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Abstract

Prior work has shown that computing dynamic slices of
erroneous program values can greatly assist in locating the
root cause of erroneous behavior by identifying faulty state-
ments in sequential programs. These dynamic slices repre-
sent backward transitive closure over exercised read-after-
write data dependences and control dependences. However,
for a multithreaded program executing on a processor, data
races represent an additional source of errors which are not
captured by dynamic slices. We present an extended form of
dynamic slice for multithreaded programs which can assist
in locating faults, including those caused by data races. We
demonstrate the effectiveness of our approach via case stud-
ies and also describe an efficient algorithm for computing
dynamic slices.

1. Introduction

Given a program run, the dynamic dependence graph
(DDG) captures the dynamically exercised Read-After-
Write (RAW) and Control dependences – each node in the
graph represents an execution instance of a statement while
the edges represent the dependences. Let s < t > denote
an execution instance t of statement s. The dynamic slice of
the value computed by s < t > during a program run is the
subgraph of DDG that is reachable via a backward traversal
of DDG starting at the node corresponding to s < t >. This
traditional definition of dynamic slicing has been found to
be useful in locating bugs in single-threaded applications.

In this paper we consider fault location in multithreaded
programs executing on a uniprocessor. In prior work we
have shown that a straightforward extension of dynamic
slicing for multithreaded programs can detect certain types
of faults [28, 24]. However, presence of data races is not
captured by the above dynamic slices. Hence, backward
dynamic slices by themselves are inadequate for debugging
programs when one source of errors can be the presence
of data races. One approach could be to use a specialized
data race detector for detecting data races and use dynamic
slicing for other types of faults. Specialized race detectors

are based upon happens-before algorithms [6, 21, 15], lock-
set algorithms [23, 12, 9, 29], or a combination of the two
[7, 19, 27]. If a fault is caused by a data race error, these
race detectors can be effective despite their false alarms or
extra hardware requirements. However, when the program-
mer observes anomalous behavior, he or she does not know
what kind of fault is present and would thus have to make
use of multiple tools to debug the program. A more de-
sirable approach that we present in this paper develops an
extended dynamic slicing algorithm that can be used to de-
bug data races as well as other types of faults. The key
contributions of this paper are as follows.

• Extended Dynamic Slicing. First, in section 2, we de-
velop an extended dynamic slicing algorithm that, in
addition to considering Read-After-Write (RAW) and
Control dependences, also includes selected Write-
After-Write (WAW) and Write-After-Read (WAR) de-
pendences in the dynamic slice to capture data races in
the dynamic slice. We demonstrate the effectiveness
of this approach through case studies based upon real
bugs.

• Efficient Dynamic Slicing. Second, in section 3, we
present an efficient approach for constructing the dy-
namic dependence graph needed for computing the
dynamic slices. A series of optimizations are devel-
oped which ensure that capturing only a small subset
of Write-After-Write (WAW) and Write-After-Read
(WAR) dependences is sufficient for computing the ex-
tended dynamic slices.

It is worth noting that there have been prior approaches
to compute the dynamic slices for concurrent programs
and distributed programs [26]. One of the early works [5]
presents a graph based approach to computing the slice. In
addition to data and control dependences, three new forms
of dependences are defined and used: selection, synchro-
nization and communication dependences that can occur in
concurrent and distributed programs. Duesterwald et al. [8]
proposed another algorithm to compute executable slices of
distributed programs. In both of the above works the depen-
dences consider are still inter- and intra-process control and



RAW data dependences. Thus, they are inadequate for data
race detection as they do not consider WAW and WAR de-
pendences. Moreover, the slices computed by these meth-
ods are imprecise. In our work we use highly optimized
algorithms that compute precise slices with efficiency.

Although other works [11, 10, 20] presented the algo-
rithms that can compute dynamic slices precisely, they are
not general enough for detecting errors in shared mem-
ory concurrent programs. Specifically, the method pre-
sented in [11] can only be used in concurrent Ada pro-
grams with rendezvous communications. And the work pro-
posed in [10, 20] are only applicable for distributed pro-
grams. In contrast, the dynamic slicing algorithm proposed
in this paper is more general and applicable to multithreaded
programs where the different threads communicate through
shared memory.

2. Multithreaded Dynamic Slicing
Next we explain why the presence of a data race is not

captured by a backward dynamic slice and how we can ex-
tend the notion of dynamic slicing to address this problem.
A data race arises when a variable is being concurrently ac-
cessed by two threads with at least one of the access be-
ing an update. The order in which these accesses occur
may vary depending upon the order in which the threads
are scheduled. When the value of variable is read at its use,
the value obtained may be the updated one or the one prior
to the update. The DDG will simply contain a RAW edge
that indicates the source of the value. However, to under-
stand the presence of a bug we need additional informa-
tion, i.e. the DDG should not only identify the thread from
which value was obtained but also the thread from which
value could have been obtained under a different sched-
ule. Next we show how by incorporating additional depen-
dence edges, Write-After-Write (WAW) and Write-After-
Read (WAR), we can achieve this goal.

Consider a situation in which thread T1 writes to vari-
able X at statement D1 and later reads the value of X at
statement U1. In addition, thread T2 concurrently writes to
variable X at statement D2. However, due to presence of a
data race the value read at U1 may come from D1 or D2. Let
us first consider the execution timing illustrated by Fig. 1(a)
where, when T1 reads the value of X at U1, it receives the
value from D2 which executes after D1 has executed. If we
compute the dynamic slice of U1, it includes D2 but not D1

and thus the presence of the data race between D1 and D2

is not captured by the dynamic slice. However, if we extend
the DDG to also capture the WAW dependence from D1 to
D2 and extend the dynamic slice to include this backward
WAW dependence, then we will be able to capture both D1

and D2 to reveal the presence of a data race whose alter-
nate outcome would have caused U1 to read the value of X

defined by D1 instead of the value of X defined at D2.

Figure 1. Data race and WAW, WAR depen-
dences.

Fig. 1(b) shows another execution timing where U1 is
executed by T1 before D2 is executed by T2. The back-
ward dynamic slice in this situation includes D1 but not
D2. However, if we extend the DDG to capture WAR de-
pendence from U1 to D2 and extend the dynamic slice to
include this forward WAR dependence, then we will be able
to capture both D1 and D2 to reveal the presence of a data
race whose alternate outcome would have caused U1 to read
the value of X defined by D2 instead of the value of X de-
fined at D1.

In summary, we must extend the DDG to include inter-
thread WAW and WAR data dependences and then con-
struct the dynamic slice to include certain forward WAR
and backward WAW dependences to capture data races. In
the remainder of this section we present the precise form of
DDG and algorithm for computing dynamic slices. We also
then apply our approach to a few real bugs and demonstrate
that our approach is highly effective.

2.1. Extended Dynamic Slicing

Let S represent the set of executed program statements
for an multithreaded program execution. Let s〈t, T 〉 denote
the unique execution instance of a statement s (s ∈ S) at
time t by thread T . Note that since the multithreaded pro-
grams are being run on a uniprocessor, there is a strict time
order of the various instructions executed by the different
threads and hence each instruction can be uniquely times-
tamped.

Further, s〈t, T 〉 is said to be dependent on s′〈t′, T ′〉,
denoted by s′〈t′, T ′〉 → s〈t, T 〉 (also called dependence
edge), if there is a dependence between the execution in-
stance of statement s at timestamp t by thread T and the
execution instance of statement s′ at timestamp t′ by thread
T ′. The dependence can be one of four types: con-
trol, Read-After-Write, Write-After-Write, or Write-After-
Read. For convenience, we use the abbreviations CTRL-
Dep, RAW-Dep, WAW-Dep, and WAR-Dep to respectively
denote sets of these four kinds of exercised dependences.
Then, a DDG for a multithreaded program execution is de-
fined as follows.



The DDG of a program’s execution is a directed graph
(N, E) where N is the set of nodes in the graph and E is
the set of edges where,
N = {s〈t, T 〉|s(s ∈ S) executed at time t by thread T }

E = {e|e = (s〈t1, T1〉 → s′〈t2, T2〉)
∈ {CTRL-Dep ∪ RAW-Dep ∪ WAW-Dep ∪ WAR-Dep}} .
From this definition, we can see that each dependence

edge falls into one of the four different types of depen-
dences. However, note that we only consider WAW and
WAR edges that are inter-thread edges; hence, T1 6= T2 if a
dependence edge e is in WAW or WAR set.

Function Slice Orig(DDG(N, E), s〈t, T 〉)
1: NS(s〈t, T 〉) = {s};
2: ES(s〈t, T 〉) = {};
3: for all s′ such that there exists an edge s′〈t′, T ′〉

→ s〈t, T 〉 ∈ CTRL-Dep ∪ RAW-Dep do
4: (NS(s′〈t′, T ′〉), ES(s′〈t′, T ′〉)) =

Slice Orig(DDG(N, E), s′〈t′, T ′〉);
5: NS(s〈t, T 〉) = NS(s〈t, T 〉) ∪ NS(s′〈t′, T ′〉);
6: e = s′〈t′, T ′〉 → s〈t, T 〉;
7: ES(s〈t, T 〉) =

ES(s〈t, T 〉) ∪ {e} ∪ ES(s′〈t′, T ′〉);
8: end for
9: return (NS(s〈t, T 〉), ES(s〈t, T 〉));

Function Slice Race(DDG(N, E), s〈t, T 〉 )
1: NS(s〈t, T 〉) = {};
2: ES(s〈t, T 〉) = {};
3: for all v in the node set of SLICEorig(s〈t, T 〉) that

has RAW edges do
4: for all u such that there exists an edge

u〈tu, Tu〉 → v〈tv , Tv〉 ∈ WAW-Dep do
5: NS(s〈t, T 〉) = NS(s〈t, T 〉) ∪ {u};
6: erace = u〈tu, Tu〉 → v〈tv , Tv〉;
7: ES(s〈t, T 〉) = ES(s〈t, T 〉) ∪ {erace};
8: end for
9: for all w such that there exists an edge

v〈tv, Tv〉 → w〈tw, Tw〉 ∈ WAR-Dep do
10: NS(s〈t, T 〉) = NS(s〈t, T 〉) ∪ {w};
11: erace = v〈tv , Tv〉 → w〈tw , Tw〉;
12: ES(s〈t, T 〉) = ES(s〈t, T 〉) ∪ {erace};
13: end for
14: end for
15: return (NS(s〈t, T 〉), ES(s〈t, T 〉));

SLICEorig = Slice Orig(DDG(N, E), s〈t, T 〉)
SLICErace = Slice Race(DDG(N, E), s〈t, T 〉)
SLICE(s〈t, T 〉) = SLICEorig ∪ SLICErace

Figure 2. Dynamic slice computation.

Figure 3. A DDG example.

Given DDG (N, E), the backward dynamic slice
of a statement s executed at time t by thread T , de-
noted as SLICE(s〈t, T 〉), is a subgraph of DDG,
{NS(s〈t, T 〉), ES(s〈t, T 〉)}. It is a union of two parts.
The first part is denoted by SLICEORIG(s〈t, T 〉). Here,
the nodes represent statements that are directly or indirectly
linked to the statement instance s〈t, T 〉 through RAW or
control dependences edges. The edges represent the tra-
versed dependences. Statement s itself is also one of the
nodes. SLICEORIG(s〈t, T 〉) can be computed by the re-
cursive function Slice Orig() shown in Figure 2. The sec-
ond part is denoted by SLICErace(s〈t, T 〉). Consider ev-
ery node n in SLICEORIG(s〈t, T 〉) that is involved with
one or more RAW dependences edges. Then the nodes
in SLICErace(s〈t, T 〉) represent those statements directly
linked to n via a WAW or WAR dependence edge. The
edges in SLICErace(s〈t, T 〉) represent these WAW and
WAR dependences. Function Slice Race() in Figure 2
shows how to compute SLICErace(s〈t, T 〉). In this func-
tion, line 4-8 search for the WAW dependences and line 9-
13 for WAR dependences in the DDG. Note that for every
node v, there can be multiple WAW and WAR dependences.

Figure 3 shows a simple DDG example where 11 state-
ment instances are executed by 4 threads. Now let us as-
sume that node 11 is faulty and we need to compute its slice.
As discussed above, we first compute SLICEorig(11).
Following the algorithm, we can finally get its node set
{2,4,8,10,11} and the edge set which contains the edges
among these nodes. SLICErace(11) can also be easily
computed by traversing the nodes in SLICEorig(11). this
produces the node set {5,6,9} and the edge set {5 → 8, 6 →
8, 8 → 9}. The final slice of node 11 can be obtained by
taking the union of SLICEorig(11) and SLICErace(11).
Since the WAW and WAR dependences are incorporated,



it can be used to understand data race errors in addition to
other types of errors that can be found using traditional dy-
namic slices.

From this example, it is clear that the closure is taken
over all nodes that had RAW or control edges, but not over
nodes that had WAW and WAR edges. This is because
the value at the fault point could have been affected by
only statements along RAW and control dependent chains.
WAW and WAR edges point at places where races could
have occurred but the value at the point where the fault
is observed could not have been computed directly or
indirectly by statement execution instances along WAW
and WAR chains.

2.2. Case Studies

We now use some examples to illustrate how a data race
error is found using multithreaded slicing.

Mysql-I. mysql [4] is a multithreaded application
which is one of the world’s most popular open source
databases. It is known for its consistent fast performance,
ease of use, and high reliability. It is used in more than 10
million installations and runs on more than 20 platforms.

The program mysql ver. 4.0.12 has an atomicity vio-
lation bug [1] which is as follows. A thread that tries to
close and open a new log file atomically in order to flush
the previous log gets interrupted just after closing the old
log by another thread that does an insert operation into a
database. The second thread, hence, does not find any open
log files and does not record the insert operation. These logs
are used to restore databases and incorrect logs can result in
inconsistency.

Figure 4. Data race error in mysql - I.

Figure 4 shows the code executed by the two threads
that lead to the fault. Thread X closes the binlog (log
that stores all database operations) at line 2 but before it
can reopen it in lines 3 and 4, Thread Y interrupts and
performs an insert operation. It tries to log the operation
and checks for an open log at line 5. But, since it does not
find any open log it executes the else part of the branch

and the insert operation does not get logged. Now, once
the dynamic slice is constructed and traversed from the
fault point, which is line 7, the last instance of line 5 is
in the slice due to the control dependence. Then, going
further, it is found that the condition at line 5 obtains its
value from line 1 by the RAW dependence. Notice that
this value is wrong as it obtains a value of LOG CLOSED.
Further, the WAR dependence between lines 5 and 4
indicate the possibility of a race. Further inspection shows
that this is indeed the root cause as Thread Y raced past
Thread X at this point as the operations in Thread X were
not locked. Less than 5 static program statements had
to be inspected to find the root cause of the error in this case.

Mysql-II. According to the bug report [2], mysql ver.
3.23.56 has an atomicity violation error which is as follows.
For some table ‘t’ in the database, when one thread does a
row delete from it and another thread does an insert into it
in quick succession, though the operations take place in the
order they are called, they are logged in the mysql binlog
as done in the reverse order. The mysql binlog does not
reflect the true sequence of operations on the same table
and hence it is inconsistent with the state of the table as
shown.
—– Log File —–
SET TIMESTAMP=1151980120;
insert into b values (1);
SET TIMESTAMP=1151980107;
delete from b;
—– End of Log File —–
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Figure 5. Data race error in mysql-II.

Notice that although the delete operation is done first
it gets logged after the insert operation. The reason is
that line 109 in Figure 5 which performs the write to the
binlog is not inside the critical section. So, the thread
corresponding to the insert operation gets scheduled before
this point and the write to the binlog happens earlier at
line 266. Now, once the dynamic slice is constructed
and inspected from the fault point at line 109, the WAW



dependence immediately reveals the race. Notice that this
WAW dependence is through a shared file and not shared
memory. Again, here less than 5 static statements had to be
inspected to identify the root cause.

Apache-I. Apache is an open-source multithreaded pro-
gram that provides HTTP services on modern operation sys-
tems including Unix and Windows. Due to its security, ef-
ficiency and extensibility, it has become one of the most
popular HTTP servers. But in Apache ver.2.0.48, data races
exist in the function ap buffered log writer which is imple-
mented to log every accesses to the server. In particular, up-
dating the log buffer in this function is not protected by the
lock. Consequently, the server log will be corrupted if two
threads execute this function in an interleaved fashion [14].

Figure 6. Data race error in apache.

Figure 6 shows a possible execution order. As we
can see, thread X first filled the buffer from the position
buf→outbuf[buf→outcnt]. Before it updated the size
of buffer (line 1362), thread Y read the old value of
buf→outcnt, and therefore updated the same locations
that were modified by thread X. Clearly, there is a race
between line 1362 executed by X and line 1358 by Y. When
examining the slice of some fault point in Y where the log
corruption is observed, we can discover this race easily
as these two statements form a WAR dependence in this
execution. Also, line 13 itself is not an atomic operation.
In this execution, the race between its two instances, one in
X and one in Y, can also be revealed because of the WAW
dependence.

A CLR Test Case. Common Language Runtime (CLR)
is a Microsoft implementation of the Common Language
Infrastructure (CLI) standard. In its regression test suite, a
data race exists in a test case used to test if an attribute A or

B is true for an object [27].

Figure 7. A data race error in a CLR test case.

As shown in Figure 7 (a), the information about whether
or not two attributes are true is represented in the one-byte
variable flag. This one byte consists of one pair of bits,
value and valid, for each attribute. Function IsA() and
IsB() will actually check these two attributes and update
the associated pair respectively. Although they access dif-
ferent bits within the byte, the operations are not atomic.
Figure 7 (b) shows a possible execution of two threads. As
we can see, line 3 which defined the variable flags is ex-
ecuted by thread X after line 7 where the variable flags is
read by thread Y, and before line 8 where this variable is
redefined by thread Y. Since there is not any lock protection
for flags, the WAR and WAW dependences actually form
two races. Hence, the return value of thread X in this ex-
ample will be incorrect. To get the root cause of this error,
we only need to inspect no more than four static statements
which are in the slice of the statement at line 5.

3. Efficient DDG Construction

As discussed in previous section, to use the dynamic
slice for locating race errors in multithreaded programs, we
need to trace the program execution to build DDG. The
cost of constructing the DDG including Control, RAW,
WAR, and WAW dependences can be very high. In this
section we present techniques to greatly reduce this cost.
First we present optimizations that allow us to capture only



a subset of WAW and WAR dependences without compro-
mising data race detection. Second we show how a highly
efficient technique for capturing RAW dependences that we
presented in [24] can be extended to also capture WAW and
WAR dependences. Finally we present experimental data
that evaluates these techniques.

3.1. Transitivity Optimization

This section describes how to apply a transitive optimiza-
tion that is similar to Netzer’s [18] optimization for replay
of shared-memory parallel programs. To capture a subset
of WAW and WAR dependences (also called relevant WAW
and WAR dependences) without losing the information for
analyzing data races . The key observation is that to find
a race, it is enough to capture the WAW and WAR depen-
dences only between two consecutive shared memory ac-
cesses.
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Figure 8. Relevant WAWs to be captured.

Figure 8 shows this using an example. Here, on the left
two threads T1 and T2 are shown. Now, let there be a WAW
dependence between D1 and D3 and also between D2 and
D3. However, only the dependence between D2 and D3,
which are consecutive accesses, needs to be captured. Be-
cause if the WAW between D1 and D3 was actually incor-
rect during the execution due to a race then, obviously, the
WAW between D2 and D3 becomes incorrect too. In Fig-
ure 8, on the right a similar scenario is shown with 3 threads.
Here, only the WAW dependences between D4 and D5, and
D5 and D6 are captured. If the WAW dependence between
D4 and D6 turned out to be a race then at least one of the
two captured dependences is also a race error. It is worth
noting that in this case, the WAW dependence between D4

and D6 needs to be restored in the DDG when we compute
the slice of a statement instance whose RAW chain con-
tains D6. Because the data race error may actually happen
between D4 and D6, and hence, D4 needs to be included in
the slice.

The argument for WAR is similar, i.e., if a write access
W1 is WAR dependent on a read access R1 then this depen-
dence is captured only if the write access is the immediate
next write after the read access, i.e., W1 is the first write
access following the read.

3.2. Happens-before Relationship

Even with Nezter optimization, potentially, the number
of WAW and WAR dependences can still be very large in a
multithreaded program. However, not all these dependences
correspond to data races. In order to restrict the dependence
set to those that can be potential races, the happens-before
algorithm from [13] is used. Happens-Before relationship is
designed on the assumption that if shared-memory accesses
are guarded appropriately using synchronizations then these
cannot lead to data races. The happens-before relation pro-
vides a partial temporal order of the memory accesses dy-
namically based on thread synchronizations and order of ex-
ecution. Now, two memory accesses from different threads
that form a WAW or WAR dependence is considered for
capture only if a temporal ordering, a happens-before rela-
tion, cannot be found between them. However, if there is
a temporal ordering based on the happens-before relation
then this dependence is not captured as this dependence is
not considered as a data race.

The implementation of the happens-before algorithm is
done according to the procedure described in the paper by
Narayanasamy et al. [16]. A sequencer (Sk), which is noth-
ing but a global timestamp, is associated at that point of a
thread’s execution where a synchronization operation is ex-
ecuted by the thread. All the different sequencers have a
strict time ordering. Any memory access M of any thread
falls between two sequencers SM and S′

M . For instance,
in Figure 9 the write to memory location 0xAF falls be-
tween the interval formed by sequencers S1 and S2. Now
two memory accesses i and j belonging to different threads
that resulted in a WAW or a WAR dependence is not con-
sidered as a race if their sequencer intervals do not overlap,
i.e., S′

i < Sj or S′

j < Si. Otherwise, this dependence is a
race and is captured.

Figure 9 illustrates this where two threads are shown
to be executing with sequencers associated at points where
the threads executed synchronization operations. Now, the
WAW dependence between D1 and D2 is not captured be-
cause D1 strictly happens-before D2 according to the se-
quencer intervals encompassing them; this dependence is
not considered as a race. However, in the case of D2 and
D3, where there is a WAW dependence, this is viewed as a
race because the sequencer intervals which overlap do not
reveal any happens-before relationship between D3 and D2.
Hence, this dependence is considered as a potential race and
must be captured.
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Figure 9. Sequencers in two executing
threads to illustrate happens-before relation.

3.3. Capturing Dependences

We recently presented an execution reduction technique
to efficiently collect the relevant subset of dynamic depen-
dences in multithreaded programs [24]. The key idea is
to trace the part of the whole execution that is relevant to
the fault. In this framework, the original execution is first
logged by a logging/replay tool. Due to the scheduling, the
logged execution can be viewed as a sequence of execution
intervals of different threads. When a fault is observed, the
execution is replayed and traced to find the dependences
among the threads and their execution intervals. The trac-
ing mechanism is optimized to track shared memory depen-
dences, and is therefore light-weight. The dependence in-
formation is preserved in thread dependence graph (TDG).
Based on this dependence graph a small set of execution in-
tervals from subset of threads that are relevant to the fault
are identified and replayed again with tracing turned on so
that the DDG can be constructed.

This technique is very effective in reducing the overhead
of DDG construction. However, this work only captured
RAW and control dependences when building the TDG.
Next we describe how to extend this framework to capture
WAW and WAR dependences. The key idea is to convert
the capturing of WAW and WAR dependences into equiva-
lent RAW dependences. As shown in Figure 10, every static
write instruction in the program is instrumented with a read
instruction to the same address immediately before it. Sim-
ilarly, every static read instruction in the program is instru-
mented with a write to the same address, writing the same
value as is read, just after it. Now, this does not affect the
correctness of the program. In Figure 10, on the left the
write at D2 is preceded by the instrumented read, I3. Now,
the WAW dependence between D1 and D2 is inferred by
the RAW dependence between I3 and D1. There is a RAW
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Figure 10. Converting WAW and WAR into
RAW dependences.

dependence between I3 and D1 because D1 and D2 have to
be consecutive memory accesses according to the previous
section. Hence, the read at I3 will get its value from D1.
On the right, I4 and I5 are the instrumented instructions for
the read and write at D3 and D6 respectively. The WAR
dependence between D3 and D6 is inferred by the RAW
dependence between I4 and I5. The instrumented instruc-
tions are clearly marked in order to differentiate between the
original RAW dependences and the synthetic RAW depen-
dences. Notice that the ability to do this conversion is pos-
sible because all WAW and WAR dependences that need to
be captured are between two memory accesses that are con-
secutive. Also, it should be noted that this instrumentation
needs to be done only for those reads and writes that can
potentially access shared memory. Once this conversion is
done, the ER system can be used to capture the RAW de-
pendences, both original and induced. The WAW and WAR
dependences can later be recovered from the RAW depen-
dences by looking at RAW dependences between instruc-
tions which involved an instrumented load or store or both.

3.4. Experimental Evaluation

System Implementation. Our system has been imple-
mented on top of the Execution Reduction (ER) system [24]
which uses checkpointing and logging to reduce the exe-
cution foot-print of the faulty execution by eliminating the
portion of the execution that is not relevant to the fault. The
ER system uses jockey [22] to perform checkpointing and
logging for replay. During execution, even before the appli-
cation can execute, jockey takes control and scans the appli-
cation binary for system call instructions. It then redirects
these calls to a jockey handler and lets the application ex-
ecute. During system calls, jockey logs events, scheduling
decisions, creates checkpoints, etc. Scheduling of the user-
level threads can be controlled by jockey because it uses its



own thread libraries and any current thread is descheduled
only at a system call boundary. Checkpointing is achieved
by retrieving the layout of the application’s virtual space
and dumping all virtual memory segments that belong to
the application. The output of the ER system is the reduced
execution which exists in the form of a jockey event log.
The reduced execution can then be replayed using jockey
by presenting the event log and the application binary and
will result in the fault. Notice that execution reduction al-
ready reduces the size of the dynamic slice to be inspected
since the execution foot-print has been reduced.

Next, to capture the various dependences, the ER sys-
tem performs dynamic instrumentation. Note that although
the ER system only captures the RAW data dependences
along with the control dependences, this is enough since we
convert all WAW and WAR dependences into RAW depen-
dences, as mentioned in Section 3.3. To perform dynamic
instrumentation, the valgrind [17] system is used which can
handle x86 binaries. The reduced execution is replayed with
jockey but within the valgrind system. The valgrind system
calls an instrumentation function just before a basic block is
to be executed for the first time. The instrumentation trans-
forms the basic block and rewrites the code cache with the
instrumented basic block so that future calls to execute this
basic block does not have to go through the instrumentation
process. The code cache of a basic block can be invalidated
which will cause the instrumentation function to be called
when this basic block executes again. Here, we could either
modify or turn off the instrumentation. Hence, the instru-
mented code can be dynamically manipulated. Now, the
various dependences can be collected by instrumenting the
loads and stores in every basic block accordingly and re-
playing the execution.

Experimental Setup. The multithreaded benchmarks we
used for our experiments are shown in Table 1. For all these
benchmarks, we studied the effectiveness of our optimiza-
tions on the dynamic slices of their executions. The pro-
grams we considered include the ones with bugs that were
discussed in the case studies presented earlier. In addi-
tion, we also consider parallel programs from the SPLASH-
2 suite [25] – these programs have no faults; thus, they are
used only in the evaluation of the effectiveness of our opti-
mizations.

For the programs with bugs we created the following ex-
ecution scenario for evaluation. First, to illustrate the effec-
tiveness of execution reduction phase (ER) [24] in reducing
the execution footprint of long running programs, we took
the buggy program and created a reasonably long running
execution at the end of which the bug triggers the failure.
For example, in mysql, we create a number of clients and is-
sue queries to the different databases and tables we created.
Some of the query operations we have used were among the

Table 1. Benchmarks and the bugs used in
the experiments.

Program Description LOC Description
of bugs used

mysqld Database 508 K a) Data race bug (mysql-1),
(ver. 4.0.12) reported in [1]

b) Data race bug (mysql-2),
(ver. 3.23.56) reported in [2]

c) Data race bug (mysql-3),
(ver. 4.0.16) reported in [3]

apache (ver. 2.0.48) 191 K Data race bug (apache-1)
reported in [14]

CLR A test case 896 Data race bug (CLR-TestCase)
testcase for CLR reported in [27]
splash-2 parallel on average NONE
suite applications [25] 6 K

common ones like select, join, insert, delete, order by, etc.
At the end we perform the query operations that causes the
bug to occur. Then, we studied the effectiveness of our op-
timizations in reducing the dynamic slices of the reduced
executions. The executions create between 5 and 10 threads
and execute for a couple of seconds before the fault is trig-
gered.

For SPLASH-2 [25] programs, we could not find any
reported harmful data races. Hence, we did not conduct
experiments for execution reduction on these programs
but we could study the effectiveness of our proposed opti-
mizations on reducing the dynamic slices by creating small
successful program runs. The various SPLASH-2 pro-
gram runs created 4 threads and executed for a few seconds.

Now, we present the results of the various experiments
conducted to evaluate the efficiency of the dynamic slicing
described in this section.

ER Phase. Table 2 shows the number of threads, thread
execution intervals (TEI) and the number of instructions in
the original and reduced executions of the buggy programs.
Execution reduction [24] was able to reduce the execution
foot print (instruction count) to between 15 % and 85 %.
Notice that this would mean that the size of the dynamic
slices of the faulty execution is also reduced.

Post-ER phase. After ER has reduced the execution foot
print by elimination of irrelevant portions of the executions,
the size of the dynamic slices of the reduced execution were
further reduced by applying the various optimizations pro-
posed in the paper. Table 3 shows the number of inter-
thread dependences before and after the optimizations. The
number under the column Before gives the number of de-
pendences before any optimization is applied. The num-
ber under the column Transitivity is the number of depen-
dences after the transitivity optimization [18] is applied and



Table 2. Effectiveness of ER and the trace size.

Programs ER Phase Data dependences after ER
Orig. Numbers Numbers after ER RAW Opt. WAW Opt. WAR Total

Thread TEI Inst. Thread TEI Inst. Intra- Inter- Inter- Inter-
Mysql-I 8 62 89.2M 5 26 23.1M 1.4M 8998 781 448 1.4M
Mysql-II 10 58 7.8M 4 14 3.5M 1.3M 7832 472 236 1.3M
Mysql-III 8 78 86.3M 5 32 13.9M 4.7M 35209 379 131 4.7M
Apache-I 5 96 130.2M 3 30 20.5M 11.1M 15572 207 34 11.1M
CLR-TestCase 6 14 2.4M 3 6 1.2M 81664 452 47 3 82166

column Final shows the final number of dependences af-
ter the happens-before optimization is also applied. The
data shows that the optimizations can reduce the number
of dependences that have to be captured by up to 4 orders of
magnitude. Table 2 also shows the itemized count of RAW,
WAR and WAW dependences of the reduced executions of
the buggy programs after applying the optimizations. It also
shows the number of intra-thread RAW dependences which
have to be captured in the dynamic slice.

Table 3. Capturing inter-thread dependences
with the transitivity and happens-before algo-
rithm (M - Million, B - Billion).

Program Instrs. Inter-Thread Dependences
Before Transitivity After H-B

(Final)
Fmm 92 M 86 M 10290 4217
Barnes 4.3 B 81.3 M 91185 84825
Water-ns 1.3 B 2 M 356 150
Water-sp 1.1 B 1.6 M 244 156
Radiosity 907 M 2.1 B 167341 153379
Mysql-I 23.1M 5.1M 13828 10227
Mysql-II 3.5M 1.5M 15226 8752
Mysql-III 13.9M 4.7M 50399 35719
Apache-I 20.5M 1.7M 16598 15813
CLR-testcase 1.2M 20772 634 502

Table 4. Time overhead.

Program Baseline Overhead of Tracing
(Valgrind) plain optimized

Mysql-I 0.27 2.08 1.75
Mysql-II 0.22 2.17 1.66
Mysql-III 0.68 9.88 7.90
Apache-I 0.73 5.58 4.18
CLR-TestCase 0.10 1.34 0.93

Tracing Overhead. Table 4 shows the overhead of trac-
ing the dependences for constructing the slice. Since val-
grind was used to trace the programs, we set the baseline
to include the overhead imposed by valgrind. Hence, base-
line shows the running time of the reduced executions of
the buggy programs under valgrind but with no tracing in-
volved. The data under column labeled plain and optimized
shows the overhead of tracing the dependences with and
without the optimizations respectively. The data shows that
although applying the optimizations involves a lot of pro-
cessing, the tracing time decreases as the number of de-
pendences to be collected also significantly decreases. The
trade-off between processing and I/O is favorable to opti-
mizations.

4. Conclusion

In this paper, we have shown that dynamic slices of mul-
tithreaded programs must also contain inter-thread WAW
and WAR dependences in order to effectively capture bugs
due to data races. We have shown how to compute and tra-
verse the slice in the presence of these additional depen-
dences and also proposed optimizations that can reduce the
number of dependences to be captured but still retain the
capability to detect all races. Experiments have shown that
the proposed techniques which aid the execution reduction
framework [24] reduce the slices of the faulty executions by
up to 4 orders of magnitude.
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