

How We Manage Portability and Configuration with the C Preprocessor

Andrew Sutton and Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{asutton, jmaletic}@cs.kent.edu

Abstract
An in-depth investigation of C preprocessor usage for

portability and configuration management is presented.
Three heavily-ported and widely used C++ libraries are
examined. A core set of header files responsible for
configuration management is identified in each system.
Then macro usage is extracted and analyzed both
manually and with the help of program analysis tools.
The configuration structure of each library is discussed
in details and commonalities between the systems,
including conventions and patterns are discussed. A
common configuration architecture for managing
portability concerns is derived and presented.

1. Introduction
In a seminal paper on software aging, Parnas describes

two distinct reasons why software ages: 1) failure to meet
changing needs and 2) evolution at the hands of its own
developers [15]. Parnas rightly lays the blame for aging
at the hands of consumer demand and developmental
difficulties, but seems to ignore the impact of the
evolution of platforms for which the software was
originally developed. Ironically, he claims that software
written 40 years ago would function perfectly today, if he
could just find a computer that was phased out of
existence 30 years ago. Did this software age because
today’s users would expect more, or did it fail because it
did not evolve along with its computer platform?

It seems that software aging can also be blamed on the
inability (or indifference) of developers to adapt to
evolving or different platforms. However, this could also
be seen as an indirect influence of consumer demand on
the software – the demand for better computers,
operating systems, and programming languages all
impact the need to adapt existing software. For example,
with the release of Vista, Microsoft has deprecated a
number of API’s, and as an unfortunate result, some
programs may crash or even fail to run at all. Because of
these shifting foundations, organizations often release
different configurations of their software targeting

alternate operating systems and/or versions thereof.
From a maintenance perspective, we understand this as
software portability.

Although we often think of portable software as that
which targets different operating systems such as Linux
and Windows, the differences need not be so great. Even
small differences in OS platforms can result in widely
variant behavior in the software. Moreover, differences
can occur at every level of software – from the
implementation and semantics of system calls to the
name lookup mechanism in a compiler.

Developing and maintaining portable software is
costly because each new variant or version of a
dependency increases the number of build configurations
and therefore increases maintenance and testing efforts.
Newly introduced configurations require integration and
testing. Legacy configurations may be retained or
eliminated; if retained, they will require general
maintenance. Without a general strategy and reasonable
software architecture for handling this multiplicity of
configurations, their addition/removal can wreak havoc
on the structure of the source code.

In C and C++ programs portability is invariably
managed using the C preprocessor. Source code is
conditionally compiled depending on variables of the
compiler, operating system interface, and other
dependent libraries. In this paper, we are interested in
determining how popular systems achieve portability
with the C preprocessor. To this end, we studied the
preprocessor-based configuration of three widely used
and heavily ported software libraries: the Qt GUI Toolkit,
the Adaptive Communications Environment (ACE), and
the Boost C++ Libraries. Specifically, we developed
tools to help us extract data from the preprocessor
directives. We then analyze this data in order to discern
emergent patterns for managing portability.

As a result of this study, we discovered a number of
techniques for building portable software that are
common between the three systems. These techniques
are used to build abstractions out of preprocessor macros,
enabling developers to separate dependency concerns.

Most importantly, we found that all three share a
common preprocessor-based, software architecture that
provides an extensible foundation for future adaptation to
different compilers, operating systems, and versions
thereof.

The paper is organized as follows. In section 2, we
discuss the approach and tools used to study the different
libraries. Section 3 contains a detailed description of the
preprocessor-based configurations of the systems. In
section 4, we discuss emergent techniques and patterns
for portability and configuration. Lastly, the common
configuration architecture is described in section 5.

2. Methodology
Our study of the different libraries focused on two

primary elements of the C preprocessor: 1) include files
and 2) configurable macros. To facilitate this work, we
abstracted the familiar notions of file inclusion and
macro definition (and evaluation) to represent a more
programmer-centric model of the concepts. Specifically,
we define include files as the unique names of files
referenced in include directives. This allows us to
associate each inclusions with two distinct files, thereby
simplifying include graph extraction.

For macro analysis, we defined a configurable macro
in a similar manner. Specifically, these are the unique
names of symbols appearing in definition, undefinition,
and condition directives. This model of macros allows us
to associate all known (if any!) values with each
identifier, and all distinct usages in preprocessor
conditions.

We implemented two tools to extract and model these
concepts. Both tools leverage our srcML [3, 13]
infrastructure to accomplish their respective tasks1.
Specifically, we use srcML to provide an XML-based
markup of C++, thereby simplifying the fact extraction
process. First, the tool cppinc analyzes source code and
generates GraphViz2-formatted graphs that can be
rendered and inspected to help study the structure of
include graphs. Second, another tool cppconf analyzes
the same source code for macro definition and usage and
saves this information for later exploration.

The actual study of the systems proceeded in two
phases. In order to study how each of these systems
manage portability, we first identified which components
of the software are primarily responsible for that concern
(i.e., the set of files). Secondly, we extracted and
analyzed data about the multi-valued configurable
macros. This data is then used to identify emergent
patterns for portability and configuration management.

As for identifying the location of portability concerns
in software, practical experience allows us to hypothesize

1 http://www.sdml.info/projects/srcml/
2 http://www.graphviz.org/

about a locus of configuration functionality that we call
the configuration kernel. To validate this hypothesis, we
generated and studied selected include graphs of each
library. These graphs reveal a relatively small tree of
header files that appear to do little other than
conditionally define different macros. Of course, the
names of these files are also a great indicator for this
kernel since most either contain the word “config”, or are
nested within a “config” directory.

We then use this set of files in the kernel as the source
of configuration data. We processed each of the header
files in the kernel, recorded each macro identifier, and
where it is used in preprocessor directives (i.e.,
definitions, undefintions, and conditions). We name
these configurable macros since the macro identifier can
be configured to provide any number of different values.

Our primary classification is based on whether the
macro is defined externally (provided by the compiler or
build) or internally (defined or undefined within the
scope of the studied system). Additionally, lexical
analysis (i.e., regular expressions) is used to help identify
groups of similarly named macros. We then manually
investigated the relationships between the different
groups of macros in order to determine if there are any
repeated techniques, abstractions, or patterns in the
different systems.

3. Examined Systems
We applied this process to three software libraries: the

Qt GUI Toolkit3, the Adaptive Communications
Environment (ACE)4, and the Boost C++ libraries5.
These libraries were chosen because they are well
known, well respected, heavily used, and each is ported
to wide variety of systems. For each library, we provide
a description of its configuration kernel followed by a
classification of the macros appearing within the kernel
and a discussion of the configuration architecture.

3.1. Qt GUI Toolkit
The first library we studied is the Qt GUI Toolkit (v.

4.2.2). Qt is a data type library, abstraction provider, and
GUI toolkit for Windows, Mac OS X, X11, and
embedded (Qtopia) environments. While our study
focuses only on the X11 source code distribution, we
should note that most of the files in the Windows, Mac,
and X11 distributions are identical although windowing-
specific implementations of some code (outside the
configuration kernel) is provided by the different
distributions. The library is segmented into a number of
modules, the core of which provides a common set of
data structures (e.g., QList and QRect) and algorithms.

3 http://www.trolltech.com/
4 http://www.cs.wustl.edu/~schmidt/ACE.html
5 http://www.boost.org/

Qt employs a configure script that is used to set install
directories, determine buildable components, and
configure external dependencies. Most importantly, it is
responsible for generating the qconfig.h header file.

Figure 1. A simplified view of the Qt configuration
kernel. The circle indicates an arbitrary inclusion.

Identifying the structure of Qt’s configuration kernel
is not entirely straightforward. Despite the fact that there
are several qconfig-* header files, none of these are
ever included. Visual inspection of the include graph
reveals a small tree of header files rooted at qglobal.h.
Further investigation reveals that this is the root of the
configuration kernel. An abridged version is depicted in
Figure 1.

Unlike other systems that we studied, Qt embeds most
of its configuration in a single header file, qglobal.h.
In fact, the contents of qconfig.h and qfeatures.h
only define and test macros related to the configuration
of external dependencies and the selection of features to
build respectively. We used this kernel as the input to
cppconf to extract information about configurable
macros.

Table 1. Nested “namespaces” defining macros in the

Qt GUI toolkit. Namespaces are given by regular
expressions.

Namespace Description
^Q_OS Operating system identities on

which Qt can be compiled.
^Q_CC Compiler identities and versions

supported by Qt.
^Q_WS Windowing systems identities

supported by Qt (e.g., Win32, X11)
^QT_MODULE Defines specific functional subsets

of the Qt library.
^QT_EDITION Defines subsets of modules

available for product variants.
^Q.*_EXPORT$ Defines export expressions for C++

class definitions.

Qt references 454 macros in its configuration kernel.

Of these, 155 are configuration primitives – macros that
are defined outside the body of analyzed source code but
tested in preprocessor conditions within. Interestingly,
we can find two exclusive subsets of this group by
recognizing naming conventions for macro identifiers.
Macros beginning with underscores are allocated to

compiler-specific keywords, identifiers, and extensions,
whereas macros starting with Q_ or QT_ are (intuitively)
specific to Qt. For example, macros such as __i386__,
_WIN32, and __GNUC__ identify hardware architecture,
operating system, and compiler, respectively. Likewise,
configuration primitives such as QT_BUILD_XML_LIB
and QT_CUPS are defined by the build and configuration.
The former is defined when the XML implementation is
being compiled, and the latter is asserted when Qt is built
with CUPS (Common UNIX Printing System) support.

The remaining 299 macros defined (or undefined)
within the configuration kernel are of much greater
interest because they contribute to the organization of the
software. Using the same lexical analysis, we find that
most (284) are within the Qt “namespace”. Extending
this technique to examin e subsequent underscore-
separated identifiers, we can easily extract a number of
well-defined subsets of Qt-provided macros. These are
listed in Table 1.

Another significant set of macros used in preprocessor
directives is that which describes specific build features
and external dependencies. These macros are easily
identified by the use of the _NO_ or _BROKEN_ identifiers
in their names. Macros like QT_NO_SLIDER can be used
to exclude classes from the library’s build, presumably to
reduce the memory footprint on embedded devices.
Similarly, macros like QT_NO_CUPS are used to
determine the presence of external dependencies.

Examining these macros that are used in preprocessor
statements, we find interesting relationships to other
macros or build options. For example, closer inspection
shows that these macros are derived from the assertion of
configuration primitives (e.g., _WIN32 or __GNUC__),
especially the Q_OS and Q_CC macros. The Q_WS macros
are derived mostly from Q_OS macros, but occasionally
require tests of other configuration primitives. From this
we can infer that the operating system and compiler are
configured independently, but the choice of windowing
system is dependant up operating system.

Similarly, feature selection via specific feature
descriptors is similarly derived. A set of base descriptors
is used to activate or deactivate various classes within the
library, and the preprocessor is used to manage
dependencies between them. For example, the assertion
of QT_NO_SLIDER results in the assertion of
QT_NO_DIAL and QT_NO_SCROLLBAR as well,
effectively removing all related classes from the library.
Interestingly, the module and edition macro groups also
play a role in feature selection. Specifically, these are
used to restrict the build of the library components based
on the Qt distribution the developer is using.

Many of the remaining macros seem to be defined for
general-purpose programming support. This includes
macros for grammar extension (e.g., Q_FOREACH),

adapting compiler-specific language extensions (e.g.,
Q_DECL_EXPORT), and preprocessor functions (e.g.,
Q_ASSERT).

Figure 2. The Qt preprocessor configuration

architecture implements multiple concerns in a
layered fashion.

Figure 2 depicts an abstracted view of the Qt
preprocessor architecture. The library essentially
manages two distinct concerns: portability, and build
control. The portability concern is entirely managed by
macros in the operating system, compiler, windowing
system, and their derived macros. The API is built
directly on top of portability macros to provide compiler
abstractions (e.g., Q_FOREACH or Q_TYPENAME) and
preprocessor utilities for library and application
developers (e.g., Q_GLOBAL_STATIC).

The build control facility is used to select classes that
are compiled into the library at product build-time
through both feature descriptors and module/edition
specification. Note that it is entirely orthogonal to
portability and the API. This is to say that macros in this
concern do not generally affect or require the macros in
any other.

3.2. Adaptive Communications Environment
The Adaptive Communications Environment (v. 5.5)

is a fairly expansive library that provides portable
implementations of concurrent and network design
patterns. At its core ACE provides a low-level POSIX-
like portability layer that reportedly supports compilation
on about twenty different operating systems from
embedded platforms to Cray supercomputers (excluding
individual versions).

ACE has two mutually exclusive methods of
configuration. Previous versions of ACE were
configured by copying a platform- and compiler-specific
header to the config.h file. ACE has 89 distinct
configuration headers that can be included directly
(although this is misleading since some are not intended
to be included directly). Newer versions can be
configured via an autoconf-generated configure script.
Rather than using the configure script, we created a
config.h file that included all 89 distinct configurations
allowing us to create a full include graph.

Much like Qt, the ACE configuration kernel is not
entirely obvious. Inspecting the include graph reveals
that the inclusion of the config.h header file occurs
only in the head of the config-macros.h header file.
This is included only by the config-lite.h header
file, which, in turn, is included by a relatively small set of
header files (e.g., config-all.h). A simplified include
graph is shown in Figure 3. Application-included
headers include either the all or lite configuration
variants depending on their requirements. At the
backend, our config.h header includes 89 different
config-* header files (depicted by the cloud in Figure
3).

What the graph does not show is the dependencies
between compiler and platform header files. Careful
inspection shows that platform-specific headers (e.g.,
config-linux.h) will often include compiler-specific
headers (e.g., config-g++-common.h). Unfortunately,
this pattern does not hold for every platform/compiler.
More common development platforms such as Linux and
Win32 employ this technique to some degree. The
SunOS configuration differs significantly in design, in
that it the configuration for newer versions include and
update older versions’ configurations, but does not
include any header files outside its own tree.

Figure 3. A simplified representation of the ACE
include graph. The cloud indicates a number of

possible inclusions.

The primary role of this include structure is to define a
common platform POSIX-like API upon which all other
abstractions are built. In fact, the config-all.h header
actually includes a significant portion of that API (which
is outside the kernel). Most of the configuration macros
are defined through inclusions of the config-macros.h
header. The include graph also has two very obvious
files that are included by almost every other include file:
pre.h and post.h header files. These files set compiler
options via pragma statements for a few different
compilers, but do not define or reference any macros.
We used the include tree rooted at config-lite.h as
the input to cppconf.

Our analysis of the ACE kernel includes 1412
referenced macros. Of these, 147 were defined
externally. Much like Qt, most of the externally defined
macros are compiler-provided macros that identify
compiler vendors and versions, operating systems, and
computer hardware. There are few (27) that are specific
to ACE. Some of these macros, such as
ACE_BUILD_DLL and ACE_HAS_VALGRIND are defined
during the build or to assert the availability of external
dependencies.

The remaining 1265 macros are all defined within the
scope of ACE configuration kernel. While not as clearly
segregated as the identifiers in Qt, we can still identify a
number of logical groupings by use if not by name.
• System identities – There are many ACE macros that

identify different compilers and operating system.
The ACE_CC namespace contains all compiler
information, but each operating system is given its
own set of identifiers (e.g., ACE_PSOS, ACE_WIN32).

• Inclusion Controls – Some (but not all) of the
configuration files use header guards to prevent
redundant inclusions.

• Constants – The configuration kernel defines a
number of constants. One source of these is POSIX
error codes (E* constants) defined to supplement
incomplete standard libraries. Another is the size of
built in types (i.e., integers).

• Function mapping – ACE defines a number of
macros that expand to the names of functions of
specific runtime libraries. Examples include
ACE_TEXT and pthread macros that expand to a
collection of Win32 calls and different pthread
names respectively.

• Compiler Abstraction – A relatively small set of
macros is provided as part of the API. Macros like
ACE_EXPLICIT and ACE_MAIN abstract C++
keyword variations and program entry points.

Just like Qt, the majority of internally defined macros
are feature descriptors, all prefixed with ACE_HAS,
ACE_LACKS, or ACE_NEEDS. In stark contrast to Qt,
where feature descriptors are asserted to exclude classes
from a build, these identifiers play an integral role in the
construction of the POSIX adaptation layer. These
feature descriptors are used to describe the presence of
specific header files (e.g., ACE_HAS_SELECT_H),
functions (e.g., ACE_LACKS_DUP2), types (e.g.,
ACE_HAS_SSIZE_T), and various external dependencies
(e.g., ACE_HAS_SSL).

The relationships between these macros are
interesting. Expectedly, we find that the sysstem
identities are derived immediately from configuration
primitives. Perhaps even more interesting is that the
definition of feature descriptors are (for the most part)
also immediately derived from configuration primitives.

For example, in the common Linux header,
ACE_HAS_SNPRINTF is defined if one of a number of
externally defined macros is asserted (e.g.,
_BSD_SOURCE or _XOPEN_SOURCE). From this, we can
assume that there is a high level of coupling between the
operating system, compiler and standard runtime
libraries.

Figure 4 depicts a generalized view of the ACE
configuration architecture. Here, the portability concern
is managed by a trinity of three tightly coupled concerns
aspects: the platform, the compiler, and the feature
specification of the C runtime. Interestingly, the only
discernable pattern in the configuration kernel appears to
be the absence of internal abstraction or layering within
the portability concern. The identifiers defining
compiler, platform and features are referenced only
sparingly within the kernel itself. In fact, only 166
internally defined, non-header guard macros are actually
tested within the kernel. However, the features identified
in the portability concern are used to define a POSIX
adaptation layer via constant definition and function
mapping. Also include in this API is a set of macros for
abstracting compiler deficiencies and differences.

Figure 4. The ACE preprocessor configuration

architecture.

The only orthogonal concern represented by macros in
the configuration kernel is inclusion control, specifically
the protection of redundant header inclusion during
preprocessing.

3.3. Boost C++ Libraries
The Boost C++ Libraries (v. 1.33.1) is a large set of

C++ libraries that supply data structures and algorithms
for application developers. One purpose for the Boost
Libraries is to act as a testing ground for components that
may eventually become a part of the Standard Template
Library (STL). Unlike ACE and Qt, the Boost libraries
do not supply a low-level interface, but instead relies on
the correctness of vendor-supplied implementations of
the STL. In cases where platform-specific API’s are
required, they are deeply hidden by abstraction. The
Boost Filesystem library is typical of this design.

Like ACE and Qt, Boost also has a configure script.
However, the configure script is only used to set build
variables related to external dependencies (e.g., Python),

install directories, and build profiles (i.e., debug/release
and threading). Fortunately, we do not need to run the
configure script because most of the configuration is
internal to the Boost libraries.

The Boost configuration kernel is relatively easy to
identify. From previous experience, we know that Boost
is configured through its Boost Config library – a set of
header files that selects the correct compiler, standard
library and operating system at compile time. The entire
configuration is included through the config.hpp
header file, which in turn includes a number of files in
the config directory. We validated that this is the
configuration kernel by examining the include graphs of
several Boost libraries.

Figure 5. A simplified view of the Boost include

graph. Actual file names are truncated for brevity.
Clouds indicate a number of possible inclusions.

Figure 5 depicts a simplified version of the Boost
configuration kernel. Boost also provides facilities for
changing ABI (Application Binary Interface) flags in a
similar manner to compiler, platform and standard library
configuration. There are also other include files in the
configuration kernel that auto linking features and
determining POSIX features. These have been omitted
from the diagram for simplicity.

As mentioned, Boost is unique (among studied
libraries) in its configuration for a number of reasons –
much of which is related to the use of macro expansion to
include files. For example, the so-called user include
file can be defined at compile time to reference a
developer-specific file by defining a macro,
BOOST_USER_CONFIG, to reference a specific file (e.g.,
“my_config.hpp”) although it defaults to a mostly
empty user.hpp. The user defined file can set the
values of other include macros to override the default
configuration by defining alternative include macros –
those which are expanded to identify alternative include
files. Examples, include BOOST_COMPILER_CONFIG and
BOOST_STDLIB_CONFIG. If undefined, they reference
default include files.

Not surprisingly, Boost’s default include files actually
act as selection functions for system dependencies. For
example, the default include file for compiler selection is
the select_compiler_config.hpp header file. These

selectors exist for both standard libraries and platforms as
well. When included, selectors will test configuration
primitives (much like a C switch statement) to
determine the vendor of the specific dependency.
Identification results in the definition of an include macro
that references a pre-implemented configuration for the
resource.

Also unique is the fact that the kernel physically
separates concerns in its directory structure. Within the
config directory, we can find subdirectories containing
header files for 16 different compilers, 11 different
platforms, and 9 different standard template library
implementations. Default include macros reference files
in these directories (e.g., gcc.hpp and stlport.cpp).
Contrast this with Qt, which primarily uses a single, large
configuration header, and ACE, which has a flat,
unstructured collection of configuration headers.

The suffix header performs post-selection
configuration. This is to say that it defines many of the
macros that identify capabilities and deficiencies
appearing in different compilers, platforms and standard
libraries.

There are only 339 macros referenced in the Boost
configuration kernel. Of these, just over half (185) are
defined externally. Unlike both Qt and ACE, where a
significant number of these macros within the library’s
namespace, there are only 9 in Boost and all but one are
obviously related to controlling the preprocessor
configuration (e.g., BOOST_NO_CONFIG causes Boost to
skip most of its configuration headers). The remaining
externally defined macros identify compilers and
operating systems, and aspects of standard template
library implementations.

The remaining 154 internal macros fall into the
following groups:
• Configuration control – Macros identifying include

files (e.g., BOOST_USER_CONFIG) and inclusion
logic (e.g., BOOST_ASSERT_CONFIG).

• External identities – Macros identifying the
compiler, standard library, and operating system
(e.g., BOOST_MSVC and BOOST_PLATFORM).

• Programming support – Boost provide a number of
different macros that abstract compiler workarounds
or differences in syntax and semantics (e.g.,
BOOST_STATIC_CONSTANT). This also includes
utility macros such as BOOST_JOIN and
BOOST_STRINGIZE which implement the # and ##
operators.

However, most of the internally defined macros are
feature descriptors of the form BOOST_HAS or
BOOST_NO. Unlike Qt, which used these to except
classes from the build and ACE, which used these to
describe POSIX-like features, Boost primarily uses these
to describe compiler and STL deficiencies. For example,

the BOOST_NO_SFINAE is asserted for compilers that do
not correctly implement argument substitution for
templates, and BOOST_HAS_HASH is asserted when a
standard library provides implementations of the
hash_set and hash_map classes.

Figure 6. Components of the layered architecture for

configuring the Boost C++ Libraries.

Figure 6 depicts a generalized architecture for the
configuration kernel of the Boost C++ Libraries. The
bottom-most layer, configuration control, defines macros
that are used to control the configuration process. The
primary portability concern is similar to that of ACE in
that it does not build on internal abstractions. but couples
the evaluation of configuration primitives to build a
single configuration for the compiler, standard library
and platform. In Boost, the most user-visible macros are
used for mitigating compiler variations and some simple
macros for stringification and token pasting. These
macros comprise the programmer’s interface – the API.

4. Emergent Patterns in Preprocessor Usage
From our study of the three systems, we observed a

number of specific techniques employed to help increase
portability and reduce maintenance effort. Not all
systems use (or even subscribe) to all of these patterns,
yet they appear frequently throughout systems and as
such warrant clear description as the represent common
solutions to portability and configuration management.

4.1. Logical Namespaces
The first and most obvious pattern that emerges is the

use of naming conventions for macro identifiers. While
this is not what one might typically call a design pattern
or even programming idiom, naming conventions provide
a simple mechanism for separating concerns in the
absence of lexical scoping. Macro identifiers are
typically grouped into what we term logical namespaces
by using common identifier “stems”, separated by
underscores. For example, the Q_CC_GNU macro is in
logical namespace compiler (CC) nested within the
logical namespace Qt (Q). Consistent and thoughtful
scoping of macro identifiers can greatly ease program

comprehension efforts, and therefore reduce maintenance
cost by reducing time spent understanding the system.

A thorough usage of this technique is shown in Table
1 – the logical namespaces used in Qt’s configuration.
Unfortunately, only Qt implements namespaces to any
great extent, and only then for a limited number of
concepts. Boost and ACE are somewhat less consistent
with their use of namespaces, but do use the technique to
help segregate feature descriptors (i.e., the HAS, NO, and
LACKS macros) from other concerns.

4.2. Replaceable and Parameterized Inclusion
When porting a library or application, maintenance

requires adapting the library to a new compiler or
platform by modifying the configuration kernel to
introduce the new requirements. With open source
licensing this can be problematic since modifications to
open source products carry (at the very least)
documentary and redistribution requirements. When
commercial licenses and especially non-disclosure
agreements enter the mix, modifying the original source
code is out of the question.

Both ACE and Boost have implemented defensive
mechanisms for configuration extension. ACE allows
developers to create custom configuration headers that
are, by definition, not part of the original source code.
This replacement scheme requires developers to supply a
file or symbolic link with a specific name (i.e.,
config.h). This is then incorporated into the
configuration through the kernel’s standard include paths.

In contrast, Boost uses a parameterization scheme to
accomplish the same task. Here, users can define macros
through the build environment that reference user-
defined header files. These macros effectively act as
parameters to configuration. Boost also extends this
technique to include other parameters that allow a
configuration to be validated (i.e., an assertion mode) that
causes errors when unknown configurations are
encountered.

By allowing developers to override a library’s default
configurations, new platforms can be integrated and
tested piecewise without having to interweave new
configurations with existing ones. This allows new
preprocessor code to be integrated into the system more
cautiously, potentially reducing configuration conflicts
and bugs.

4.3. Compiler Abstractions
Despite the standardization efforts of the C and C++

programming languages, compiler implementations can
vary greatly due to differences in language versions,
broken or unimplemented language features, and
grammar extensions. Also, major compiler releases
occur every couple of years, requiring applications to
evolve with them. In order to mitigate the unrelenting

progress of compiler innovation, developers must build
their software to support both legacy and newer version
of a compiler in parallel.

To this end, heavily ported libraries with long life
spans (such as those studied here) must accommodate not
only multiple versions of the same compiler, but also
multiple compilers. This is invariably done using the
preprocessor. There are three distinct categories of
compiler abstractions: workarounds, grammar adapters,
and syntax extension. Workarounds are generally
function-like macros that expand to different pieces of
code under different compilers to help implement
unsupported or broken features. Grammar adapters are
similar to workarounds but tend to address version-
specific additions or compiler-specific extensions to a
language. Syntax extensions are macros that appear to
add new keywords or syntax to a language. The most
common example of this is the provision of a foreach
construct.

Using the preprocessor for compiler abstractions is
somewhat of a double-edged sword for maintainers.
While these can allow the software to be compiled under
numerous regimes, the resulting source code can become
significantly less readable. Moreover, long-term support
for legacy compilers may ultimately reduce the
portability of the application, preventing it from
introducing new language features or libraries. Also,
deciding to remove support for older compilers requires
developers to decide whether or not to remove the
abstractions, and if so, spend the time doing it.

5. A Common Configuration Architecture
All of these libraries exhibit some form of a layered

architecture in the structure of their configuration.
Specifically, configuration primitives are used to build
internal abstractions that are used by library and
application developers. However, due to the unstructured
scoping of preprocessor macros, this architecture is
“relaxed”, meaning that layers and separation are not
clearly defined, and that any client can access
information or functionality at every level. Figure 7
depicts the common configuration architecture exhibited
by the configuration kernels of the studied systems.

This architecture consists of several different layered
and orthogonal concerns: configuration, portability,
inclusion control, build control, and the programming
interface. The lowest layer is that of configuration
control – the use of macros to control the include process
and thereby controlling which configuration headers are
incorporated into the binary. The orthogonal concern of
Inclusion control defines the set of macros and conditions
used to ensure that files are included in an appropriate
manner (typically once). Likewise, build control is the
set of directives responsible for selection of code

corresponding to some build configuration option (i.e.,
define QT_NO_SLIDER to deselect the compilation of the
QSlider class).

The portability concern is comprised of two distinct
sub-layers: a portability core, and derived observations.
The core relies on configuration primitives provided by
two (mostly) independent dependencies: the compiler
and the platform. Here, the platform is taken to be the
architecture, operating system, and C runtime library. In
the second layer, configuration wrappers are used to
identify, the vendor and version of the compiler,
platform, architecture, etc (i.e., external identities).
Feature descriptors provide a detailed specification of
those dependencies, usually in terms of capabilities and
deficiencies (i.e., BOOST_HAS_THREADS or
ACE_LACKS_UNLINK).

Figure 7. A common configuration architecture
depicting the primary layered and orthogonal

concerns.

The API, or the top-level layer in the architecture,
builds on the macros defined in the portability concern to
abstract or mitigate differences between the underlying
dependencies. Compiler abstractions build workarounds
for broken compilers, grammar abstraction for different
versions of the language, and syntax extensions for
programmer convenience. Library adaptation provides
similar features for the core or abstracted library. This
feature is primarily used to address differences in
compliance between implementations of a common
library (e.g., POSIX or the STL). Finally, preprocessor
utilities are just that: macros intended for programmer
utility such as stringification, token pasting, and code
generation for repetitive programming tasks.

6. Build Configuration Software
Each of these libraries is distributed with an automatic

configurator that can generate a pre-build, platform-

specific configuration. Qt’s configuration script
generates the actual configuration header to define
macros that identify the presence of external
dependencies (e.g., various X11 extensions). Boost’s
configuration script does exactly the same thing with
Python and ICU (Unicode) libraries. Here, we find two
examples of external programs used to control the
specification and versioning of (optionally) required
libraries. However, neither of these programs attempts to
determine the configuration of the host platform and
compiler. The preprocessor is responsible for these
configurations.

ACE is also distributed with an autoconf-generated
configuration script. Unlike the previous scripts, this will
attempt to deduce sets of feature descriptors for every
external dependency – including those typically covered
by preprocessor-based configurations.

While it appears that configurators are useful for
managing build options related to 3rd party dependencies
such as Python in Boost and numerous X11extensions for
Qt, there is no conclusive evidence, despite widespread
acceptance of the GNU autotools, that total automatic
configuration is a successful strategy for increasing
portability or reducing maintenance effort. In fact, it
might be observed that introducing a new compiler,
platform or external dependency is actually more
complicated since it requires learning the language and
tooling of the configurator. Moreover, the use of
configurators still results in massive numbers of
configuration macros that must still be tested in the
application in order to be useful. These macros now also
accrue the added cost of being untraceable without
examining the configurator.

7. Related Work
Despite pervasive use of the C preprocessor, literature

(both research and practical) is quite rare when compared
to the volumes written on the languages whose existence
depends upon it. The first case study of preprocessor
usage with respect to portability was given by Spencer et
al. [17]. This study analyzed preprocessor usage in the C
News program as it evolved. The study suggests
pragmatic approaches to using the preprocessor, but does
not provide, what we think of today, as pattern for its
applications.

The only previous comprehensive study of
preprocessor usage was conducted by Ernst et al. in [4]
using PCp3 [1] to analyze the incidence of preprocessor
usage in a number of C programs. This empirical data is
used to create taxonomies of macro definitions and
usage. Specifically, this work discusses classifications of
macros based on the structure of their definition, their
extra-linguistic capabilities, (potentially) erroneous
definitions, and multiple, different, and inconsistent

definitions. Macro usage is discussed in terms of
frequency, context, and usage in preprocessor conditions.

Most relevant to our work, the study categorizes
macros used in conditions as being used for one of
several concerns. Our investigation mostly supports this
taxonomy. There are, however, some differences due to
the fact we studied the intent of usage rather than
deriving a classification from name, definition, and
context. The biggest difference comes from the
classification of macros concerning the portability of
machine, library, and language, and additionally macros
labeled as “miscellaneous”. In [4] the classification
“machine portability” encompasses macros defining the
architecture and hardware, language whereas “library
portability” encompasses externally defined macros, and
“miscellaneous” represents reserved identifiers (macros
of the form __XXX__). Our analysis clearly shows that
these macros actually describe the operating system,
compiler, and versions thereof. Moreover, externally
defined macros can be used to control the build and are
not directly related to portability, but are more likely to
be related to general configuration.

In another (albeit very different) approach to
preprocessor analysis, formal concept analysis is applied
to conditionally compiled regions of source code to
investigate the relational structure of configurations in
[10]. Although a completely different approach, this
approach is useful for showing the relation between
configuration macros, via the code configured by them.
This was later used to suggest configuration restructuring
via operations on concept lattices [16].

Otherwise, there have been a number of approaches to
preprocessor analysis for a number of applications. For
example the preprocessing language has been treated as a
program dependency graph (PDG) to support abstract
program analysis and configuration reachability [5, 6, 9,
11, 12]. Similarly, in [19] preprocessor directives are
modeled for both static and dynamic analyses. There
have also been a number of approaches to preprocessor
analysis for reengineering, restructuring, and refactoring
[2, 7, 8, 14, 18, 20].

8. Conclusions and Future Work
We examined three heavily ported C++ libraries and

their use of the C preprocessing language to manage
portability concerns. Despite the absence of reliable
design documentation or even descriptive literature (e.g.,
books on programming), we find emergent patterns in C
preprocessor usage. Specifically, we identify four
preprocessor techniques that contribute to effective
portability management. Specifically we find that the use
of logical namespaces, replaceable and parameterized
inclusions, macro-level compiler abstractions all
contribute toward reliable software porting. Most

importantly, we show that in long-lived and portable
systems these concerns are all managed within a common
configuration architecture. This common architecture
acts as a model for developers creating portable software.

We believe that this work only scratches the surface of
preprocessor and source code configuration analysis. We
believe that our method for modeling include-files and
especially configuration macros is capable of supporting
much more detailed analysis. We intend to use this
approach to model the relationships between macros and
the relation between preprocessor directives and the
source code itself. We believe that these techniques will
contribute to the creation of refactoring tools for
portability and configuration management as well as a
better understanding of software evolution from the
perspective of adaptability and portability.

To conclude, we do not foresee a future lessening of
preprocessor usage. In fact, we predict that portability
via the preprocessor will become increasingly important
with new language features for both C and C++ on the
horizon. Moreover, the platforms on which these
programs compile will also continue to evolve. Any
long-lived and heavily ported library will have to contend
with the multitude of both new and old versions of
compilers, platforms and other libraries.

9. References
[1] Badros, G. J. and Notkin, D., "A Framework for
Preprocessor-Aware C Source Code Analyses", Software:
Practice and Experience, vol. 30, no. 8, Jul 2000, pp. 907-924.

[2] Baxter, I. D. and Mehlich, M., "Preprocessor Conditional
Removal by Simple Partial Evaluation", in Proceedings of 8th
Working Conference on Reverse Engineering (WCRE '01)
Stuttgart, Germany Oct 2-5 2001, pp. 281-290.

[3] Collard, M. L., Maletic, J. I., and Marcus, A., "Supporting
Document and Data Views of Source Code", in Proceedings of
ACM Symposium on Document Engineering (DocEng’02),
McLean VA, November 8-9 2002, pp. 34-41.

[4] Ernst, M. D., Badros, G. J., and Notkin, D., "An Empirical
Analysis of C Preprocessor Use", IEEE Trans. on Software
Engineeering, vol. 28, no. 12, Dec 2002, pp. 1146-1170.

[5] Favre, J.-M., "Preprocessors from an Abstract Point of
View", in Proceedings of International Conference on Software
Maintenance (ICSM '96), CA, Nov 4-8 1996, pp. 329-339.

[6] Favre, J.-M., "Understanding in the Large", in Proceedings
of 5th International Workshop on Program Comprehension
(IWPC '97), Dearborn, Michigan, Mar 28-30 1997, pp. 29-38.

[7] Garrido, A. and Johnson, R., "Refactoring C with
Conditional Compilation", in Proceedings of 18th IEEE
International Conference on Automated Software Engineering
(ASE '03), Montreal, Canada, Oct 6-10 2003, pp. 323-326.

[8] Garrido, A. and Johnson, R., "Analyzing Multiple
Configurations of a C Program", in Proceedings of 21st IEEE
International Conference on Software Maintenance (ICSM '05),
Budapest, Hungary, Sep 25-30 2005, pp. 379-388.

[9] Hu, Y., Merlo, E., Dagenais, M., and Lagüe, B., "C/C++
Conditional Compilation Analysis using Symbolic Execution",
in Proceedings of International Conference of Software
Maintenance (ICSM '00), San Jose, CA, Oct 11-14 2000, pp.
196-206.

[10] Krone, M. and Snelting, G., "On the Inference of
Configuration Structures from Source Code", in Proceedings of
16th International Conference on Software Engineering
(ICSE'94), Sorento, Italy, May 16-21 1994, pp. 49-57.

[11] Latendresse, M., "Fast Symbolic Evaluation of C/C++
Preprocessing Using Conditional Values", in Proceedings of 7th
European Conference on Software Maintenence and
Reengineering (CSMR '03), Mar 26-28 2003, pp. 170-179.

[12] Latendresse, M., "Rewrite Systems for Symbolic
Evaluation of C-like Preprocessing", in Proceedings of 8th
European Conference on Software Maintenance and
Reengineering (CSMR '04), Tampere, Finland, Mar 24-26
2004, pp. 165-173.

[13] Maletic, J. I., Collard, M. L., and Marcus, A., "Source
Code Files as Structured Documents", in Proceedings of 10th
IEEE International Workshop on Program Comprehension
(IWPC'02), Paris, France, June 27-29 2002, pp. 289-292.

[14] Mennie, C. A. and Clarke, C. L. A., "Giving Meaning to
Macros", in Proceedings of 12th IEEE International Workshop
on Program Comprehension, Italy, Jun 24-26 2004, pp. 79-85.

[15] Parnas, D. L., "Software Aging", in Proceedings of
International Conference on Software Engineering (ICSE),
Sorrento, Italy, May 16-21 1994, pp. 279-287.

[16] Snelting, G., "Reengineering of Configurations based on
Mathematical Concept Analysis", ACM TOSEM, vol. 5, no. 2,
Apr 1996, pp. 146-189.

[17] Spencer, H. and Collyer, G., "#ifdef Considered Harmful,
or Portability Experience with C News", in Proceedings of 1992
Summer USENIX Conference, San Antonio Texas, Jun 1992,
pp. 185-198.

[18] Spinellis, D., "Global Analysis and Transformations in
Preprocessed Languages", IEEE Transactions on Software
Engineeering, vol. 29, no. 11, Nov 2003, pp. 1019-1030.

[19] Vidács, L., Beszédes, Á., and Ferenc, R., "Columbus
Schema for C/C++ Preprocessing", in Proceedings of 8th
European Conference on Software Maintenance and
Reengineering (CSMR '04), Mar 24-26 2004, pp. 75-84.

[20] Vittek, M., "Refactoring Browser with Preprocessor", in
Proceedings of 7th European Conference on Software
Maintenence and Reengineering (CSMR '03), Mar 26-28 2003,
pp. 101-110.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

