashMap. In the representation of method returns on a tran-
sition or in a state, ret represents the non-primitive return value and ret . v represents the v field of
the non-primitive return value. Recall that a transition with a dotted edge is exercised only by new
generated tests but not by the initial tests. We next walk through the scenario in which developers
could inspect Figure 6.5. During inspection, developers might focus their exploration of an OSM
on transitions. Three such transitions are clear, remove, and put. Developers are not surprised
to see that clear or remove transitions cause a nonempty HashMap to be empty, as is shown by
the transitions from the top or bottom state to the central state. But developers are surprised to see
the transition of put (a0:null;al:null) from the top state to the central state, indicating that
put can cause a nonempty HashMap to be empty. By browsing the Java API documentation for
HashMap [SMO3], developers can find that HashMap allows either a key or a value to be null;
therefore, the null return of get does not necessarily indicate that the map contains no mapping
for the key. However, in the documentation, the description for the returns of get states: “the value
to which this map maps the specified key, or null if the map contains no mapping for this key.” After
reading the documentation more carefully, they can find that the description for get (but not the
description for the returns of get) does specify the accurate behavior. This finding shows that the
informal description for the returns of get is not accurate or consistent with the description of get
even in such widely published Java API documentation [SMO03].

Figure 6.6 shows a screen snapshot of the isEmpty OSM of HashMap. We configured Ob-
stra to additionally show each state-preserving transition that has the same method name as another
state-modifying transition. We also configured Obstra to display on each edge only the method
name associated with the transition. When developers want to see the details of a transition, they
can move the mouse cursor over the method name associated with the transition and then the de-
tails are displayed. We have searched the Internet for manually created state machines for common
data structures but few could be found. One manually created state machine for a container struc-

ture [Ngu98] is almost the same as the i sEmpty OSM of HashMap shown in Figure 6.6. There are
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two major differences. The INIT state and the [init] () transition are shown in Figure 6.6 but not
in the manually created state machine. The manually created state machine annotates “not last ele-
ment” for the state-preserving transition remove (a0) (pointed by the mouse cursor in Figure 6.6)
on the isEmpty () =false state and “last element” for the state-modifying transition remove (a0)
(shown in the middle of Figure 6.6) starting from the isEmpty () =false state; Figure 6.6 shows
these two transition names in bold font, indicating them to be nondeterministic. We expect that some
of these manually specified conditions for a transition can be inferred by using Daikon [ECGNO1]

on the variable values collected in the starting state and method arguments for the transition.

6.3.3 Discussion

Our experiences have shown that extracted observer abstractions can help investigate causes of
uncaught exceptions, identify weakness of an initial test suite, find bugs in a class implementation or
its documentation, and understand class behavior. Although many observer abstractions extracted
for the class under test are succinct, some observer abstractions are still complex, containing too
much information for inspection. For example, three observers of HashMap, such as Collection
values (), have 43 abstract states. The complexity of an extracted observer abstraction depends
on both the characteristics of its observers and the initial tests. To control the complexity, we
can display a portion of a complex observer abstraction based on user-specified filtering criteria or

extract observer abstractions from the executions of a user-specified subset of the initial tests.

Although the isEmpty OSM of HashMap is almost the same as a manually created state ma-
chine [Ngu98], our approach does not guarantee the completeness of the resulting observer ab-
stractions — our approach does not guarantee that the observer abstractions contain all possible
legal states or legal transitions. Our approach also does not guarantee that the observer abstrac-
tions contain no illegal transitions. Instead, the observer abstractions faithfully reflect behavior
exercised by the executed tests; inspecting observer abstractions could help identify weakness of
the executed tests. This characteristic of our approach is shared by other dynamic inference tech-

niques [ECGNO1,HD03, WML02, ABL02].



114

6.4 Conclusion

It is important to provide tool support for developers as they inspect the executions of automatically
generated unit tests. We have proposed the observer abstraction approach to aid inspection of test
executions. We have developed a tool, called Obstra, to extract observer abstractions from unit-
test executions automatically. We have applied the approach on a variety of programs, including
complex data structures; our experiences show that extracted observer abstractions provide useful
object-state-transition information for developers to inspect.

The preceding chapter discusses a feedback loop between behavior infefence and test generation.
This chapter shows a type of behavior inference: we infer observer abstractions from the execution
of unit tests. The test augmentation in our observer abstraction approach has exploited exercised-
concrete-state information inferred from the execution of the initial test suite. Our test generation
tools presented in Chapter 4 can be further extended to exploit the inferred observer abstractions to
guide their test generation process: given an inferred observer abstraction, the test generation tools
can try to generate tests to create new transitions or states in the abstraction. Then the new observer
abstraction (inferred from both the initial tests and new tests) can be used to guide the test generation
tools to generate tests in the subsequent iteration. Iterations terminate until a user-defined maximum

iteration number has been reached or no new transition or state has been inferred from new tests.
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Chapter 7

PROGRAM-BEHAVIOR COMPARISON IN REGRESSION TESTING

Regression testing retests a program after it is modified. In particular, regression testing com-
pares the behavior of a new program version in order to the behavior of an old program version to
assure that no regression faults are introduced. Traditional regression testing techniques use pro-
gram outputs to characterize the behavior of programs: when running the same test on two program
versions produces different outputs (the old version’s output is sometimes stored as the expected
output for the test), behavior deviations are exposed. When these behavior deviations are unex-
pected, developers identify them as regression faults, and may proceed to debug and fix the exposed
regression faults. When these behavior deviations are intended, for example, being caused by bug-
fixing program changes, developers can be assured so and may update the expected outputs of the
tests.

However, an introduced regression fault might not be easily exposed: even if a program-state
difference is caused immediately after the execution of a new faulty statement, the fault might not
be propagated to the observable outputs because of the information loss or hiding effects. This
phenomenon has been investigated by various fault models [Mor90, D091, Voa92, TRC93]. Re-
cently a program spectrum has been proposed to characterize a program’s behavior inside the black
box of program execution [BL96, RBDL97]. Some other program spectra, such as branch, data
dependence, and execution trace spectra, have also been proposed in the literature [BL96, HRS*00,
RBDL97].

In this chapter, we propose a new class of program spectra called value spectra. The value
spectra enrich the existing program spectra family [BL96, HRS*00,RBDL97] by capturing internal
program states during a test execution. An internal program state is characterized by the values
of the variables in scope. Characterizing behavior using values of variables is not a new idea.
For example, Calder et al. [CFE97] propose value profiling to track the values of variables during

program execution. Our new approach differs from value profiling in two major aspects. Instead of



116

tracking variable values at the instruction level, our approach tracks internal program states at each
user-function entry and exit as the value spectra' of a test execution. Instead of using the information
for compiler optimization, our approach focuses on regression testing by comparing value spectra
from two program versions.

When we compare the dynamic behavior of two program versions, a deviation is the difference
between the value of a variable in a new program version and the corresponding one in an old
version. We compare the value spectra from a program’s old version and new version, and use
the spectra differences to detect behavioral deviations in the new version!. We use a deviation-
propagation call tree to show the details of the deviations.

Some deviations caused by program changes might be intended such as by bug-fixing changes
and some deviations might be unintended such as by introduced regression faults. To help develop-
ers determine if the deviations are intended, it is important to present to developers the correlations
between deviations and program changes. A deviation root is a program location in the new pro-
gram version that triggers specific behavioral deviations. A deviation root is among a set of program
locations that are changed between program versions. We propose two heuristics to locate deviation
roots based on the deviation-propagation call tree. Identifying the deviation roots for deviations
can help to understand the reasons for the deviations and determine whether the deviations are
regression-fault symptoms or just expected. Identified deviation roots can be additionally used to
locate regression faults if there are any.

The next section presents the example that we use to illustrate the definition of value spectra.
Section 7.2 presents the value-spectra comparison approach. Section 7.3 describes our experiences

of applying the approach on several data structures and then Section 7.4 concludes.

7.1 Example

To illustrate value spectra, we use a sample C program shown in Figure 7.1. This program receives
two integers as command-line arguments. The program outputs -1 if the maximum of two integers

is less than 0, outputs 0 if the maximum of them is equal to 0, and outputs 1 if the maximum of

Deviation detection in this dissertation is different from the software deviation analysis technique developed by
Reese and Leveson [RL97]. Their technique determines whether a software specification can behave well when there
are deviations in data inputs from an imperfect environment.
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#include <stdio.h>

1 int max(int a, int b) {

2 if (a »>= b) {

3 return a;

4 } else {

5 return b;

6 }

7}

8 int main(int arge, char *argv([]) {
9 int i, 3;

10 if (arge !'= 3) {

11 printf ("Wrong arguments!");
12 return 1;

13 }

14 i = atoi(argvi(l]);

15 3 atoi(argv([2]};

16 1f (max(i,3j) >= 0){

17 if (max(i, 3j) == 0){
18 printf("0");

19 } else {

20 printf("1");

21 }

22 } else {

23 printf("-1");

24 }

25 return 0;

26 }

Figure 7.1: A sample C program

them is greater than 0. When the program does not receive exactly two command-line arguments, it

oufputs an error message.

The execution of a program can be considered as a sequence of internal program states. Each
internal program state comprises the program’s in-scope variables and their values at a particular

execution point. Each program execution unit (in the granularity of statement, block, code fragment,
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function, or component) receives an internal program state and then produces a new one. The
program execution points can be the entry and exit of a user-function execution when the program
execution units are those code fragments separated by user-function call sites. Program output
statements (usually output of I/O operations) can appear within any of those program execution
units. Since it is relatively expensive in practice to capture all internal program states between the
executions of program statements, we focus on internal program states in the granularity of user
functions, instead of statements.

A function-entry state S¢™"Y is an internal program state at the entry of a function execution.
Semty comprises the function’s argument values and global variable values. A function-exit state
Se%i is an internal program state at the exit of a function execution. $e*% comprises the function
return value, updated argument values, and global variable values. Note that S€*% does not consider
local variable values. If any of the preceding variables at the function entry or exit is of a pointer
type, the SV or $°*% additionally comprises the variable values that are directly or indirectly
reachable from the pointer-type variable. A function execution (S™¥, §e=#) is é pair of a function
call’s function-entry state S™"¥ and function-exit state S€*%,

Figure 7.2 shows the internal program state transitions of the sample program with the command
line arguments of "0 1". In the program execution, the main function calls the max function twice

with the same arguments, and then outputs *1" as is shown inside the cloud in Figure 7.2.

7.2 Value-Spectra Comparison Approach

We first introduce a new type of semantic spectra, value spectra, which are used to characterize
program behavior (Section 7.2.1). We next describe how we compare the value spectra of the same
test on two program versions (Section 7.2.2). We then describe the deviation propagations exhibited
by spectra differences (Section 7.2.3). We finally present two heuristics to locate deviation roots

based on deviation propagation (Section 7.2.4).

7.2.1 Value Spectra

We propose a new class of semantic spectra, value spectra, based on exercised internal program

states. Value spectra track the variable values in internal program states, which are exercised as a



arge 3 al o al o al ¢ al o argc 3

argv[1] “y b 1 b 1 b 1 b 1 argv[1] gy
argv(2] , . .1 argv2]

aqn | ret 1 i ret 9 5 ugn

] | P o et

main max max max max main

entry entry exit entry exit exit

state state state state state state

max function exec-1

L o,

~F

main function exec

max function exec-2 /

119

Figure 7.2: Internal program state transitions of the sample C program execution with input "0 1"

Table 7.1: Value spectra for the sample program with input "0 1"

spectra profiled entities

value hit main(entry(3,"0","1"),exit(3,"0","1",0)),
max(entry(0,1),exit(0,1,1))

max{entry(0,1),exit(0,1,1))*2

value count | main(entry(3,"0","1"),exit(3,"0","1",0))*1,

value trace | main(entry(3,"0","1"),exit(3,"0","1",0)),
max(entry(0,1),exit(0,1,1)), V,
max(entry(0,1),exit(0,1,1)), V, V

output "

program executes.

We propose three new variants of value spectra:

o User-function value hit spectra (in short as value hit spectra). Value hit spectra indicate

whether a user-function execution is exercised.
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o User-function value count spectra (in short as value count spectra). Value count spectra

indicate the number of times that a user-function execution is exercised.

o User-function value trace spectra (in short as value trace spectra). Value trace spectra record

the sequence of the user-function executions traversed as a program executes.

Table 7.1 shows different value spectra and output spectra for the sample C program execution
with input "0 1". We represent a user-function execution using the following form:
funcname (entry(argvals), exit(argvals, ret)) where funcname represents the function
name, argvals after entry represents the argument values and global variable values at the func-
tion entry, argvals after exit represents the updated argument values and global variable values
at the function exit, and ret represents the return value of the function. Function executions in
value hit spectra or value count spectra do not preserve order, while value trace spectra do preserve
order. In value count spectra, a count marker of "* num" is appended to the end of each function
execution to show that the function execution is exercised num times. Note that if we change the
second max function call from max (1,3) tomax (3, 1), we will have two distinct entities for max
in the value hit and value count spectra. It is because these two function executions will become
distinct with different function-entry or function-exit states. In value trace spectra, "V" markers
are inserted in the function-execution sequence to indicate function execution returns [RR01]. The
value trace spectra for the sample program shows that main calls max twice. Without these markers,
the same function-execution sequence would result from main calling max and max calling max.

The value trace spectra strictly subsume the value count spectra, and the value count spectré
strictly subsume the value hit spectra. The output spectra are incomparable with any of the three
value spectra, since the program’s output statements inside a particular user function body might
output some constants or variable values that are not captured in that user function’s entry or exit
state. For example, when we shuffle those printf statements in the main function body, the pro-
gram still has the same value spectra but different output spectra. On the other hand, the executions
with different value spectra might have the same output spectra. However, when those function
bodies containing output statements are not modified in version p’, the value trace spectra strictly
subsumes the output spectra. In addition, if we also collect the entry and exit states of system output

functions in the value trace spectra, the value trace spectra strictly subsume the output spectra.
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Value trace spectra strictly subsume dynamically detected invariants because Ernst’s Daikon
tool [Ern00, ECGNO1] generalizes invariants from variable values that define value trace spectra.
Because Daikon infers invariants for each function separately and the order among function exe-
cutions does not affect the inference results, value count spectra also strictly subsume dynamically
detected invariants. However, value hit spectra are not comparable to dynamically detected invari-
ants because the number of data samples can affect Daikon’s inference results [Ern00, ECGNO1].
For example, after we eliminate the second max method call by caching the return value of the first
max method call, we will have the same value count spectra but Daikon might infer fewer invariants
for max when running the two program versions with input "0 1", because too few data samples

exhibit some originally inferred invariants.

Execution-trace spectra strictly subsume any other program spectra, including the three value
spectra. Other syntactic spectra, such as branch, path, and data-dependence spectra are incompa-
rable with any of the three value spectra. For example, when we change the statement of i =
atoi(argv[l]) toi = atoi(argv[l]) + 1, we will have the same traditional syntactic spec-
tra but different value spectra with input "0 1" running on the two program versions. On the other
hand, when we move the statement of printf ("1") from within the inner else branch to after the
inner else branch, and add a redundant statement 1 = i + 1 after the print£f("1") statement,
we will have different traditional syntactic spectra, but the same value spectra with input "0 1"

running on the two program versions.

7.2.2  Value Spectra Differences

To compare program behavior between two program versions, we can compare value spectra from
two program versions when we run the same test on them. To compare the value spectra from two
program versions, we need to compare function executions from these versions. We can reduce the
comparison of two function executions to the comparison of the function-entry and function-exit
states from these two function executions, including these states’ function names, signatures, and
the variable values. When some variables in a function entry or exit state are pointers, their variable
values are memory addresses. In the presence of these pointer variables, running a test on the

same program twice might produce different value spectra. If we just ignore these pointer-variable
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values, we lose the referencing relationships among variables. To address this problem, we perform
a linearization algorithm shown in Figure 3.2 of Chapter 3 on each function-entry or function-
exit state. In particular, when we encounter a reference-type variable v, instead of collecting its
value (memory address) in the state representation, we collect the following representation for the

variable:

e collect “null” if (v ==null).

¢ collect “not_null” if (v !=null) and there exists no previously encountered variable v’ such

that (v==v').

e collect vname ' otherwise, where vname’ is the name of the earliest encountered variable v

such that (v ==v')and (v !=null).

Two states Sy and S are equivalent represented as Sy = S, if and only if their state representa-
tions are the same; otherwise are nonequivalent, represented as §; Z Sp. Two function executions
Fu(ST™TY, Sty and fp 1(SS™MTY, 5E%itY are equivalent if and only if they have the same function
name and signature, ;™" = Sg™"Y, and $¢*% = $£%i*, The comparison of value count spectra
additionally considers the number of times that equivalent function executions are exercised. Given
a function execution in the new version, the compared function execution in the old version is the
one that has the same function name, signature, and function-entry state. If we cannot find such a
function execution in the old version, the compared function execution is an empty function execu-
tion. An empty function execution has a different function name, function signature, function-entry
state, or function-exit state from any other regular function executions.

The comparison of value trace spectra further considers the calling context and sequence order in
which function executions are exercised. If we want to determine whether two value trace spectra are
the same, we can compare the concatenated function-execution sequences of two value traces. If we
want to determine the detailed function-execution differences between two value trace spectra, we
can use the constructed dynamic call tree and the GNU Diffutils [GNUO02] to compare the function-
execution traces of two value trace spectra. After the comparison, when a function execution f is
present in Version a but absent in Version b, we can consider that an empty function execution in

Version b is compared with f in Version a.
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7.2.3 Deviation Propagation

Assume frew:(Shen?, S is a function execution in a program’s new version and fog :(S5 Y, SEZit)
is its compared function execution in the program’s old version. If f,..,, and f,4 are equivalent, then
Fnew 18 @ non-deviated function execution. If fre,, and foq are not equivalent, then fpe, is a devi-
ated function execution. We have categorized a deviated function execution into one of the following

two types:

e Deviation container. fpe, is a deviation container, if Sqhey? = SG0'Y but SEit £ Sexit,
If a function execution is identified to be a deviation container, developers can know that a
certain behavioral deviation occurs inside the function execution. Note that when there is a
certain behavioral deviation inside a function execution, the function execution might not be
observed to be a deviation container, since the behavioral deviation might not be propagated

to the function exit.

e Deviation follower. frey is a a deviation follower, if Sgom¥ = S;’Zi"y. If a function execution

is identified to be a deviation follower, developers can know that a certain behavioral devi-
ation occurs before the function execution. For value count spectra particularly, a function
execution in a program’s new version can be categorized as a deviation follower if its count
is different from the count of the compared function execution from the old program version.
we need to use a matching technique (similar as the one used in the value trace spectra com-
parison) to identify which particular function executions in one version are absent in the other

version.

The details of value spectra differences can provide insights into deviation propagation in the
execution of the new program version. To provide such details, we attach deviation information to a
dynamic call tree, where a vertex represents a single function execution and an edge represents calls
between function executions. From the trace collected during a test execution, we first construct
a dynamic call tree and then annotate the call tree with deviation information to form a deviation-
propagation call tree. Figure 7.3 shows the deviation-propagation call trees of two test executions
on a new (faulty) version of the tcas program. The tcas program, its faulty versions, and test suite

are contained in a set of siemens programs [HFGO94], which are used in the experiment described
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(The execution of the 58th test)
0 main
|0 initialize
|0 alt_sep_test
|__O Non_Crossing_Biased_Climb
| [0 Inhibit_Biased_Climb
| [0 Own_Above_Threat
|0 Non_Crossing_Biased_Descend
| |——O Inhibit_Biased_Climb
| [0 Own_Below_Threat-------~- [dev follower]
| [0 ALIM-—--=ommmmmm e [dev follower]
|.__0 own_above_Threat

(The execution of the 91st test)
O main
|0 initialize
[0 alt_sep_test---—-———mmeeo—_—_ [dev container]
|0 Non_Crossing_Biased_Climb
| |_o Inhibit_Biased_Climb
| [0 Own_Above_Threat
| |0 ALIM
|0 Own_Below_Threat
|__O Non_Crossing Biased_Descend-[dev container]
|_O Inhibit_Biased_Climb

|0 own_Below_Threat

Figure 7.3: Value-spectra-based deviation-propagation call trees of a new program version (the 9th
faulty version) of the tcas program

in Section 7.3. In the call trees, each node (shown as 0) is associated with a function execution, and
parent node calls its children nodes. For brevity, each node is marked with only the corresponding
function name. The execution order among function executions is from the top to the bottom, with
the earliest one at the top. If there is any deviated function execution, its deviation type is marked in

the end of the function name.
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Usually behavioral deviations are originated from certain program locations that are changed
in the new program version. These program locations are called deviation roots. The function that
contains a deviation root is called deviation-root container. In the new version of the tcas program,
a relational operator > in the old version is changed to >=. The function that contains this changed

line is Non_ Crossing.Biased_Descend.

Some variable values at later points after a deviation-root execution might differ from the ones
in the old program version because of the propagation of the deviations at the deviation root. The
deviations at the function exit of the deviation-root container might cause the deviation-root con-
tainer to be observed as a deviation container. Note that some callers of the deviation-root container
might also be observed as deviation containers. For example, in the lower call tree of Figure 7.3,
the deviation-root container Non Crossing Biased Descend is observed as a deviation container

and its caller alt_sep-test is also observed as a deviation container.

Sometimes deviations after a deviation-root execution might not be propagated to the exit of the
deviation-root container, but the deviations might be propagated to the entries of some callees of the
deviation-root container, causing these callees to be observed as deviation followers. For example,
in the upper call tree of Figure 7.3, the deviation-root container’s callees Own_Below.Threat and

ALTM are observed as deviation followers.

7.2.4 Deviation-Root Localization

In the previous section, we have discussed how deviations are propagated given a known deviation
root. This section explores the reverse direction: locating deviation roots by observing value spectra
differences. This task is called deviation-root localization. Deviation-root localization can help
developers to better understand which program change(s) caused the observed deviations and then

determine whether the deviations are expected.

Recall that given a function execution frew:(Seew?, SEZY if foe, is a deviation container,

SETY is not deviated but SE% is deviated; if fre., is a deviation follower, Sy has already

been deviated; if frey is a non-deviated function execution, neither Sgag? nor SEZ% is deviated.
Deviation roots are likely to be within those statements executed within a deviation container or

before a deviation follower. The following two heuristics are to narrow down the scope for deviation
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roots based on deviation propagation effects:

Heuristic 1 Assume £ is a deviation follower and g is the caller of £. If (1) g is a devia-
tion container or a non-deviated one, and (2) any function execution between g’s entry and the
call site of £ is a non-deviated one, deviation roots are likely to be among those statements ex-
ecuted between the g’s entry and the call site of £, excluding user-function-call statements. For
example, in the upper call tree of Figure 7.3, Own_Below.Threat is a deviation follower and its
caller Non.Crossing.Biased Descend is a non-deviated one. The Inhibit Biased.Climb
invoked immediately before the Ovn.Below.Threat is a non-deviated one. Then we can ac-
curately locate the deviation root to be among those statements executed between the entry of
Non_Crossing-Biased.Descend and the call site of Own_Below_Threat.

Heuristic 2 Assume £ is a deviation container. If any of £’s callees is a non-deviated one,
deviation roots are likely to be among those statements executed within £’s function body, exclud-
ing user-function-call statements. For example, in the lower call tree of Figure 7.3, the function
execution Non.Crossing Biased Descend is a deviation container and any of its callees is a
non-deviated one. Then we can accurately locate the deviation root to be among those statements
executed within the Non_Crossing Biased Descend’s function body.

When multiple changes are made at different program locations in the new program version,
there might be more than one deviation root that cause behavioral deviations. If a deviation root’s
deviation effect is not propagated to the execution of another deviation root, and each deviation root
causes their own value spectra differences, our heuristics can locate both deviation roots at the same

time.

7.3 Evaluation

This section presents the experiment that we conducted to evaluate our approach. We first describe
the experiment’s objective and measures as well as the experiment instrumentation. We then present
and discuss the experimental results. We finally discuss analysis cost and threats to validity.

7.3.1 Objective and Measures

The objective of the experiment is to investigate the following questions:
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1. How different are the three value spectra types and output spectra type in terms of their

deviation-exposing capability?

2. How accurately do the two deviation-root localization heuristics locate the deviation root from

value spectra?

Given spectra type S, program P, new version P’, and the set C'T of tests that cover the changed
lines, let DT'(S, P, P',CT) be the set of tests each of which exhibits S spectra differences and
LT(S, P, P',CT) be the subset of DT'(S, P, P',CT) whose exhibited spectra differences can be
applied with the two heuristics to accurately locate deviation roots. To answer Questions 1 and 2,

we use the following two measures, respectively:

o Deviation exposure ratio. The deviation exposure ratio for spectra type S is the number of the

tests in DT'(S, P, P', CT) divided by the number of the tests in CT', given by the equation:

DT(S,P,P' CT
CT

o Deviation-root localization ratio. The deviation-root localization ratio for spectra type S is the

number of the tests in LT(S, P, P’, CT) divided by the number of the tests in DT(S, P, P, CT),

Higher values of either measure indicate better results than lower values. In the experiment,
we measure the deviation-root localization ratio in the function granularity for the convenience of
measurement. That is, when the deviation-root localization locates the deviation-root containers
(the functions that contain changed lines), we consider that the localization accurately locates the
deviation root. For those changed lines that are in global data definition portion, we consider the
deviation-root containers to be those functions that contain the executable code referencing the

variables containing the changed data.

7.3.2 Instrumentation

We built a prototype of the spectra-comparison approach to determine the practical utility. Our
prototype is based on the Daikon [ECGNO1] front end for C programs. Daikon is a system for

dynamically detecting likely program invariants. It runs an instrumented program, collects and
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examines the values that the program computes, and detects patterns and relationships among those
values. The Daikon front end instruments C program code for collecting data traces during program
executions. By default, the Daikon front end instruments nested or recursive types (structs that have
struct members) with the instrumentation depth of three. For example, given a pointer to the root of
a tree structure, we collect the values of only those tree nodes that are within the tree depth of three.

We have developed séveral Perl scripts to compute and compare all three variants of value spectra
and output spectra from the collected traces. In the experiment, we have implemented the deviation-
root localization for only value hit spectra.?> Given two spectra, our tools report in textual form
whether these two spectra are different. For value hit spectra, our tools can display spectra dif-
ferences in deviation-propagation call trees in plain text (as is shown in Figures 7.3) and repoft

deviation-root locations also in textual form.

We use seven C programs as subjects in the experiment. Researchers at Siemens Research
created these seven programs with faulty versions and a set of test cases [HFGQO94]; these programs
are popularly referred as the siemens programs (we used the programs, faulty versions, and test
cases that were later modified by Rothermel and Harrold [RHOH98]). The researchers constructed
the faulty versions by manually seeding faults that were as realistic as possible. Each faulty version
differs from the original program by one to five lines of code. The researchers kept only the faults
that were detected by at least three and at most 350 test cases in the test suite. Columns 1-4 of
Table 7.2 show the program names, number of functions, lines of executable code, and number
of tests of these seven subject programs, respectively. Column 5 contains two numbers separated
by "/". The first number is the number of the faulty versions selected in this experiment and the
second number is the total number of faulty versions. Columns 6 shows the average space cost (in
kilobytes) of storing traces collected for a test’s value spectra , respectively. The last column shows
the description of the subject programs.

We perform the experiment on a Linux machine with a Pentium IV 2.8 GHz processor. In the ex-
periment, we use the original program as the old version and the faulty program as the new version.

We use all the test cases in the test suite for each program. To control the scale of the experiment,

*We have not implemented deviation-root localization for value count or value trace spectra, because their implemen-
tation requires the matching of traces from two versions, which is challenging by itself and beyond the scope of this
research.
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Table 7.2: Subject programs used in the experiment

program | funcs | loc | tests | vers | |vs_trc|(kb/test) | program description
printtok 18 | 402 | 4130 717 36 | lexical analyzer
printtok2 19 | 483 | 4115 | 10/10 50 | lexical analyzer
replace 21 | 516 | 5542°| 12/32 71 | pattern replacement
schedule 18 | 299 | 2650 9/9 982 | priority scheduler
schedule2 16 | 297 | 2710 | 10/10 272 | priority scheduler
tcas 9 [ 138 | 1608 | 9/41 8 | altitude separation
totinfo 71346 | 1052 | 6/23 27 | information measure

for those programs with more than 10 faulty versions, we select only those faulty versions in an
order from the first version to make each selected version have at least one faulty function that has

not yet occurred in previously selected versions.

7.3.3 Results

Figures 7.4 and 7.5 use boxplots to present the experimental results. The box in a boxplot shows
the median value as the central line, and the first and third quartiles as the lower and upper edges
of the box. The whiskers shown above and below the boxes technically represent the largest and
smallest observations that are less than 1.5 box lengths from the end of the box. In practice, these
observations are the lowest and highest values that are likely to be observed. Small circles beyond
the whiskers are outliers, which are anomalous values in the data.

Figure 7.4 shows the experimental results of deviation exposure ratios that are computed over
all subjects. The vertical axis lists deviation exposure ratios and the horizontal axis lists four spectra
types: output, value hit, value count, and value trace spectra. Figures 7.5 shows the experimental
results of deviation-root localization ratios for value hit spectra. The vertical axis lists deviation-root
localization ratios and the horizontal axis lists subject names.

From Figure 7.4, we observed that checking value spectra differences increases the deviation
exposure ratio about a factor of three compared to checking program output differences. This indi-

cates that a relatively large portion of deviations could not be propagated to program outputs. There
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Figure 7.4: Experimental results of deviation exposure ratios

are no significant differences of the deviation exposure ratios among the three value spectra, except
that the third quartile of the value trace spectra is slightly higher than the one of the value hit or
value count spectra. We found that there were three versions where value trace spectra have higher
deviation exposure ratios than value hit and value count spectra. The faults in these three versions
sometimes cause some deviation followers to be produced in value trace spectra, but these deviation
followers are equivalent to some function executions produced by the old program version; there-
fore, although the value trace spectra are different, their value hit spectra or value count spectra are

the same.

In Figure 7.5, the deviation-root localization ratios for value hit spectra are near 1.0 for all sub-
jects except for the schedule2 program; therefore, their boxes are collapsed to almost a straight
line near the top of the figure. The results show that our heuristics for value hit spectra can ac-
curately locate deviation roots for all subjects except for the schedule2 program. We inspected

schedule2’s traces carefully to find out the reasons. We found that the Daikon front end did
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Figure 7.5: Experimental results of deviation-root localization ratios for value hit spectra

not collect complete program state information in a key linked-list struct in schedule2 using the
instrumentation depth of three (the default configuration of the Daikon front end). In some of
schedule2’s faulty versions, deviations occur on the key linked-list struct beyond the depth of
three. Therefore we could not detect the deviations at the exits of deviation roots. We expect that

we could increase the deviation-root localization ratios after increasing the instrumentation depth.

The experiment simulates the scenario of introducing regression faults into programs during
program modifications. When programmers perform a modification that is not expected to change
a program’s semantic behavior, such as program refactoring [Fow99], our spectra comparison ap-
proach can show the occurrences of unintended deviations and our deviation-root localization ac-
curately locates the regression faults. Moreover, we can reverse the version order by treating the
faulty version as the old version and the correct version as the new version. Then we can conduct a
similar experiment on them. This simulates the scenario of fixing program bugs. Since our spectra

comparison is symmetric, we expect to get the same experimental results. This shows that when
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programmers perform a bug-fixing modification, our approach can show them the occurrences of

the intended deviations.

7.3.4 Analysis Cost

The space cost of our spectra-comparison approach is primarily the space for storing collected
traces. Columns 6 of Table 7.2 shows the average space in kilobytes (KB) required for storing
trace of a test’s value spectra. The average required space for a test ranges from 8 to 71 KB except
for the value spectra of the schedule and schedule2 programs (with the space of 982 and 272
KB, respectively), because these two programs contain global linked-list structs, whose collected
values require considerably larger space.

The time cost of our approach is primarily the time of running instrumented code (collecting
and storing traces) as well as computing and comparing spectra (deviation-root localization is a
part of spectra comparison). The slowdown ratio of instrumentation is the time of running a test
on instrumented code divided by the time of running the same test on uninstrumented code. We
observed that the average slowdown ratio of instrumentation ranges from 2 to 7, except for the value
spectra of schedule and schedule2 programs (with the ratios of 48 and 31, respectively). The
average elapsed real time for running a test on instrumented code ranges from 7 to 30 milliseconds
(ms), except for the value spectra of schedule and schedule2 programs (with the time of 218
and 137 ms, respectively). The elapsed real time for computing and comparing two spectra of a test
ranges from 24 to 170 ms, except for the value spectra of schedule and schedule2 programs
(with the time of 3783 and 1366 ms, respectively).

We speculate that applying our approach on larger programs could achieve better improvement
of deviation exposure over program output checking, because deviations are probably less likely to
be propagated to the outputs of larger programs. We speculate that deviation-root localization ratios
based on value spectra might be less affected by the scale of programs than the type of variables
used by programs (e.g., simple versus complex data structures).

Larger programs require higher space and time costs. The time or space cost of our value-
spectra-comparison approach can be approximately characterized as

VCost = O(|vars| x |user funcs| x |testsuite|)
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where |vars| is the number of variables (including the pointer references reachable from the vari-
ables in scope) at the entry and exit of a user function, |user funcs| is the number of executed and
instrumented user functions, and |testsuite| is the size of the test suite.

To address scalability, we can reduce |testsuite| by applying our approach on only those tests
selected by regression test selection techniques [RH97]. In addition, we can also reduce |user funcs]
by instrumenting only those modified functions and their (statically determined) up-to-n-level callers
or those functions enclosed by identified firewalls [LW90, WL92]. The reduced scope of instrumen-

tation trades a global view of deviation propagation for efficiency.

7.3.5 Threats to Validity

The threats to external validity primarily include the degree to which the subject programs, faults
or program changes, and test cases are representative of true practice. The siemens programs
are small and most of the faulty versions involve simple, one- or two-line manually seeded faults.
Moreover, the new versions in our experiment do not incorporate other fault-free changes since all
the changes made on faulty versions deliberately introduce regression faults. These threats could
be reduced by more experiments on wider types of subjects in future work. The threats to internal
validity are instrumentation effects that can bias our results. Faults in our prototype and the Daikon
front end might cause such effects. To reduce these threats, we manually inspected the spectra
differences on a dozen of traces for each program subject. One threat to construct validity is that our
experiment makes use of the data traces collected during executions, assuming that these precisely
capture the internal program states for each execution point. However, in practice the Daikon front

end explores nested structures up to the depth of only three by default.

7.4 Conclusion

After developers made changes on their program, they can rerun the program’s regression tests to
assure the changes take effect as intended: refactoring code to improve code quality, enhancing
some functionality, fixing a bug in the code, etc. To help developers to gain a higher confidence on
their changes, we have proposed a new approach that check program behavior inside the black box

over program versions besides checking the black-box program outputs.
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We have developed a new class of semantic spectra, called value spectra, to characterize program
behavior. We exploit value spectra differences between a program’s old version and new version in
regression testing. We use these value spectra differences to expose internal behavioral deviations
inside the black box. We also investigate deviation propagation and develop two heuristics to locate
deviation roots. If there are regression faults, our deviation-root localization additionally addresses
the regression fault localization problem. We have conducted an experiment on seven C program
subjects. The experimental results show that value-spectra comparison approach can effectively de-
tect behavioral deviations even before deviations are (or even if they are not) propagated to outputs.
The results also show that our deviation-root localization based on value spectra can accurately
locate the deviation roots for most subjects.

Our approach has not constructed a feedback loop between behavior inference and test genera-
tion by using inferred value spectra to guide test generation. However, because generating tests to
exhibit program-output deviations in a new version is an undecidable problem, the existing test gen-
eration techniques [DO91,KAY98, WEO03] for this problem can try to generate tests to propagate the
deviation from an outermost deviated function execution to its caller. Through iterations, gradually
the value spectra differences can guide the test generation tools to propagate the deviations as close

as possible to the program locations for I/O outputs.
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Chapter 8

FUTURE WORK

This research has demonstrated that the effectiveness of automated testing can be improved
through a framework that reduces the cost of both computer and human effort. There are still many
opportunities for extending this work, and this chapter discusses some of the future directions that

can be conducted by extending the research in this dissertation.

8.1 Scaling

The experiments that we have conducted in this research primarily focus on unit testing of individ-
ual structurally complex data structures. The redundant-test detection approach is evaluated against
existing test generation tools, which generate a large number of tests but a relatively small number of
non-redundant tests. The non-redundant-test generation and test abstraction approaches are evalu-
ated against a relatively low bound of exhaustive testing. The test selection approach and regression
testing approach are evaluated on a set of relatively small programs, being limited in fact by the
scalability of the underlying test generation tool or dynamic invariant detection tool (the existing
implementation of the regression testing approach uses Daikon’s front end to collect value spectra
information).

Scaling redundant-test detection deals primarily with reducing the overhead of collecting and
storing nonequivalent method executions in memory. For a large program or a test with long method
sequences, the size of a single state’s representation can be large. For a large test suite, the number
of nonequivalent states or method executions can be large. Our implementation employs some
state compression techniques such as using a Trie [Fre60] data structure. We can further reduce
state-storage requirement by employing some state compression techniques [Hol97,LV01] used in

explicit state model checking [CGP99].

Scaling non-redundant-test generation needs to address the same issue in scaling redundant-test
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detection: reducing the overhead of keeping track of nonequivalent method executions. We can use
those preceding techniques to scale test generation. In addition, we can reduce the state space for ex-
ploration in different ways. Instead of exhaustively exploring method sequences (state space) within
a small bound, we can explore the state space with longer method sequences with heuristics-guided
search [GV02, TAC104] or evolutionary search [RN95, GK02, Ton04] for achieving certain cover-
age criteria discussed in Section 2.1. Developers can also specify abstraction functions to reduce the
state space (the Rostra techniques based on the equals method provide mechanisms for developers
to define abstraction functions). Because it may not be feasible to explore a large state space of a
single class or multiple classes in a single machine, we can distribute the test generation tasks among
multiple machines [MPY *04] and collectively generate tests for a large class or multiple classes in
a system. If we use test generation techniques based on concrete or symbolic state exploration, we
need to address the communication and coordination issues among multiple machines in avoiding
exploring states that have been explored by other machines. If we use test generation techniques
based on exploring method sequences without tracking actual concrete or symbolic states, we can
get around the communication and coordination issues but with the price of exploring a larger space.
In addition, when we test multiple classes in a system (either in a single machine or multiple ma-
chines), we need to carefully select the test generation order of multiple classes because we prefer
to explore a class A’s state space earlier if A is an argument type of another class B’s method and we

want to use the explored states of A as the arguments of B’s method when exploring B’s state space.

Scaling the test selection approach needs to scale both the underlying specification-based test
generation tool and dynamic invariant tool. Some techniques for scaling specification-based test
generation are similar to those preceding ones for scaling non-redundant-test generation. In ad-
dition, we can use some test generation techniques [BKMO2] tailored and optimized for exploit-
ing specifications. Some techniques for scaling a dynamic invariant tool has been discussed by
Ernst [Ern00] and developed by Perkins and Ernst [PE04]. Scaling our regression testing approach
primarily deals with the collection of program state information from test executions and compu-
tation of value spectra from program state information. Some techniques for scaling a dynamic
invariant tool discussed by Ernst [Ern00] are applicable in addressing the scalability of collecting

program state information, such as selectively instrumenting program points.
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8.2 New types of behaviors to exploit

Research in this dissertation exploits the inferred behaviors in the form of axiomatic specifica-
tions [Hoa69, Gri87] or finite state machines [LY96]. Program behaviors can be described in other
forms such as algebraic specifications [GH78] and protocol specifications [BRBY00,BR01,DF01,
" DLS02], and symmetry properties [Got03]. We can infer these types of behaviors from test execu-
tions and use these behaviors to guide test generation by borrowing techniques from specification-
based test generation. In addition, we can apply the operational violation approach by selecting
any generated tests that violate the behaviors inferred from the existing tests. However, inferring
behaviors in the form of algebraic specifications or symmetry properties requires specifically con-
structed method sequences, which may not already exist in the existing (manually constructed) tests.
Therefore, we may need to generate extra new tests to help infer behaviors from the existing tests;
the situation is the same in the test abstraction approach: we need to generate extra tests in order to
infer observer abstractions from the existing tests.

The operational violation approach selects tests based on a common rationale: selecting a test
if the test exercises a certain program behavior that is not exhibited by previously executed tests.
We can select tests based on a different new rationale: selecting a test as a special test if the test
exercises a certain program behavior that is not exhibited by most other tests; selecting a test as a
common test if the test exercises a certain program behavior that is exhibited by all or most other
tests. Inferred behaviors in the form of algebraic specifications have been found to be promising for

test selection based on this new rationale [Xie04, XNO04b].

8.3 New types of quality attributes to test

Our research focuses on testing a program’s functional correctness or robustness. We can extend
our research to test other quality attributes of a program. For example, software performance test-
ing [AW96, VW98, WV (0] creates representative workloads (including average, heavy, or stress
workloads) to exercise the program and observe its throughput or response time. In performance
testing, generally generating non-redundant tests is still useful to advance program states to reach
heavy-loaded states; however, invoking redundant tests sometimes may be useful in performance

testing, for example, when a program’s performance can be degraded (because of garbage collec-
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tion behavior) by running redundant tests that create extensive temporary objects. In performance
testing, we can also apply the operational violation approach by inferring a program’s performance
behavior. Then we can select those generated tests that cause a program to perform worse than the
observed performance exercised by the existing tests. We can also infer the characteristics of the
bad-performance-inducing tests to help diagnosis the performance-problem roots.

Software security testing [WT03, HMO04, PMO04] tests a program to make sure the program be-
have correctly in the presence of a malicious attack. Security risks can be used to guide security
testing. For example, for a database application, one potential security risk is SQL injection at-
tacks [HHLT03,HOO05]. We can extend our test generation approach to handle complex string oper-
ations during symbolic execution. Then we can use symbolic execution to generate test inputs that
get through input validators but produce SQL injection attacks. In addition, the operational violation
approach has a good potential for security testing, because security testing intends to test the pro-
gram under malicious inputs, which exercise program behaviors different from the ones exercised

by normal inputs in manually created tests.

8.4 Broader types of programs to test

We can detect redundant tests among tests generated for GUI applications [MPS99, MemO1] or
directly generate non-redundant tests for GUI applications. In testing GUI applications, event se-
quences correspond to method sequences in testing object-oriented programs. The program state
before or after an event can be abstracted by considering only the state of the associated GUI, which
is modeled in terms of the widgets that the GUI contains, their properties, and the values of the
properties. Then the techniques of detecting redundant tests or generating non-redundant tests can
be similarly applied to GUI tests.

We can detect redundant tests among tests generated for database applications [KS03, CDF+04]
and directly generate non-redundant tests for database applications. In testing database applications,
the program state before or after a method call additionally includes the database state. After includ-
ing database states in the program state representation, we can then detect redundant tests for testing
database applications. Because a database state can be large, we can use static analysis techniques

to determine which parts of the database state are relevant to affect the execution of a method and
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consider only these relevant parts when collecting the program state before or after the method call.

We can extend our testing techniques to test programs written in aspect-oriented programming
languages such as Aspect] [KLM™97, Tea03]. We can treat an aspect as the unit under test (like
a class in an object-oriented program) and advice as the method under test (like a public method
in a class). Then we can detect redundant tests for testing an aspect [XZMNO4]. In addition,
we can adapt our test generation techniques to generate tests for sufficiently exercising an as-
pect [XZMNOS].

Our research focuses on testing a sequential program. When detecting redundant tests for test-
ing a concurrent program, we can no longer operate on the granularity of individual rﬁethod calls
because thread interactions can occur within a method execution causing different method behaviors
given the same method inputs. One possible extension to our redundant-test detection techniques is
to monitor and collect the inputs to each code segment separated by those thread interaction points
within a method. However, this finer granularity can suffer from the state explosion problem more

seriously.

8.5 New types of software artifacts to use

This research uses the program under test and sometimes its manually created tests. We can also use
other types of software artifacts if they exist in the software development procesé. For example, if
grammars have been written for defining test inputs, we can use these grammars to effectively gen-
erate test inputs [SB99, Zay04]. If a method for checking class invariant or a method for validating
inputs has been written, we can also use the method to generate test inputs effectively [BKMO2].
If requirements are written for the program under test, we can use the requirements to generate
tests [WGS94, EFM97, ABM98, GH99). We can also improve our testing techniques with the infor-
mation collected from the program’s actual usage, such as operational profiling [Wo0i93, Wo0i94], or
other in-field data [OLHL02, OAH03, MPY T 04].

When a model (specification) for a program is specified, model-based testing [DJKT99,GGSV02,
Fou, Par04] can be performed. In model-based testing, the underlying model used for test genera-
tion is often an abstract one, being derived after abstracting the program’s behavior. Two method

sequences may produce the same abstract state in the model but we may not want to keep only
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one method sequence and discard the other one, because the concrete states (in the code) produced
by two method sequences may be different and two method sequences may have different fault-
detection capabilities. Although we may not apply redundant-test detection on the generated tests
based on abstract states of the model, we can apply redundant-test detection based on the concrete

states exercised by tests generated based on the model.

8.6 Testing in the face of program changes

Program changes are inevitable. When a program is changed, rerunning only the tests generated
for the old version may not be sufficient to cover the changed or added code, or to expose bugs
introduced by the program changes. Although our regression testing techniques intend to exploit the
existing tests to expose behavior deviations, generating new tests to exercise the changed or added
code is sometimes necessary. Because exploring the whole receiver-object states from the ground
for the new version is not economical, we can incorporate incremental computation to re-explore
only the parts of the state space that are affected by the program changes.

In general, as has been suggested by longitudinal program analysis [Not02], we can plan and
apply test generation across the multitude of program versions. We can use information retained
from an earlier test generation to reduce the scope of the test generation on a newer version or to
better test a newer version. The way of strategically allocating testing resource might enable us
to apply otherwise infeasible test generation over multiple versions of a program as opposed to a

specific version.
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Chapter 9

ASSESSMENT AND CONCLUSION

This dissertation proposes a framework for improving effectiveness of automated testing in the
absence of specifications. A set of techniques and tools have been developed within the framework.
First, we have defined redundant tests based on method input values and developed a tool for detect-
ing redundant tests among automatically generated tests; these identified redundant tests increase
testing time without increasing the ability to detect faults or increasing developers’ confidence on
the program under test. Experimental results show that about 90% of the tests generated by the
commercial Parasoft Jtest 4.5 [Par03] are redundant tests. Second, we have developed a tool that
generates only non-redundant tests by executing method calls symbolically to explore the symbolic-
state space. Symbolic execution not only allows us to reduce the state space for exploration but also
generates relevant method arguments automatically. Experimental results show that the tool can
achieve higher branch coverage faster than the test generation based on concrete-state exploration.
Third, we have used Daikon [Ern00] to infer behavior exercised by the existing tests and feed the
inferred behavior in the form of specifications to a specification-based test generation tool [Par03].
Developers can inspect those generated tests that violate these inferred behavior, instead of inspect-
ing a large number of all generated tests. Experimental results show that the selected tests have a
high probability of exposing anomalous program behavior (either faults or failures) in the program.
Fourth, we have used the returns of observer methods to group concrete states into abstract states,
from which we construct succint observer abstractions for inspection. An evaluation shows that the
abstract-state transition diagrams can help discover anomalous behavior, debug exception-throwing
behavior, and understand normal behavior in the class interface. Fifth, we have defined value spec-
tra to characterize program behavior, compared the value spectra from an old version and a new
version, and used the spectra differences to detect behavior deviations in the new version. We have
further used value spectra differences to locate deviation roots. Experimental results show that com-

paring value spectra can effectively expose behavior differences between versions even when their
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actual outputs are the same, and value spectra differences can be used to locate deviation roots with
high accuracy. Finally, putting behavior inference and test generafion together, we can construct
a feedback loop between these two types of dynamic analysis, starting with an existing test suite
(constructed manually or automatically) or some existing program runs. We have shown several
instances of the feedback loop in different types of behavior inference. The feedback loop produces

better tests and better approximated specifications automatically and incrementally.

9.1 Lessons learned

Software testing research has been conducted for more than three decades. However, when we look
at industry, we can find that only a few commercial automated testing tools are available in the
market and better tool support is needed in order to meet the demand for high software reliability.
The research in this dissertation has developed new techniques and tools to improve the effectiveness
of automated software testing. Our work does not assume that the program under test is equipped
with specifications, because specifications often do not exist in practice. Our research is motivated
to investigate whether benefits of specification-based testing can be achieved to a great extent in the
absence specifications and then bring these benefits to a massive group of developers in industry.
Our research has shed light on this promising direction and pointed out future work along this
direction. In this section, we summarize some lessons that we learned from this research and we

hope these lessons may be helpful to other researchers (including us) in pursuing future research.

Dynamic analysis tools can be integrated too. Recently researchers [NEO1, Ern03, You03, CS05]
have proposed approaches that integrate dynamic and static analysis. Because the results
of dynamic analysis based on observed executions may not generalize to future executions,
static analysis can be used to verify the results of dynamic analysis [NEO1]. Because the
results of static analysis may be less precise (more conservative) than what can really occur at
runtime, dynamic analysis can be used to select the results of static analysis that can actually
occur at runtime [CSO05]. Our research shows that dynamic analysis can also be integrated:
a dynamic behavior inference tool produces likely properties, which guides a test generation
tool to generate tests to violate these properties, and new generated tests are further used to

infer new likely properties. A feedback loop on dynamic analysis then can be constructed.
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“Both measuring and managing redundancy are important.” Our redundant-test detection ap-
proach allows us not only to measure test redundancy but also to manage (more precisely,
avoid) test redundancy. Although previous research [MK01, Khu03, BKM02,Mar05, VPK04]
proposed new techniques for directly generating nonequivalent method inputs (therefore,
there is no redundancy among the generated tests), other existing test generation tools may not
easily adopt these previously proposed new techniques, partly because these techniques may
require specifications or these techniques may not be integrated well with these tools’ existing
test generation mechanisms. We found it important to measure how well a test-generation tool
performs in terms of redundancy among its generated tests, and equally important to guide the
tool to improve its performance. Our proposed approach can measure the redundancy of tests
generated by any test generation tool and compare the performance of different tools based on
the measurement results. Indeed, existing test adequacy criteria such as statement éovcrage
can also be used to compare the performance of different tools in terms of satisfying these
criteria; however, our proposed measurement offers an operational way of managing (more
precisely, avoiding) the test redundancy during or after the tools’ existing test generation pro-

Cess.

Breaking into pieces helps. Traditional test-generation techniques consider two tests are different
(therefore, both are needed) if these two tests consist of different method sequences; however,
it is often expensive to exercise all possible method sequences within even a small sequence-
length bound. In fact, we care about the program behavior exercised by each method call
individually. After we break a method sequence into pieces of method calls in it, we can
check whether at least one of these individual method calls exercise new behavior that has not
been exercised before. Breaking the whole into pieces and focusing on pieces instead of the

whole can offer opportunities for reducing the space for exploration.

Grouping pieces helps. After the generated tests exercise the concrete state space, the state transi-
tion diagram constructed from the whole concrete state is often too complicated to be useful
for inspection. After we use an observer method to group together those concrete states

whose immediately observable behaviors are the same, we can produce a succinct diagram
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for inspection, reducing the human effort in test inspection. In test generation based on state
exploration, it is often too expensive to explore the whole concrete state space, our test gener-
ation approach then uses symbolic execution to group together those concrete states that can

be instantiated from the same symbolic state, reducing the space for exploration.

Looking inside helps. Traditional regression testing techniques look at the observable outputs of
two program versions and check whether they are different; however, it is often difficult for
existing tests to propagate behavior deviations inside the program executions to the observable
outputs. Checking inside the program executions can help expose these behavior deviations
even if these deviations are not propagated to the observable outputs. When an object-oriented
program is tested, the state of a receiver object can affect the behavior of the method call
invoked on the receiver object. As was pointed out by Binder [Bin94], “while limiting scope
of effect, encapsulation is an obstacle to controllability and observability of implementation
state.” Consequently, existing test generation tools consider a receiver object as a black box
and invoke different sequences of method calls on the receiver object. However, our research
on redundant-test detection and test generation shows that testing tools can still look inside

receiver object states at testing time in order to generate tests more effectively.

Exploit the most out of artifacts that already exist in practice. We found that it is a good start-
ing point for tools to first take full advantage of those artifacts that already exist in practice
before requiring developers to invest effort in writing extra artifacts solely for the tools. The
relatively popular adoption of Parasoft Jtest [Par03] and Agitar Agitator [Agi04] in industry
is partly due to their “push button” feature in test automation. At the same time, in order to
improve tools’ effectiveness, we should exploit the most out of the artifacts that already exist.
For example, if an equals method exists for a class, our research on redundant-test detection
and test generation uses it as an abstraction function to reduce the state space for exploration.
Our research on test generation can use the arguments exercised by the manually constructed
tests to explore the state space. Our research on test abstraction also uses observer meth-
ods of a class as abstraction functions to reduce the state space for inspection. Our research

on test selection uses the behavior exercised by the manually constructed tests to guide test
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generation and selection.

It is sometimes unavoidable for a tool to ask help from developers (wisely). Our research tries to
push up the limit of benefits that automated testing tools can provide; however, we found that
we cannot totally leave developers out of the picture, because it is often difficult for the tools
to infer the exact intent or expected behavior of the program under test. Our research on test
selection, test abstraction, and regression testing produces results for developers to inspect.
We found that it is important to allow developers to invest their inspection efforts in an eco-
nomical way; otherwise, developers would simply give up investing their inspection efforts
(thus giving up using the tools). For example, instead of inspecting the output of each single
test, developers can inspect a small subset of tests selected by our test selection approach
(together with their violated abstractions). Instead of inspecting the complex concrete-state
transition diagram, developers can inspect the succinct observer abstractions generated by
our test abstraction approach. When presenting information for developers to inspect, tools
should be carefully designed to include interesting information as much as possible and at the

same time exclude uninteresting information as much as possible.

Working around industrial tools helps. We started the project on test selection for inspection by
integrating Daikon [Ern00] and Parasoft Jtest 4.5 [Par03], which is one of a few automated
test-generation tool in industry and has a relatively large group of users. Later we started a
project on redundant-test detection by detecting a high percentage of redundant tests among
tests generated by Parasoft Jtest 4.5. We found that this strategy of working around industrial
tools allows a research project to make an impact on industry more easily. Technology transfer
or tool adoption in industry is a complex procedure, involving both technical and nontechnical
issues. By working around industrial tools, our research can catch industry’s attention and
facilitate technology transfer by demonstrating that our new techniques can improve existing

industrial tools and can be potentially incorporated by them.

Automatically generating complex arguments is more difficult than expected. Test generation
techniques based on concrete-state exploration assumes that a set of method arguments are

provided and then invokes methods with these arguments to explore the concrete-state space.
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Our tool implementation dynamically collects the arguments exercised by a JUnit test class,
which is either manually constructed or automatically generated by existing test generation
tools. We found that complex arguments generated by existing test generation tools [Par03,
CS04] are often not satisfactory when testing some classes that are not data structures. This
limitation prevents our test-generation tools from being applied on a significant portion of
classes in practice. Although our test generation techniques based on symbolic execution
can automatically derive relevant arguments during state exploration, the types of generated
arguments are still limited to primitive types. One future solution is to explore the state space
of the argument-type objects using method calls. Another solution is to capture and replay the
arguments invoked on the class under test when running system tests [SE04,0K05]. Indeed, if
class invariants for complex-argument classes exist, some specification-based test-generation

tools [MK01,BKMO02] can be used to generate valid complex arguments.

Practical lightweight specifications may help. Although our research has developed testing tech-
niques and tools that do not require specifications, we found that the effectiveness of auto-
mated testing could be further improved if the tools are given extra guidance in the form
of lightweight specifications. In order to make writing specification practical, specifications
shall be easy to write and understand. For example, Korat [BKM02, Mar05] generates non-
redundant tests by using a repok method, which is an implementation for checking a class
invariant [LBR98, LGO00]. Tillmann et al. [TS05] proposed an approach that allows devel-
opers to write parameterized unit tests, which embed assertions for checking algebraic spec-
ifications [GH78]. Then their approach uses symbolic execution to automatically generate

relevant arguments for the parameterized unit-test methods.

Model-based testing may be a good way to go when doing integration or system testing. Our re-
search primarily focuses on unit testing. Although some techniques in our research may be
adapted to be applied in integration or system testing, integration or system testing in the
absence of models (specifications) seems to be more challenging, partly because of the scal-
ability issue. We suspect that developers would be more willing to write models for a whole

(sub)system, because the return on investment is much higher than writing specifications for
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a class unit. Industrial experiences from Microsoft [GGSV02, Fou] and IBM [Par04] have

shown promising results of model-based testing.

Despite the progress we have made in this research, there is much space left for our future
work in improving the effectiveness of automated software testing. Our research strategy has been
to tackle real but low-end problems where no specifications are assumed, and focus on the units’
sequential, functional behaviors (even if structurally complex). When developing techniques and
tools for tackling these problems, we learned that the success of automated testing depends on
good coordination of effort between computers and developers. Especially when we go beyond
low-end problems and try to focus on integration or system testing, non-functional testing, and so
on, developers might need to provide significantly more guidance to the tools to improve testing

effectiveness.
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