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Abstract 
An in-depth investigation of C preprocessor usage for 

portability and configuration management is presented.  
Three heavily-ported and widely used C++ libraries are 
examined.  A core set of header files responsible for 
configuration management is identified in each system.  
Then macro usage is extracted and analyzed both 
manually and with the help of program analysis tools.  
The configuration structure of each library is discussed 
in details and commonalities between the systems, 
including conventions and patterns are discussed.  A 
common configuration architecture for managing 
portability concerns is derived and presented. 

1. Introduction 
In a seminal paper on software aging, Parnas describes 

two distinct reasons why software ages: 1) failure to meet 
changing needs and 2) evolution at the hands of its own 
developers [15].  Parnas rightly lays the blame for aging 
at the hands of consumer demand and developmental 
difficulties, but seems to ignore the impact of the 
evolution of platforms for which the software was 
originally developed.  Ironically, he claims that software 
written 40 years ago would function perfectly today, if he 
could just find a computer that was phased out of 
existence 30 years ago.  Did this software age because 
today’s users would expect more, or did it fail because it 
did not evolve along with its computer platform? 

It seems that software aging can also be blamed on the 
inability (or indifference) of developers to adapt to 
evolving or different platforms.  However, this could also 
be seen as an indirect influence of consumer demand on 
the software – the demand for better computers, 
operating systems, and programming languages all 
impact the need to adapt existing software.  For example, 
with the release of Vista, Microsoft has deprecated a 
number of API’s, and as an unfortunate result, some 
programs may crash or even fail to run at all.  Because of 
these shifting foundations, organizations often release 
different configurations of their software targeting 

alternate operating systems and/or versions thereof.  
From a maintenance perspective, we understand this as 
software portability. 

Although we often think of portable software as that 
which targets different operating systems such as Linux 
and Windows, the differences need not be so great.  Even 
small differences in OS platforms can result in widely 
variant behavior in the software.  Moreover, differences 
can occur at every level of software – from the 
implementation and semantics of system calls to the 
name lookup mechanism in a compiler. 

Developing and maintaining portable software is 
costly because each new variant or version of a 
dependency increases the number of build configurations 
and therefore increases maintenance and testing efforts.  
Newly introduced configurations require integration and 
testing.  Legacy configurations may be retained or 
eliminated; if retained, they will require general 
maintenance.  Without a general strategy and reasonable 
software architecture for handling this multiplicity of 
configurations, their addition/removal can wreak havoc 
on the structure of the source code. 

In C and C++ programs portability is invariably 
managed using the C preprocessor.  Source code is 
conditionally compiled depending on variables of the 
compiler, operating system interface, and other 
dependent libraries.  In this paper, we are interested in 
determining how popular systems achieve portability 
with the C preprocessor.  To this end, we studied the 
preprocessor-based configuration of three widely used 
and heavily ported software libraries: the Qt GUI Toolkit, 
the Adaptive Communications Environment (ACE), and 
the Boost C++ Libraries.  Specifically, we developed 
tools to help us extract data from the preprocessor 
directives.  We then analyze this data in order to discern 
emergent patterns for managing portability. 

As a result of this study, we discovered a number of 
techniques for building portable software that are 
common between the three systems.  These techniques 
are used to build abstractions out of preprocessor macros, 
enabling developers to separate dependency concerns.  



 

 

Most importantly, we found that all three share a 
common preprocessor-based, software architecture that 
provides an extensible foundation for future adaptation to 
different compilers, operating systems, and versions 
thereof. 

The paper is organized as follows.  In section 2, we 
discuss the approach and tools used to study the different 
libraries.  Section 3 contains a detailed description of the 
preprocessor-based configurations of the systems.  In 
section 4, we discuss emergent techniques and patterns 
for portability and configuration.  Lastly, the common 
configuration architecture is described in section 5. 

2. Methodology 
Our study of the different libraries focused on two 

primary elements of the C preprocessor: 1) include files 
and 2) configurable macros.  To facilitate this work, we 
abstracted the familiar notions of file inclusion and 
macro definition (and evaluation) to represent a more 
programmer-centric model of the concepts.  Specifically, 
we define include files as the unique names of files 
referenced in include directives.  This allows us to 
associate each inclusions with two distinct files, thereby 
simplifying include graph extraction. 

For macro analysis, we defined a configurable macro 
in a similar manner.  Specifically, these are the unique 
names of symbols appearing in definition, undefinition, 
and condition directives.  This model of macros allows us 
to associate all known (if any!) values with each 
identifier, and all distinct usages in preprocessor 
conditions. 

We implemented two tools to extract and model these 
concepts.  Both tools leverage our srcML [3, 13] 
infrastructure to accomplish their respective tasks1.  
Specifically, we use srcML to provide an XML-based 
markup of C++, thereby simplifying the fact extraction 
process.  First, the tool cppinc analyzes source code and 
generates GraphViz2-formatted graphs that can be 
rendered and inspected to help study the structure of 
include graphs.  Second, another tool cppconf analyzes 
the same source code for macro definition and usage and 
saves this information for later exploration. 

The actual study of the systems proceeded in two 
phases.  In order to study how each of these systems 
manage portability, we first identified which components 
of the software are primarily responsible for that concern 
(i.e., the set of files).  Secondly, we extracted and 
analyzed data about the multi-valued configurable 
macros.  This data is then used to identify emergent 
patterns for portability and configuration management. 

As for identifying the location of portability concerns 
in software, practical experience allows us to hypothesize 

                                                           
1 http://www.sdml.info/projects/srcml/ 
2 http://www.graphviz.org/ 

about a locus of configuration functionality that we call 
the configuration kernel.  To validate this hypothesis, we 
generated and studied selected include graphs of each 
library.  These graphs reveal a relatively small tree of 
header files that appear to do little other than 
conditionally define different macros.  Of course, the 
names of these files are also a great indicator for this 
kernel since most either contain the word “config”, or are 
nested within a “config” directory. 

We then use this set of files in the kernel as the source 
of configuration data.  We processed each of the header 
files in the kernel, recorded each macro identifier, and 
where it is used in preprocessor directives (i.e., 
definitions, undefintions, and conditions).  We name 
these configurable macros since the macro identifier can 
be configured to provide any number of different values.   

Our primary classification is based on whether the 
macro is defined externally (provided by the compiler or 
build) or internally (defined or undefined within the 
scope of the studied system).  Additionally, lexical 
analysis (i.e., regular expressions) is used to help identify 
groups of similarly named macros.  We then manually 
investigated the relationships between the different 
groups of macros in order to determine if there are any 
repeated techniques, abstractions, or patterns in the 
different systems. 

3. Examined Systems 
We applied this process to three software libraries: the 

Qt GUI Toolkit3, the Adaptive Communications 
Environment (ACE)4, and the Boost C++ libraries5.  
These libraries were chosen because they are well 
known, well respected, heavily used, and each is ported 
to wide variety of systems.  For each library, we provide 
a description of its configuration kernel followed by a 
classification of the macros appearing within the kernel 
and a discussion of the configuration architecture. 

3.1. Qt GUI Toolkit 
The first library we studied is the Qt GUI Toolkit (v. 

4.2.2).  Qt is a data type library, abstraction provider, and 
GUI toolkit for Windows, Mac OS X, X11, and 
embedded (Qtopia) environments.  While our study 
focuses only on the X11 source code distribution, we 
should note that most of the files in the Windows, Mac, 
and X11 distributions are identical although windowing-
specific implementations of some code (outside the 
configuration kernel) is provided by the different 
distributions.  The library is segmented into a number of 
modules, the core of which provides a common set of 
data structures (e.g., QList and QRect) and algorithms. 

                                                           
3 http://www.trolltech.com/ 
4 http://www.cs.wustl.edu/~schmidt/ACE.html 
5 http://www.boost.org/ 



 

 

Qt employs a configure script that is used to set install 
directories, determine buildable components, and 
configure external dependencies.  Most importantly, it is 
responsible for generating the qconfig.h header file.  

 

 
Figure 1.  A simplified view of the Qt configuration 
kernel.  The circle indicates an arbitrary inclusion. 

Identifying the structure of Qt’s configuration kernel 
is not entirely straightforward.  Despite the fact that there 
are several qconfig-* header files, none of these are 
ever included.  Visual inspection of the include graph 
reveals a small tree of header files rooted at qglobal.h.  
Further investigation reveals that this is the root of the 
configuration kernel.  An abridged version is depicted in 
Figure 1. 

Unlike other systems that we studied, Qt embeds most 
of its configuration in a single header file, qglobal.h.  
In fact, the contents of qconfig.h and qfeatures.h 
only define and test macros related to the configuration 
of external dependencies and the selection of features to 
build respectively.  We used this kernel as the input to 
cppconf to extract information about configurable 
macros. 

 
Table 1. Nested “namespaces” defining macros in the 

Qt GUI toolkit.  Namespaces are given by regular 
expressions. 

Namespace Description 
^Q_OS Operating system identities on 

which Qt can be compiled. 
^Q_CC Compiler identities and versions 

supported by Qt. 
^Q_WS Windowing systems identities 

supported by Qt (e.g., Win32, X11) 
^QT_MODULE Defines specific functional subsets 

of the Qt library. 
^QT_EDITION Defines subsets of modules 

available for product variants. 
^Q.*_EXPORT$ Defines export expressions for C++ 

class definitions. 
 
Qt references 454 macros in its configuration kernel.  

Of these, 155 are configuration primitives – macros that 
are defined outside the body of analyzed source code but 
tested in preprocessor conditions within.  Interestingly, 
we can find two exclusive subsets of this group by 
recognizing naming conventions for macro identifiers.  
Macros beginning with underscores are allocated to 

compiler-specific keywords, identifiers, and extensions, 
whereas macros starting with Q_ or QT_ are (intuitively) 
specific to Qt.  For example, macros such as __i386__, 
_WIN32, and __GNUC__ identify hardware architecture, 
operating system, and compiler, respectively.  Likewise, 
configuration primitives such as QT_BUILD_XML_LIB 
and QT_CUPS are defined by the build and configuration.  
The former is defined when the XML implementation is 
being compiled, and the latter is asserted when Qt is built 
with CUPS (Common UNIX Printing System) support. 

The remaining 299 macros defined (or undefined) 
within the configuration kernel are of much greater 
interest because they contribute to the organization of the 
software.  Using the same lexical analysis, we find that 
most (284) are within the Qt “namespace”.  Extending 
this technique to examin e subsequent underscore-
separated identifiers, we can easily extract a number of 
well-defined subsets of Qt-provided macros.  These are 
listed in Table 1. 

Another significant set of macros used in preprocessor 
directives is that which describes specific build features 
and external dependencies.  These macros are easily 
identified by the use of the _NO_ or _BROKEN_ identifiers 
in their names.  Macros like QT_NO_SLIDER can be used 
to exclude classes from the library’s build, presumably to 
reduce the memory footprint on embedded devices.  
Similarly, macros like QT_NO_CUPS are used to 
determine the presence of external dependencies. 

Examining these macros that are used in preprocessor 
statements, we find interesting relationships to other 
macros or build options.  For example, closer inspection 
shows that these macros are derived from the assertion of 
configuration primitives (e.g., _WIN32 or __GNUC__), 
especially the Q_OS and Q_CC macros.  The Q_WS macros 
are derived mostly from Q_OS macros, but occasionally 
require tests of other configuration primitives.  From this 
we can infer that the operating system and compiler are 
configured independently, but the choice of windowing 
system is dependant up operating system. 

Similarly, feature selection via specific feature 
descriptors is similarly derived.  A set of base descriptors 
is used to activate or deactivate various classes within the 
library, and the preprocessor is used to manage 
dependencies between them.  For example, the assertion 
of QT_NO_SLIDER results in the assertion of 
QT_NO_DIAL and QT_NO_SCROLLBAR as well, 
effectively removing all related classes from the library.  
Interestingly, the module and edition macro groups also 
play a role in feature selection.  Specifically, these are 
used to restrict the build of the library components based 
on the Qt distribution the developer is using. 

Many of the remaining macros seem to be defined for 
general-purpose programming support.  This includes 
macros for grammar extension (e.g., Q_FOREACH), 



 

 

adapting compiler-specific language extensions (e.g., 
Q_DECL_EXPORT), and preprocessor functions (e.g., 
Q_ASSERT). 

 

 
Figure 2.  The Qt preprocessor configuration 

architecture implements multiple concerns in a 
layered fashion. 

Figure 2 depicts an abstracted view of the Qt 
preprocessor architecture.  The library essentially 
manages two distinct concerns: portability, and build 
control.  The portability concern is entirely managed by 
macros in the operating system, compiler, windowing 
system, and their derived macros.  The API is built 
directly on top of portability macros to provide compiler 
abstractions (e.g., Q_FOREACH or Q_TYPENAME) and 
preprocessor utilities for library and application 
developers (e.g., Q_GLOBAL_STATIC). 

The build control facility is used to select classes that 
are compiled into the library at product build-time 
through both feature descriptors and module/edition 
specification.  Note that it is entirely orthogonal to 
portability and the API.  This is to say that macros in this 
concern do not generally affect or require the macros in 
any other. 

3.2. Adaptive Communications Environment 
The Adaptive Communications Environment (v. 5.5) 

is a fairly expansive library that provides portable 
implementations of concurrent and network design 
patterns.  At its core ACE provides a low-level POSIX-
like portability layer that reportedly supports compilation 
on about twenty different operating systems from 
embedded platforms to Cray supercomputers (excluding 
individual versions). 

ACE has two mutually exclusive methods of 
configuration.  Previous versions of ACE were 
configured by copying a platform- and compiler-specific 
header to the config.h file.  ACE has 89 distinct 
configuration headers that can be included directly 
(although this is misleading since some are not intended 
to be included directly).  Newer versions can be 
configured via an autoconf-generated configure script.  
Rather than using the configure script, we created a 
config.h file that included all 89 distinct configurations 
allowing us to create a full include graph. 

Much like Qt, the ACE configuration kernel is not 
entirely obvious.  Inspecting the include graph reveals 
that the inclusion of the config.h header file occurs 
only in the head of the config-macros.h header file.  
This is included only by the config-lite.h header 
file, which, in turn, is included by a relatively small set of 
header files (e.g., config-all.h).  A simplified include 
graph is shown in Figure 3.  Application-included 
headers include either the all or lite configuration 
variants depending on their requirements. At the 
backend, our config.h header includes 89 different 
config-* header files (depicted by the cloud in Figure 
3). 

What the graph does not show is the dependencies 
between compiler and platform header files.  Careful 
inspection shows that platform-specific headers (e.g., 
config-linux.h) will often include compiler-specific 
headers (e.g., config-g++-common.h).  Unfortunately, 
this pattern does not hold for every platform/compiler.  
More common development platforms such as Linux and 
Win32 employ this technique to some degree.  The 
SunOS configuration differs significantly in design, in 
that it the configuration for newer versions include and 
update older versions’ configurations, but does not 
include any header files outside its own tree. 

 

 
Figure 3.  A simplified representation of the ACE 
include graph.  The cloud indicates a number of 

possible inclusions. 

The primary role of this include structure is to define a 
common platform POSIX-like API upon which all other 
abstractions are built.  In fact, the config-all.h header 
actually includes a significant portion of that API (which 
is outside the kernel).  Most of the configuration macros 
are defined through inclusions of the config-macros.h 
header.  The include graph also has two very obvious 
files that are included by almost every other include file: 
pre.h and post.h header files.  These files set compiler 
options via pragma statements for a few different 
compilers, but do not define or reference any macros.  
We used the include tree rooted at config-lite.h as 
the input to cppconf. 



 

 

Our analysis of the ACE kernel includes 1412 
referenced macros.  Of these, 147 were defined 
externally.  Much like Qt, most of the externally defined 
macros are compiler-provided macros that identify 
compiler vendors and versions, operating systems, and 
computer hardware.  There are few (27) that are specific 
to ACE.  Some of these macros, such as 
ACE_BUILD_DLL and ACE_HAS_VALGRIND are defined 
during the build or to assert the availability of external 
dependencies. 

The remaining 1265 macros are all defined within the 
scope of ACE configuration kernel.  While not as clearly 
segregated as the identifiers in Qt, we can still identify a 
number of logical groupings by use if not by name. 
• System identities – There are many ACE macros that 

identify different compilers and operating system.  
The ACE_CC namespace contains all compiler 
information, but each operating system is given its 
own set of identifiers (e.g., ACE_PSOS, ACE_WIN32). 

• Inclusion Controls – Some (but not all) of the 
configuration files use header guards to prevent 
redundant  inclusions. 

• Constants – The configuration kernel defines a 
number of constants.  One source of these is POSIX 
error codes (E* constants) defined to supplement 
incomplete standard libraries.  Another is the size of 
built in types (i.e., integers). 

• Function mapping – ACE defines a number of 
macros that expand to the names of functions of 
specific runtime libraries.  Examples include 
ACE_TEXT and pthread macros that expand to a 
collection of Win32 calls and different pthread 
names respectively. 

• Compiler Abstraction – A relatively small set of 
macros is provided as part of the API.  Macros like 
ACE_EXPLICIT and ACE_MAIN abstract C++ 
keyword variations and program entry points. 

Just like Qt, the majority of internally defined macros 
are feature descriptors, all prefixed with ACE_HAS, 
ACE_LACKS, or ACE_NEEDS.  In stark contrast to Qt, 
where feature descriptors are asserted to exclude classes 
from a build, these identifiers play an integral role in the 
construction of the POSIX adaptation layer.  These 
feature descriptors are used to describe the presence of 
specific header files (e.g., ACE_HAS_SELECT_H), 
functions (e.g., ACE_LACKS_DUP2), types (e.g., 
ACE_HAS_SSIZE_T), and various external dependencies 
(e.g., ACE_HAS_SSL). 

The relationships between these macros are 
interesting.  Expectedly, we find that the sysstem 
identities are derived immediately from configuration 
primitives.  Perhaps even more interesting is that the 
definition of feature descriptors are (for the most part) 
also immediately derived from configuration primitives.  

For example, in the common Linux header, 
ACE_HAS_SNPRINTF is defined if one of a number of 
externally defined macros is asserted (e.g., 
_BSD_SOURCE or _XOPEN_SOURCE).  From this, we can 
assume that there is a high level of coupling between the 
operating system, compiler and standard runtime 
libraries. 

Figure 4 depicts a generalized view of the ACE 
configuration architecture.  Here, the portability concern 
is managed by a trinity of three tightly coupled concerns 
aspects: the platform, the compiler, and the feature 
specification of the C runtime.  Interestingly, the only 
discernable pattern in the configuration kernel appears to 
be the absence of internal abstraction or layering within 
the portability concern.  The identifiers defining 
compiler, platform and features are referenced only 
sparingly within the kernel itself.  In fact, only 166 
internally defined, non-header guard macros are actually 
tested within the kernel.  However, the features identified 
in the portability concern are used to define a POSIX 
adaptation layer via constant definition and function 
mapping.  Also include in this API is a set of macros for 
abstracting compiler deficiencies and differences. 

 

 
Figure 4.  The ACE preprocessor configuration 

architecture. 

The only orthogonal concern represented by macros in 
the configuration kernel is inclusion control, specifically 
the protection of redundant header inclusion during 
preprocessing. 

3.3. Boost C++ Libraries 
The Boost C++ Libraries (v. 1.33.1) is a large set of 

C++ libraries that supply data structures and algorithms 
for application developers.  One purpose for the Boost 
Libraries is to act as a testing ground for components that 
may eventually become a part of the Standard Template 
Library (STL).  Unlike ACE and Qt, the Boost libraries 
do not supply a low-level interface, but instead relies on 
the correctness of vendor-supplied implementations of 
the STL.  In cases where platform-specific API’s are 
required, they are deeply hidden by abstraction.  The 
Boost Filesystem library is typical of this design. 

Like ACE and Qt, Boost also has a configure script.  
However, the configure script is only used to set build 
variables related to external dependencies (e.g., Python), 



 

 

install directories, and build profiles (i.e., debug/release 
and threading).  Fortunately, we do not need to run the 
configure script because most of the configuration is 
internal to the Boost libraries. 

The Boost configuration kernel is relatively easy to 
identify.  From previous experience, we know that Boost 
is configured through its Boost Config library – a set of 
header files that selects the correct compiler, standard 
library and operating system at compile time.  The entire 
configuration is included through the config.hpp 
header file, which in turn includes a number of files in 
the config directory.  We validated that this is the 
configuration kernel by examining the include graphs of 
several Boost libraries. 

 

 
Figure 5.  A simplified view of the Boost include 

graph.  Actual file names are truncated for brevity.  
Clouds indicate a number of possible inclusions. 

Figure 5 depicts a simplified version of the Boost 
configuration kernel.  Boost also provides facilities for 
changing ABI (Application Binary Interface) flags in a 
similar manner to compiler, platform and standard library 
configuration.  There are also other include files in the 
configuration kernel that auto linking features and 
determining POSIX features.  These have been omitted 
from the diagram for simplicity. 

As mentioned, Boost is unique (among studied 
libraries) in its configuration for a number of reasons – 
much of which is related to the use of macro expansion to 
include files.  For example, the so-called user include  
file can be defined at compile time to reference a 
developer-specific file by defining  a macro, 
BOOST_USER_CONFIG, to reference a specific file (e.g., 
“my_config.hpp”) although it defaults to a mostly 
empty user.hpp.  The user defined file can set the 
values of other include macros to override the default 
configuration by defining alternative include macros – 
those which are expanded to identify alternative include 
files.  Examples, include BOOST_COMPILER_CONFIG and 
BOOST_STDLIB_CONFIG.  If undefined, they reference 
default include files. 

Not surprisingly, Boost’s default include files actually 
act as selection functions for system dependencies.  For 
example, the default include file for compiler selection is 
the select_compiler_config.hpp header file.  These 

selectors exist for both standard libraries and platforms as 
well.  When included, selectors will test configuration 
primitives (much like a C switch statement) to 
determine the vendor of the specific dependency.  
Identification results in the definition of an include macro 
that references a pre-implemented configuration for the 
resource. 

Also unique is the fact that the kernel physically 
separates concerns in its directory structure.  Within the 
config directory, we can find subdirectories containing 
header files for 16 different compilers, 11 different 
platforms, and 9 different standard template library 
implementations.  Default include macros reference files 
in these directories (e.g., gcc.hpp and stlport.cpp).  
Contrast this with Qt, which primarily uses a single, large 
configuration header, and ACE, which has a flat, 
unstructured collection of configuration headers. 

The suffix header performs post-selection 
configuration.  This is to say that it defines many of the 
macros that identify capabilities and deficiencies 
appearing in different compilers, platforms and standard 
libraries. 

There are only 339 macros referenced in the Boost 
configuration kernel.  Of these, just over half (185) are 
defined externally.  Unlike both Qt and ACE, where a 
significant number of these macros within the library’s 
namespace, there are only 9 in Boost and all but one are 
obviously related to controlling the preprocessor 
configuration (e.g., BOOST_NO_CONFIG causes Boost to 
skip most of its configuration headers).  The remaining 
externally defined macros identify compilers and 
operating systems, and aspects of standard template 
library implementations.   

The remaining 154 internal macros fall into the 
following groups: 
• Configuration control – Macros identifying include 

files (e.g., BOOST_USER_CONFIG) and inclusion 
logic (e.g., BOOST_ASSERT_CONFIG). 

• External identities – Macros identifying the 
compiler, standard library, and operating system 
(e.g., BOOST_MSVC and BOOST_PLATFORM). 

• Programming support – Boost provide a number of 
different macros that abstract compiler workarounds 
or differences in syntax and semantics (e.g., 
BOOST_STATIC_CONSTANT).  This also includes 
utility macros such as BOOST_JOIN and 
BOOST_STRINGIZE which implement the # and ## 
operators. 

However, most of the internally defined macros are 
feature descriptors of the form BOOST_HAS or 
BOOST_NO.  Unlike Qt, which used these to except 
classes from the build and ACE, which used these to 
describe POSIX-like features, Boost primarily uses these 
to describe compiler and STL deficiencies.  For example, 



 

 

the BOOST_NO_SFINAE is asserted for compilers that do 
not correctly implement argument substitution for 
templates, and BOOST_HAS_HASH is asserted when a 
standard library provides implementations of the 
hash_set and hash_map classes. 

 

 
Figure 6.  Components of the layered architecture for 

configuring the Boost C++ Libraries. 

Figure 6 depicts a generalized architecture for the 
configuration kernel of the Boost C++ Libraries.  The 
bottom-most layer, configuration control, defines macros 
that are used to control the configuration process.  The 
primary portability concern is similar to that of ACE in 
that it does not build on internal abstractions.  but couples 
the evaluation of configuration primitives to build a 
single configuration for the compiler, standard library 
and platform.  In Boost, the most user-visible macros are 
used for mitigating compiler variations and some simple 
macros for stringification and token pasting.  These 
macros comprise the programmer’s interface – the API. 

4. Emergent Patterns in Preprocessor Usage 
From our study of the three systems, we observed a 

number of specific techniques employed to help increase 
portability and reduce maintenance effort.  Not all 
systems use (or even subscribe) to all of these patterns, 
yet they appear frequently throughout systems and as 
such warrant clear description as the represent common 
solutions to portability and configuration management.   

4.1. Logical Namespaces 
The first and most obvious pattern that emerges is the 

use of naming conventions for macro identifiers.  While 
this is not what one might typically call a design pattern 
or even programming idiom, naming conventions provide 
a simple mechanism for separating concerns in the 
absence of lexical scoping.  Macro identifiers are 
typically grouped into what we term logical namespaces 
by using common identifier “stems”, separated by 
underscores.  For example, the Q_CC_GNU macro is in 
logical namespace compiler (CC) nested within the 
logical namespace Qt (Q).  Consistent and thoughtful 
scoping of macro identifiers can greatly ease program 

comprehension efforts, and therefore reduce maintenance 
cost by reducing time spent understanding the system. 

A thorough usage of this technique is shown in Table 
1 – the logical namespaces used in Qt’s configuration.  
Unfortunately, only Qt implements namespaces to any 
great extent, and only then for a limited number of 
concepts.  Boost and ACE are somewhat less consistent 
with their use of namespaces, but do use the technique to 
help segregate feature descriptors (i.e., the HAS, NO, and 
LACKS macros) from other concerns. 

4.2. Replaceable and Parameterized Inclusion 
When porting a library or application, maintenance 

requires adapting the library to a new compiler or 
platform by modifying the configuration kernel to 
introduce the new requirements.  With open source 
licensing this can be problematic since modifications to 
open source products carry (at the very least) 
documentary and redistribution requirements.  When 
commercial licenses and especially non-disclosure 
agreements enter the mix, modifying the original source 
code is out of the question. 

Both ACE and Boost have implemented defensive 
mechanisms for configuration extension.  ACE allows 
developers to create custom configuration headers that 
are, by definition, not part of the original source code.  
This replacement scheme requires developers to supply a 
file or symbolic link with a specific name (i.e., 
config.h).  This is then incorporated into the 
configuration through the kernel’s standard include paths. 

In contrast, Boost uses a parameterization scheme to 
accomplish the same task.  Here, users can define macros 
through the build environment that reference user-
defined header files.  These macros effectively act as 
parameters to configuration.  Boost also extends this 
technique to include other parameters that allow a 
configuration to be validated (i.e., an assertion mode) that 
causes errors when unknown configurations are 
encountered. 

By allowing developers to override a library’s default 
configurations, new platforms can be integrated and 
tested piecewise without having to interweave new 
configurations with existing ones.  This allows new 
preprocessor code to be integrated into the system more 
cautiously, potentially reducing configuration conflicts 
and bugs. 

4.3. Compiler Abstractions 
Despite the standardization efforts of the C and C++ 

programming languages, compiler implementations can 
vary greatly due to differences in language versions, 
broken or unimplemented language features, and 
grammar extensions.  Also, major compiler releases 
occur every couple of years, requiring applications to 
evolve with them.  In order to mitigate the unrelenting 



 

 

progress of compiler innovation, developers must build 
their software to support both legacy and newer version 
of a compiler in parallel. 

To this end, heavily ported libraries with long life 
spans (such as those studied here) must accommodate not 
only multiple versions of the same compiler, but also 
multiple compilers.  This is invariably done using the 
preprocessor.  There are three distinct categories of 
compiler abstractions: workarounds, grammar adapters, 
and syntax extension.  Workarounds are generally 
function-like macros that expand to different pieces of 
code under different compilers to help implement 
unsupported or broken features.  Grammar adapters are 
similar to workarounds but tend to address version-
specific additions or compiler-specific extensions to a 
language.  Syntax extensions are macros that appear to 
add new keywords or syntax to a language.  The most 
common example of this is the provision of a foreach 
construct. 

Using the preprocessor for compiler abstractions is 
somewhat of a double-edged sword for maintainers.  
While these can allow the software to be compiled under 
numerous regimes, the resulting source code can become 
significantly less readable.  Moreover, long-term support 
for legacy compilers may ultimately reduce the 
portability of the application, preventing it from 
introducing new language features or libraries.  Also, 
deciding to remove support for older compilers requires 
developers to decide whether or not to remove the 
abstractions, and if so, spend the time doing it. 

5. A Common Configuration Architecture 
All of these libraries exhibit some form of a layered 

architecture in the structure of their configuration.  
Specifically, configuration primitives are used to build 
internal abstractions that are used by library and 
application developers.  However, due to the unstructured 
scoping of preprocessor macros, this architecture is 
“relaxed”, meaning that layers and separation are not 
clearly defined, and that any client can access 
information or functionality at every level.  Figure 7 
depicts the common configuration architecture exhibited 
by the configuration kernels of the studied systems. 

This architecture consists of several different layered 
and orthogonal concerns: configuration, portability, 
inclusion control, build control, and the programming 
interface.  The lowest layer is that of configuration 
control – the use of macros to control the include process 
and thereby controlling which configuration headers are 
incorporated into the binary.  The orthogonal concern of 
Inclusion control defines the set of macros and conditions 
used to ensure that files are included in an appropriate 
manner (typically once).  Likewise, build control is the 
set of directives responsible for selection of code 

corresponding to some build configuration option (i.e., 
define QT_NO_SLIDER to deselect the compilation of the 
QSlider class). 

The portability concern is comprised of two distinct 
sub-layers: a portability core, and derived observations.  
The core relies on configuration primitives provided by 
two (mostly) independent dependencies: the compiler 
and the platform.  Here, the platform is taken to be the 
architecture, operating system, and C runtime library.  In 
the second layer, configuration wrappers are used to 
identify, the vendor and version of the compiler, 
platform, architecture, etc (i.e., external identities).  
Feature descriptors provide a detailed specification of 
those dependencies, usually in terms of capabilities and 
deficiencies (i.e., BOOST_HAS_THREADS or 
ACE_LACKS_UNLINK). 

 

 
Figure 7.  A common configuration architecture 
depicting the primary layered and orthogonal 

concerns. 

The API, or the top-level layer in the architecture, 
builds on the macros defined in the portability concern to 
abstract or mitigate differences between the underlying 
dependencies.  Compiler abstractions build workarounds 
for broken compilers, grammar abstraction for different 
versions of the language, and syntax extensions for 
programmer convenience.  Library adaptation provides 
similar features for the core or abstracted library.  This 
feature is primarily used to address differences in 
compliance between implementations of a common 
library (e.g., POSIX or the STL).  Finally, preprocessor 
utilities are just that: macros intended for programmer 
utility such as stringification, token pasting, and code 
generation for repetitive programming tasks. 

6. Build Configuration Software 
Each of these libraries is distributed with an automatic 

configurator that can generate a pre-build, platform-



 

 

specific configuration.  Qt’s configuration script 
generates the actual configuration header to define 
macros that identify the presence of external 
dependencies (e.g., various X11 extensions).  Boost’s 
configuration script does exactly the same thing with 
Python and ICU (Unicode) libraries.  Here, we find two 
examples of external programs used to control the 
specification and versioning of (optionally) required 
libraries.  However, neither of these programs attempts to 
determine the configuration of the host platform and 
compiler.  The preprocessor is responsible for these 
configurations. 

ACE is also distributed with an autoconf-generated 
configuration script.  Unlike the previous scripts, this will 
attempt to deduce sets of feature descriptors for every 
external dependency – including those typically covered 
by preprocessor-based configurations.   

While it appears that configurators are useful for 
managing build options related to 3rd party dependencies 
such as Python in Boost and numerous X11extensions for 
Qt, there is no conclusive evidence, despite widespread 
acceptance of the GNU autotools, that total automatic 
configuration is a successful strategy for increasing 
portability or reducing maintenance effort.  In fact, it 
might be observed that introducing a new compiler, 
platform or external dependency is actually more 
complicated since it requires learning the language and 
tooling of the configurator.  Moreover, the use of 
configurators still results in massive numbers of 
configuration macros that must still be tested in the 
application in order to be useful.  These macros now also 
accrue the added cost of being untraceable without 
examining the configurator. 

7. Related Work 
Despite pervasive use of the C preprocessor, literature 

(both research and practical) is quite rare when compared 
to the volumes written on the languages whose existence 
depends upon it.  The first case study of preprocessor 
usage with respect to portability was given by Spencer et 
al. [17].  This study analyzed preprocessor usage in the C 
News program as it evolved.  The study suggests 
pragmatic approaches to using the preprocessor, but does 
not provide, what we think of today, as pattern for its 
applications. 

The only previous comprehensive study of 
preprocessor usage was conducted by Ernst et al. in [4] 
using PCp3 [1] to analyze the incidence of preprocessor 
usage in a number of C programs.  This empirical data is 
used to create taxonomies of macro definitions and 
usage.  Specifically, this work discusses classifications of 
macros based on the structure of their definition, their 
extra-linguistic capabilities, (potentially) erroneous 
definitions, and multiple, different, and inconsistent 

definitions.  Macro usage is discussed in terms of 
frequency, context, and usage in preprocessor conditions. 

Most relevant to our work, the study categorizes 
macros used in conditions as being used for one of 
several concerns.  Our investigation mostly supports this 
taxonomy.  There are, however, some differences due to 
the fact we studied the intent of usage rather than 
deriving a classification from name, definition, and 
context.  The biggest difference comes from the 
classification of macros concerning the portability of 
machine, library, and language, and additionally macros 
labeled as “miscellaneous”.  In [4] the classification 
“machine portability” encompasses macros defining the 
architecture and hardware, language whereas “library 
portability” encompasses externally defined macros, and 
“miscellaneous” represents reserved identifiers (macros 
of the form __XXX__).  Our analysis clearly shows that 
these macros actually describe the operating system, 
compiler, and versions thereof.  Moreover, externally 
defined macros can be used to control the build and are 
not directly related to portability, but are more likely to 
be related to general configuration. 

In another (albeit very different) approach to 
preprocessor analysis, formal concept analysis is applied 
to conditionally compiled regions of source code to 
investigate the relational structure of configurations in 
[10].  Although a completely different approach, this 
approach is useful for showing the relation between 
configuration macros, via the code configured by them.  
This was later used to suggest configuration restructuring 
via operations on concept lattices [16]. 

Otherwise, there have been a number of approaches to 
preprocessor analysis for a number of applications.  For 
example the preprocessing language has been treated as a 
program dependency graph (PDG) to support abstract 
program analysis and configuration reachability [5, 6, 9, 
11, 12].  Similarly, in [19] preprocessor directives are 
modeled for both static and dynamic analyses.  There 
have also been a number of approaches to preprocessor 
analysis for reengineering, restructuring, and refactoring 
[2, 7, 8, 14, 18, 20]. 

8. Conclusions and Future Work 
We examined three heavily ported C++ libraries and 

their use of the C preprocessing language to manage 
portability concerns.  Despite the absence of reliable 
design documentation or even descriptive literature (e.g., 
books on programming), we find emergent patterns in C 
preprocessor usage.  Specifically, we identify four 
preprocessor techniques that contribute to effective 
portability management.  Specifically we find that the use 
of logical namespaces, replaceable and parameterized 
inclusions, macro-level compiler abstractions all 
contribute toward reliable software porting.  Most 



 

 

importantly, we show that in long-lived and portable 
systems these concerns are all managed within a common 
configuration architecture.  This common architecture 
acts as a model for developers creating portable software.   

We believe that this work only scratches the surface of 
preprocessor and source code configuration analysis.  We 
believe that our method for modeling include-files and 
especially configuration macros is capable of supporting 
much more detailed analysis.  We intend to use this 
approach to model the relationships between macros and 
the relation between preprocessor directives and the 
source code itself.  We believe that these techniques will 
contribute to the creation of refactoring tools for 
portability and configuration management as well as a 
better understanding of software evolution from the 
perspective of adaptability and portability. 

To conclude, we do not foresee a future lessening of 
preprocessor usage.  In fact, we predict that portability 
via the preprocessor will become increasingly important 
with new language features for both C and C++ on the 
horizon.  Moreover, the platforms on which these 
programs compile will also continue to evolve.  Any 
long-lived and heavily ported library will have to contend 
with the multitude of both new and old versions of 
compilers, platforms and other libraries. 
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