
 1

Reuse or Rewrite: Combining Textual, Static, and Dynamic
Analyses to Assess the Cost of Keeping a System Up-to-date

 Giuliano Antoniol Jane Huffman Hayes Yann-Gaël Guéhéneuc Massimiliano di Penta
Dépt. de Génie Informatique Dept. of Computer Sci. Dept. of Computer Sci. Dept. Eng.
École Polytech. de Montréal Univ. of Kentucky Université de Montréal University of Sannio
 antoniol@ieee.org hayes@cs.uky.edu guehene@iro.umontreal.ca dipenta@unisannio.it

Abstract

Undocumented software systems are a common
challenge for developers performing maintenance
and/or reuse. The challenge is two-fold: (1) when no
comments or documentation exist, it is difficult for
developers to understand how a system works; (2) when
no requirements exist, it is difficult to know what the
system actually does. We present a method, named
ReORe (Reuse or Rewrite) that assists developers in
recovering requirements for a competitor system and in
deciding if they should reuse parts of their existing
system or rewrite it from scratch. Our method requires
source code and executable for the system and assumes
that requirements are preliminarily recovered. We
apply ReORe to Lynx, a Web browser written in C. We
provide evidence of ReORe accuracy: 56% for
validation based on textual and static analysis and 94%
for the final validation using dynamic analysis.

Keywords: Maintenance, reuse, requirements,
documentation, static analysis, dynamic analysis, feature
identification, data mining.

1. Introduction and Problem Statement

Maintenance is the longest and most costly phase of
the software lifecycle [13][16]. The cost of maintenance
is often measured in the number of expended person
hours. It is widely accepted that most of the effort
invested in maintenance goes for understanding the
source code, generally written by developers other than
the maintainers. Often, software is poorly documented:
it lacks in-line comments, design, and requirements. As
a result, it is not so surprising that 47% of software
maintenance effort is devoted to understanding the
software [12][16].

Although much research has been carried out to
reduce maintenance costs, to the best of our knowledge,
there has been little work on the application of these
methods and techniques to a priori maintenance, i.e., to
help managers make the decision to reuse parts of the
old system or to completely rewrite a new system. Our
work addresses this application by introducing a

method, ReORe (Reuse or Rewrite, pronounced Ree-
Oh-Ree). Given a set of requirements (possibly a
generic requirement document generated using semi-
automated techniques [11]), ReORe uses Information
Retrieval (IR) techniques in combination with dynamic
feature identification to assess code that can be reused
to bring a system up-to-date with competitor systems.

A typical scenario in which to apply our method
follows. A company owns a proprietary system, Sprop,
that is becoming obsolete because of its technology and
of market shifts: competing companies have introduced
new technologies and functionalities that Sprop lacks.
The management of the company faces the dilemma of
either maintaining Sprop to bring it up-to-date or
rewriting a new system from scratch (getting out of the
market is not an option). Data is required to support an
informed decision: the obsolescence of Sprop and the
amount of reusable code must be quantified. This data
must include the requirements of the competing
systems, Scptitor, (listing their technologies and features)
and the entities of the source code of Sprop that could be
reused to implement these requirements (including any
structures, classes, functions, methods, and so on).
Underpinning the ReORe method is the idea that the
management of the company will assign tasks to
developers, experts of the application, and software
architects to optimize effort and minimize the usage of
the most valuable resources.
 In this paper, we present our method and illustrate its
application in a real-world situation: We apply ReORe
to the Lynx text-oriented open-source Web browser
(i.e., Sprop) to assess the feasibility of evolving this
browser to fulfill the requirements of state-of-the-
practice browsers such as Mozilla Firefox and Microsoft
Explorer (i.e., Scptitor). In the case study, the first three
authors played the role of developers while the fourth
author acted in the role as the most valuable resource of
the application: the architect.
 The paper is organized as follows: Section 2
discusses the recovery of requirements. Section 3
presents ReORe. Section 4 details the design of the
case study. Section 5 describes the application of the
approach to Lynx while Section 6 discusses the results
and threats to validity. Section 7 presents related work.
Finally, Section 8 concludes and outlines future work.

 2

Figure 1. Synopsis of ReORe.

2. Recovering Requirements

The first part of our method is concerned with obtaining
the requirements of the competing systems, Scptitor. Most
systems do not have comprehensive requirements.
Therefore, the developers must collect requirements
themselves, because it is unlikely that the competitors
will provide them freely. In this context, the developers
perform absolutely legal actions by purchasing and
exercising the functionalities of Scptitor [15].
 Obtaining requirements is a preliminary activity to
our method but out of the scope of this paper.
Therefore, we only succinctly present the essential
details of another method, PREREQIR [11], to obtain
requirements. The PREREQIR method divides into three
steps performed by the developers to:
(1) obtain and vet a list of requirements from diverse
stakeholders using anonymous questionnaire,
(2) structure the requirements by mapping them into a
representation suitable for grouping via pattern-
recognition and similarity-based clustering, and
(3) analyze the clustered requirements to divide them
into a set of essential and a set of optional requirements.
 The outcome of the PREREQIR method is a set of so-
called synthetic sentences that together form the
requirements of a system. The synthetic sentences
represent the cluster of requirements and therefore
subsume the stakeholders’ understanding of the system.

3. The ReORe Method

Once a set of requirements for the competing

systems is available, ReORe can be applied in five
steps, shown in Figure 1. ReORe assumes the
availability of a set of requirements R written in textual
form and of a set of source code entities E from Sprop
that implement the system under study.

Step 1: Textual processing of requirements and code.
The developers process both the requirements R and the
set of entities E in parallel. Any requirement ri or entity
ej is considered as a textual sentence and the developers
apply standard natural-language processing techniques
to extract sets of characterizing tokens, {ri} and {ej},
from {ri} and {ej}. Specifically, stop-word removal,
stemming, and tokenization are applied to obtain the
two sets of tokens {ri} and {ei}.

Step 2: IR-based tracing of requirements to code.
Developers use term frequency–inverse document
frequency [4] to compute the similarity between any ri
and any ej. Developers consider each ej as a document
and ri as a query against the set of documents and obtain
a ranking of each ej for each ri. Developers only keep as
a match those entities ej that have a similarity greater
than zero and, more generally, higher than a given
threshold. We advocate the use of outlier analysis
because developers are interested in the outliers of the
similarity distribution: pairs (ri, ej) with a relatively high

Entities ej

Requirements ri

Stop-word Removal
Stemming

Tokenization
TF-IDF

ej

the browser shall
support to zoom
unzoom page details

1 2

Manual
Evaluation by
Developers

3
ri

hthost name get
host details
hostname

Matches
between

each ri and
a set of ej

Scenarios

Scenario
Execution

4

Trace Data Manual
Evaluation by

Architects

5

Final matches
between each ri
and a set of ej

Validated matches
between each ri
 and a set of ej

Validated matches
between each ri
 and a set of ej

 3

similarity score. The standard outlier threshold
definition1 (see also [18]) may or may not be pertinent
and thus the threshold should be manually verified and
assessed. Consequently, developers consider the entity
ej as relevant to the implementation of the requirement
ri if ej is returned by the query ri with a similarity higher
than some threshold identifying outliers in the similarity
distribution.

Step 3: Selection of relevant traceability matches.
Developers manually evaluate the rankings obtained in
Step 2. For each ri, they retain only the entities ej that
they believe to concretely participate in the
implementation of ri; they label these ej as reusable
entities and link them to the requirement ri. This
evaluation is necessarily manual because only the
developers can assess, using their knowledge of the
system and contextual information, whether an entity ej
really participates in the implementation of requirement
ri.

Step 4: Dynamic analysis. Developers build and
execute scenarios that exercise the requirements for
which a consensus concerning their implementing
entities exist. Two kinds of scenarios must be
developed: (1) scenarios exercising core functionalities
and requirements and (2) scenarios specifically devoted
to some particular requirement. The execution of the
scenarios supports the collection of trace data. Core
scenarios serve to identify the core implementation
entities, likely to constitute the infrastructure of the
system. More specific scenarios collect data that can
then be studied by the architect in the fifth step, to again
rank the entities and confirm/invalidate the matches
from the previous steps.

Step 5: Final validation. Combining both textual and
static analysis (entity extraction, stop-word removal,
stemming, and tokenization), dynamic analysis (trace
data), and requirements, developers are able to identify
and to validate the entities ej implementing a
requirement ri. This last step should be performed by
the architect of the system to benefit from her expertise
without overloading her with work.

A major advantage of ReORe is its ability to greatly
reduce the possibility of introducing, during any step,
subjective judgments that could influence the final
results. The multi-step process uses the developers in
the early steps, whose results are then checked by the
architects in the final step. Within the early steps, the
developers separately develop lists of requirements and
possible matching entities. A different developer is
responsible for “breaking” any ties in their results. The
architects do not have information about the method
applied by the developers to obtain the requirements and

1 http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

the list of entities that may implement these
requirements. Also, the architects are not aware that the
developers work from ranked lists that are based solely
on textual and static information.

4. Case Study Definition and Context

The goal of the case study reported in the following
sections is to apply ReORe to make an informed
decision on maintaining or rewriting an outdated
system. The purpose of the study is to assess the
applicability of ReORe. The quality focus of the study is
ensuring high traceability between requirements and the
existing source code, to help managers make their
decision. The perspective of the study is that of a
company developing a Web browser that must decide to
maintain or rewrite a new browser.

For the sake of reproducibility, we assume the
existence of a company developing the Lynx Web
browser. Lynx2 is known as “the text Web browser”,
i.e., it is a free, open-source, text-only Web browser and
Gopher client for use on cursor-addressable, character
cell terminals. Its development began in 1992 and it is
now available on several platforms, including Linux,
UNIX, and Windows. It has been used widely both in
academia and in industry and can reasonably be
expected to be found in some companies.

We mimic the process that Lynx developers must
follow to assess the feasibility and the cost of replacing
portions of Lynx code to port it/enhance it to modern
technologies in an attempt to create a competitor to
more recent browsers such as Mozilla Firefox, Opera, or
Microsoft Internet Explorer.

As in any real-world scenario, we assume that the
complete set of requirements for competing Web
browsers is unavailable or incomplete, and that the only
available documents (possibly also incomplete) are user
manuals. Thus, developers would first apply a method
to recover the requirements of competing systems.
They could use our own PREREQIR method, summarized
in Section 2. Then, they would apply ReORe to match
the requirements with entities from the source code of
their Web browser and to check the matches using code
inspection and dynamic trace analysis. The Lynx Web
browser is implemented in C. Thus, without any loss of
generality, in the following we choose to focus on
functions as the main entities implementing the
requirements.

The developers do not need to compare the
requirements from the competing Web browsers with
those of Lynx because such a comparison would only
help to quantify the obsolescence of their own browser.
This information would be of scarce assistance because
their company already knows that their system is

2 http://lynx.isc.org/

 4

obsolete and that it must evolve or fade out.
Furthermore, such a mapping would not help to
understand how much code is reusable.

As mentioned above, Lynx is largely written in C,
mostly following the ANSI standard; macros are used to
parameterize function definitions. The case study
utilizes Lynx version 2.8.5 compiled and executed
under a Linux RedHat server version 5. The Lynx 2.8.5
code-base is organized into three main directories (lib,
src, and www); it contains about 2,074 functions
contained in 91 source code files for a total of 147
KLOC (counted using the GNU word counting utility
wc). Configuration definition, function forward
declarations, macros, and global data declarations are
organized into 156 header files for a total of 27 KLOC.

The default configuration has been used to produce
an executable version of Lynx (i.e., no special switch
was used). Lynx behavior is largely modifiable via a
configuration file and thus configuration details such as
external mailer, external editor, or the address of a
printer were later passed on to the executable via the
configuration file.
 For the sake of this case study, the first three authors
played the role of developers while the last author
played the role of architect. The empirical study aims to
address the following research questions:
• RQ1: is ReORe able to effectively reduce the

information processed in the different steps while
ensuring the traceability between requirements and
the existing code?

• RQ2: what is the effort required for the application
of ReORe?

5. Applying ReORe to evolve Lynx

 This section describes each step of ReORe as applied
to the Lynx case study.

Premise: Recovering Requirements. The first step of
our method is concerned with obtaining the
requirements of the competing systems, Scptitor.
Developers chose to apply PREREQIR [11].

For our case study, the first three authors used a
convenience sample of more than 200 of their
colleagues and acquaintances and sent them an
anonymous questionnaire to obtain prioritized lists of
requirements for Web browsers. Among the 200
recipients, 25 sent back the questionnaires, out of which
22 were kept for this study. Any questionnaire that was
not totally completed was omitted.

Consequently, the developers obtained 128 essential
requirements (e.g., “the browser shall support back and
forward actions”) generated in the form of synthetic
sentences; these are essential requirements in that at
least two respondents submitted them. Another set of
181 optional requirements have been identified; these

are singleton requirements: either variants of one of the
128 essential requirements, requirements provided by a
single respondent, or very general requirements (e.g., “it
should be easy to use”). Thus, given that Lynx is made
of about 2,074 functions and that there are, overall, 128
+ 181 = 309 requirements, the set of all possible
matches among requirements and functions is 309 ×
2,074 = 640,866 matches, i.e., if all functions were to
contribute to all requirements. A summary of the
number of requirements, functions and matches—after
each step of the matching—is reported in Table 1.

Table 1: Lynx functions, requirements, and matches

requirements–functions.
Essential Requirements 128
Optional Requirements 181
Total Number of Requirements 309
Number of Functions 2,074
Number of Possible matches 640,866
Matches with similarity > 0 138,896
Matches with similarity > 20% 738
Dynamic Analysis Matches 88
Final Inspection Matches 83

Step 1: Textual processing of requirements and code.
Developers applied the first step of our method: they
used natural-language processing techniques to tokenize
the requirements and the 2,074 functions of the Lynx
Web browser. They obtained the two sets {ri} and {ej}
including, respectively, 309 and 2,074 items. Traditional
filtering (e.g., punctuation removal), camel-case
splitting, stopping, and stemming are applied to the
requirements and functions, {ri} and {ej}, that are then
mapped into a vector space. The dictionary (after
processing) contains 5,192 stems, thus requirements and
functions are represented with 5,192 dimensions.

Step 2: IR-based tracing of requirements to code.
Second, for each tokenized requirement ri, developers
ranked the functions that possibly implement the
requirements. We use a vector space model computed
with TF-IDF and cosine similarity ranking [4]. Pairs (ri,
ej) with ranking of zero are discarded in this step to
reduce the search space from 640,866 to 138,896
candidate matches. Nevertheless, a manual inspection of
the remaining matches is still infeasible. The cosine
similarity distribution is highly skewed toward low
values and the developers, thus, limited themselves to
the matches in the higher fringe of the distribution.
 Mean and median of similarity are 0.023 and 0.012,
respectively. The 25% and 75% percentile values are
0.006 and 0.026. Maximum similarity value is 62% and
inter-quartile range is about 0.021. Standard outlier
definition [18] suggests that anything above a threshold
of 1.5 times the inter-quartile range from the 75%
percentile is to be considered a mild outlier, i.e., about

 5

0.06 (6%) similarity in our case. However, the relative
distance of Lynx code to the new requirements is
substantial and a threshold computed as above requires
a similarity just above 6% for a pair (ri, ej) to be kept for
inspection. The use of such a threshold would retain
about 12,000 matches, still quite a sizeable inspection
task. The inspection of a few matches led the developers
to the suitable compromise of choosing a threshold of
8/9 times the inter-quartile range, which yields a value
of 20% similarity. Consequently, 738 pairs (ri, ej) rank
above this threshold. Although this threshold may still
appear to be a low, it is worth noting that no pair (ri, ej)
has a score above 62% similarity.
 For example, the requirement:

“the system shall allow internet cookies to be
downloaded in the local file system”

is matched to the set of functions:

Functions Ranks
src/LYCookie.c::newCookie
src/LYCookie.c::LYProcessSetCookies
src/LYCookie.c::LYSetCookie
src/LYCookie.c::ARGS1
src/LYDownload.c::LYdownload_options

0.3489
0.3088
0.2942
0.2797
0.2559

where, in the first line, it is reported that a function
newCookie, contained in file LYCookie.c, belonging
to the directory src, is matched to the requirement with
a similarity of 0.3489.

Step 3: Selection of relevant traceability matches.
Based on the chosen similarity threshold, requirements
{ri} are divided into two sets (see Table 2). The first
subset, A, is the set of the 186 requirements (out of the
309) for which at least one match is above the threshold;
this subset is actually the set containing the most likely
pairs (ri, ej).

Table 2: Requirement breakdown - Sets A and B.
Requirements Set A Set B
Essential 88 40
Optional 98 83
Overall 186 123

 The second subset, B, is the subset comprising the
remaining 123 requirements for which no one single
function among the 2,074 achieved at least 20%
similarity. Regardless of the set, each requirement ri is
associated with its ranked list of matching functions.
Table 3 reports the mean and standard deviation of the
ranked lists for the two sets, A and B.

As reported in the literature on traceability, relevant
matches are usually in the top ranked positions
[1][14][10]. Yet, sometimes, even a match that is ranked

very low can still be relevant. As shown in Table 3,
ranked lists in Sets A and B contain more then 400
functions. Inspecting and validating such a high
number of pairs (ri, ej) would simply result in discarding
a very high number of false positives.

Table 3: Summary statistics of ranked lists for Sets

A and B.
 Average

candidate
list length

Candidate
list standard
deviation

Set A (>= 20%) 464 523
Set B (< 20%) 425 478

Therefore, to balance effort and false positives,

developers designed the validation of matches in the
following way. For each {ri} in sets A and B, the top
five most relevant candidate pairs (ri, ej) are retained. In
addition, five other matches are randomly chosen with a
uniform distribution between the remaining matches.
Consequently, even matches ranked very low still have
at least a chance of being manually validated.

Two developers independently evaluated each of the
matches by inspecting function stems manually to assess
whether the function indeed implements the
requirement. Each developer vetted each function as
either “Yes,” “No,” or “Maybe.” A majority consensus
was determined for each requirement after combining
the developers’ votes conservatively: only functions
vetted as “Yes” by both developers are promoted to the
next step, all other combinations are considered to be
incorrect matches and are removed from consideration.

Table 4: Agreement and disagreement between

developers’ votes on the two sets.
Set Ranking

Range
Yes No One

Yes
1-5 128 226 324 A
6-10 2 790 20
1-5 25 407 69 B
6-10 0 570 10

Vetted lists were merged by the third developer who

was not involved in the vetting process. The decision to
only retain functions ranked “Yes” by both developers
for the next step may appear overly conservative.
However, subsequent steps (dynamic analysis and final
validation) could re-introduce removed functions, if
really relevant. Furthermore, static analyses, such as
caller-callee or data dependency relations in the final set
of functions, could be used to recover missed matches;
we plan to implement this recovery in future work.

As reported in Table 4, among the five highest
ranking functions (listed as “1-5”), “Yes” are
predominant, with an average of 14% for the 186 set A
requirements. Table 4 also shows that, for the top five

 6

matches, there is a 35% disagreement (only one of the
developers said “Yes”). Among the five randomly-
selected functions, few are evaluated as “Yes.” For
example, in Set A, only two “Yes” were given for
functions in the random five (listed as “6-10”). As
expected, for subset B, the number of positive
agreements is only 25, i.e., 2%: most matches are
discarded (977 total “No” responses for 1,230 matches).

Step 4: Dynamic analysis. Developers used dynamic
analysis to gather information and further filter
candidate matches. Given each requirement for which
at least one function, i.e., a pair (ri, ej), was vetted
“Yes” by both developers, another developer built a
scenario that attempted to exercise the relevant
functions and performed dynamic analysis. There are 55
scenarios for set A and 13 for set B. Once a scenario
was built and executed with success, trace data were
collected using Valgrind/Callgrind as done in [3][2]3.
 The dynamic analysis was performed in two steps.
The first step aimed at executing three basic scenarios,
to gather functions likely to constitute the core functions
contributing to the implementation of Lynx (e.g.,
functions handling HTTP, SSL, and FTP protocols).
These functions may be relevant to a possible rewriting
of the Web browser.

Table 5 reports the numbers of distinct functions and
their relative scenarios. The numbers are cumulative: for
example, the functions in the line relative to the SSL
scenario are added on top of the basic HTTP scenario.
Overall, in this first step of dynamic analysis, 547
functions were flagged as potentially reusable.

Table 5: Recovered backbone functions via three

basic scenarios.
Scenario Number of

Functions
HTTP 382
SSL 137
FTP 28

 Following this first step, for each of the 55
requirements in set A and 13 in set B, a scenario was
created and dynamic data collected. Scenario creation is
a costly activity. First, a requirement is carefully read;
the Lynx configuration file is then inspected to check if
its parameters have been set up properly (e.g., external
mailer, printer, startup page, mouse activation, etc);
then, Lynx user documentation is inspected to verify if
any other set up is required. Finally, a check is
performed to verify that the operating system
configuration is sound and that other support programs

3 Note that if test cases already exist for some of these
scenarios, this step can be performed with much less effort.
However, the proposed method does not assume the existence
of such test cases.

are running. For example, to exercise a scenario related
to the requirements on FTP or HTTPS, the developer
must ensure that an FTP server or a secure Web server
is available.

Once a proper configuration and environment are
ascertained, a scenario is built in a narrative way.
Continuing with the example of HTTPS, a scenario
could be “the user starts Lynx, passing as a parameter
the file linx.cfg; she types G and enters the address of
the secure Web server https://127.0.0.1; when
prompted, she enters her username and password;
finally, she types Q and exits the Web browser.” Four
hours of work were required to setup the environment,
define, and execute the first scenario. Overall, about 40
hours of manual activity were needed to define and run
68 scenarios (i.e., 55 for set A) and to analyze data and
filter matches.
 Once trace data was collected for a scenario, the
developer verified whether or not the candidate
functions appeared in the trace. If not, it was necessary
to check if the binary code of the missing functions was
linked into the Lynx executable or if it was dead code
and, thus, would never be called. Sometimes, the source
code was inspected to check for the presence of
processor macros preventing compilation, such as
hardware architecture or operating system
dependencies.

Table 6: Retained and discarded matches in the
dynamic trace collection phase.

Set Ranking
Range

Retained Discarded

1-5 77 51 A
6-10 1 1
1-5 10 15 B
6-10 - -

 As reported in Table 6, in this step, for set A, 60% of
the pairs (ri, ej) in the top five positions were promoted
to the final verification step while only one of the two
functions ranked in position 6-10 were retained. It is
worth noting that set B contains 1,230 pairs (ri, ej) and
only ten out of the 25 (See Table 4) were considered
relevant once dynamic analysis was performed.

Step 5: Final validation. Finally, the architect
manually validated the matches of each requirement
with each function using several sources of available
information, ranging from execution traces, source
code, and interactions with the system. Figures reported
in Table 7 show a substantial agreement with those in
Table 6, confirming the matches from previous steps. It
is important to underscore that the author playing the
role of the architect was not involved in prior phases to
avoid any possible bias.

 7

Table 7: Retained and discarded matches in the last
phase.

Set Ranking
Range

Retained Discarded Added

1-5 73 4 12 A
6-10 1 - -
1-5 9 1 1 B
6-10 - - -

Overall 83 13

This step is important to further reduce possible

mismatches. As shown by the data of Table 6, this step
actually helped in adding 13 pairs of requirements-
functions. Interestingly, three of these functions were
not tagged as relevant to three distinct requirements in
the previous steps. These three functions are not
compiled under Linux due to preprocessor flags; they
were discovered by inspecting the code of other relevant
Linux functions. The other 10 were functions that the
dynamic analysis discarded as non-executed.

Table 8: Final requirement break down into Sets A

and B.
Requirement Set A Set B
Essential 23 5
Optional 23 4
Overall 46 9

.
 Overall, the architect spent about 10 hours on this
step. As shown in Table 8, the applied method provides
evidence that 28 requirements out of the 181 essential
requirements and 27 out of the 128 optional
requirements have at least one pair (ri, ej) and, thus,
some form of initial implementation. However, three
out of the five essential requirements of set B (in Table
8) are variants of other requirements that were already
captured in the 23 essential requirements. Two of the
three deal with printing and one with bookmarking. The
remaining two requirements of set B are related to the
possibility of changing font size, font type, and browser
look-and-feel. These are not variants of any of the
requirements in set A.

Overall, developers obtained evidence that only 25
essential requirements have some initial
implementation.

6. Discussion

 In scenarios such as the one presented above, a
ground truth will hardly ever be available. An a-priori
gold set of pairs (ri, ej) with which to compare the
results of ReORe is unavailable due to the lack of
knowledge for legacy systems, imprecision in collecting
requirements, and the focus of the implementation or
evolution strategy on a subset of the most important
customer requirements. Therefore, we cannot quantify

ReORe in terms of information retrieval measures such
as precision and recall because neither “the” set of
correct matches (ri, ej) nor the subset of implemented ri
are known.

One way to assess the accuracy and circumvent the
intrinsic impossibility of computing recall or precision
is to consider ReORe as a waterfall process in which
each step plays the role of the Oracle for previous steps.
Accuracy is thus quantified as the percentage of
matches for which an agreement between any two
subsequent steps was found; this accuracy is
representative of the effort saved.

It is important to note that a function may be related
to different requirements and that some of the 96
functions reported in Table 7 may also be in the set of
core functions executed by the scenarios of Table 5.
Indeed, out of the 96 functions, there are only 52 unique
functions. Interestingly, only one function of the 10 in
set B (see Table 7) was not in the set of functions
collected in set A. This fact seems to suggest that it does
not really pay-off to investigate low ranked functions
and pairs (ri, ej). However, Table 8 may suggest the
usefulness of inspecting pairs (ri, ej) in set B to check
for the presence or absence of some initial
implementation of requirements in the legacy system.
Indeed, out of the five essential requirements discovered
in Set B (see Table 8), three are somehow captured by
other requirements in Set A (i.e., by some of the 23), the
other two are newly discovered essential requirements
not comprised in the 23.

Table 9: Accuracy achieved in the two main phases:

manual ranking versus dynamic analysis and
dynamic analysis versus final inspection.

 Accuracy
 Dynamic

Analysis
Final
Inspection

1-5 60% 95% Set
A 6-10 50% -

1-5 40% 90% Set
B 6-10 - -
Overall 56% 94%

Table 9 reports the accuracy computed as defined

above. For example, dynamic analysis validated 77
matches and discarded 51 of the set A top five positions
(see Table 6). This means that the dynamic analysis only
exercised 77 functions out of the 128 classified relevant
in Table 4. In other words, 60% of functions went on to
the next steps; about 40% of the matches produced in
the first steps are false positives. These false positives
are not inspected by the architect and, thus, also
represent effort saved: the most valuable resource does
not need to inspect these matches. As reported in Table
9, accuracy in the final inspection achieved a higher
value; indeed, the 95% accuracy for set A and top five

 8

matches means that only a few false positives slipped
through the dynamic analysis step.
 It should also be noted that functions activated by the
three basic scenarios and reported in Table 5 may or
may not be matched to any high level requirements.
These functions are likely to participate in some kind of
infrastructure, a set of utilities on top of which
requirements are implemented. It is interesting to note
that, out of the 52 functions recovered, 35 are not
contained in the set of 547 functions. These are
functions specific to some requirements and are not part
of the infrastructure or of the three basic browser pieces
of functionality: access via HTTP, FTP, or SSL to a
remote resource.

• Answer to RQ1: we believe that the answer to

RQ1 is yes because there is an order of magnitude
of difference between the initial search space (in
Table 1) and the number of pairs inspected by the
architect (in Table 7). Moreover, matches have
been discovered and validated with a subset of
essential requirements and the method also enables
the architect to recover missing matches. Further
work beyond the goal of this paper is needed to
quantify false negatives. Evidence collected in the
case study also suggests that ReORe may well pay
off in a smoother evolution process, at least for a
Web browser. Indeed, only about 20% of the
essential requirements of a modern and graphical
browser such as Mozilla Firefox or Microsoft
Internet Explorer are reflected in Lynx source code:
out of 2,074 Lynx functions, only 52 relate to one
or more “modern” requirements. This may well be
the situation of many legacy systems that risk being
confined to a market niche.

• Answer to RQ2: the scenario we have presented is

that of a company facing market pressure to evolve
one of its products due to technology evolution,
competitor market share, or repositioning to a more
profitable niche. We believe that Lynx is
representative of a product that is confined to
particular needs, such as a text-based environment.
Therefore, any company facing a similar evolution
challenge would be willing to invest a few hundred
hours to make an informed decision. Indeed, in the
case of Lynx, it took the developers about 85–90
hours of manual labor to perform requirement
mapping into the existing code base. Clearly, more
effort must be acknowledged for the preliminary
step of requirement gathering, market analysis, and
customer survey. Yet, the authors are not Lynx
experts or Lynx developers, whereas any company
facing the evolution dilemma is likely to possess a
deeper know-how of and expertise with the source
code, thus reducing the effort of the requirement
mapping. With Lynx, the effort required to assess

matches was just a fraction of the effort required to
develop a system of the size of Lynx. However, we
have only one data point and cannot generalize to
other systems or domains without further studies.

Our method is underpinned by the idea that the most

expensive steps, such as scenario building and trace
collection, and the most valuable resources, such as the
architect in the final validation step, should be carefully
planned and managed to minimize resource usage (i.e.,
RQ1). We emphasize that subsequent filtering and
information reduction steps did not prevent the recovery
of missing functions in the last step, and, in fact,
discovered new functions relevant to three
requirements. The application of ReORe took only
about one hundred hours, saving valuable time and
effort and assisting the management in making an
informed decision (i.e., RQ2).

6.1 Threats to Validity

External validity threats concern the generalization
of our findings. We believe that our findings support the
evidence that ReORe can be applied and that modern IR
techniques and tools help reduce the cost of data
collection. The scenario presented is realistic and likely
to be representative of many real-world situations.
However, the size of the systems, the technology gap, or
the difficulty in obtaining requirements may prevent
others from applying our method as-is.
 Construct validity threats concern the relationship
between the theory and the observation. Such threats
can be due to errors introduced by measurement
instruments. Requirement and code indexing and
similarity computation were performed using widely
adopted toolsets. For example, we used the Perl stopper
and stemmer available from the Virginia Polytechnic
Institute and State University. Also, a TDF-IDF
implementation is made available by the open-source
Lucene project. Nevertheless, we cannot exclude the
possibility that another chain of tools may produce
slightly different results or that different developers
would rate functions in different ways. One critical
element is the choice of the thresholds. We
experimented with rank thresholds (e.g., the five most
similar elements plus an additional five randomly
selected pairs (ri, ej)); other developers may apply
different strategies, such as score thresholds (e.g., the
elements with scores in the top 1%) or the gap threshold
algorithm introduced by Zhao [19]. These strategies
would produce different sets of candidate matches that
must be verified and thus, as shown in [7], may impact
accuracy. We plan to better assess the influence of
thresholds in future work. Dynamic analysis depends on
the test cases used to exercise the system. It might be
that some functions were not invoked despite their
relevance. Also, it is possible that some functions were

 9

(conditionally) compiled only under particular
configurations. Nevertheless, the final validation step
limited this threat, by recovering functions discarded by
the dynamic analysis.
 Reliability validity concerns the possibility of
replicating the study and obtaining the same results. The
source code and documentation of Lynx are publicly
available; the set of collected requirements are available
from the authors upon request.
 Internal validity refers to the influence of
independent variables on dependent variables and the
existence of confounding factors. The main threat to the
internal validity of this study is the level of subjectivity
introduced by developers. However, as explained in
Section 2, a multiple-step approach limits this threat
because each step validates/integrates the results of the
previous one. Also, bias was limited by separating each
step so that developers contributing to one step were not
involved in other steps. Also, different techniques
(static analysis, IR, dynamic analysis, and code reading)
were applied. Moreover, the final ranking was made by
an expert who was not aware of the process and tools
used in the previous steps.

7. Related work

 Our method relates to prior work on traceability using
static and dynamic data and on recovering
requirements.

7.1 Traceability using Static Data

 Many advances have been made in the area of
traceability of static data (such as source code,
comments, design documents, user manuals, and so on).
Researchers apply simple keyword searches, rule-based
approaches, and information retrieval techniques to the
traceability of many software artifacts. Gotel and
Finkelstein [9] define the traceability problem.
Antoniol et al. [1] describe the use of information
retrieval techniques to recover traceability between code
and user’s manuals. Marcus and Maletic [14] repeated
Antoniol’s study and also apply latent semantic
indexing. Cleland-Huang et al. introduce event-based
tracing [5] and goal-centric tracing. Spanoudakis et al.
[17] discuss rule-based traceability of UML models and
code. Egyed et al. [8] discuss value-based traceability.
Hayes et al. [10] discuss the use of feedback as well as
introduce measures for evaluating traceability methods.

7.2 Traceability using Dynamic Data

 A hybrid approach to feature identification and
comparison was presented by Antoniol and Guéhéneuc
in [3]. The approach applies parsing, reverse
engineering, processor emulation, and dynamic analysis

to obtain data on the functions executed when
exercising a feature. The data is analyzed using an
epidemiological metaphor to identify functions most
likely to be part of the implementation of the feature.
This approach can be used to understand large, multi-
threaded object-oriented systems. It produces a ranked
list of functions and classes participating in a feature. It
supports the extraction and examination of any micro-
architecture as well as supports the comparison of
micro-architecture evolutions.

7.3 Recovering Generic Requirements for an
Application

 The authors previously discuss the mining of domain-
specific mental models to obtain pre-requirements
information (PRI) in [11]. Such PRI (or generic
requirements) can be used to support traceability, can be
applied as checklists when building applications within
the domain, can be used to support reuse, etc. PREREQIR
uses partition around medoids and agglomerative
clustering to obtain, structure, analyze, and label textual
PRI from a group of diverse stakeholders. In a study of
the Web browser domain, with information obtained
from 22 stakeholders, we found that about 55% of the
PRI were common to two or more stakeholders and
42% were outliers. We automatically labeled the
common (essential) and outlier (optional) PRI (82%
correctly labeled) to build a generic requirement
document for Web browsers. The current work assumes
the existence of such a requirement document.

8. Conclusions and future work

This paper proposed ReORe, a method to trace

requirements into source code using static, textual,
dynamic, and requirements analyses, to assess whether
to rewrite or reuse code from a system being updated to
challenge competing systems.

We evaluated our method using a case study related
to the assessment of the Lynx Web browser, with
respect to its competitors such as Mozilla Firefox or
Microsoft Internet Explorer. Due to the very nature of
the problem addressed, traditional measures of precision
and recall could not be obtained. Instead, we evaluated
the accuracy of ReORe as the percentage of candidate
matches judged relevant in one step and retained in the
following step. We showed that the accuracy in the two
labor intensive steps was 56% and 94%. These results
support the evidence that the most valuable resources
(the architect, in our case study) are less involved in
non-productive tasks, i.e., the task of discarding
spurious matches. As reported in the discussion, only
6% of false positives were discarded by the architect.

There was some evidence suggesting that it does not
pay-off to investigate low ranked functions and pairs (ri,
ej). However, there was also evidence that the

 1

evaluation of low ranked pairs (ri, ej) resulted in the
discovery of some functions that might not have been
found otherwise. In the case of Lynx, only two essential
requirements (out of the original 128) and one function
were from requirements with top similarity score below
20%.

Overall, we concluded that the evolution of Lynx
could require quite a substantial effort because only a
fraction of the code (about 25 %) can be reused and
only 25 essential requirements are reflected in the
present code base. Lynx is a niche product and likely
will remain so. The lesson learned in the case study of
Lynx is that the more a company waits, the more likely
it will have to rewrite its system from scratch.

As part of our future work, we plan to examine the
use of static analyses for recovering missed matches.
We plan to assess the influence of different threshold
strategies. We also plan to apply ReORe to other
systems with other developers.

Acknowledgements

 This work was partially funded by Canada Research
Chair Tier I in Software Evolution, a NSERC Discovery
Grant. It is also partially funded by NASA under grant
NAG5-11732. We thank those colleagues who
answered our questionnaire, from which we drew the
essential and optional Web browser requirements.

9. References

[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and

Merlo, E. Recovering Traceability Links between Code
and Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

[2] Giuliano Antoniol, Yann-Gaël Guéhéneuc: Feature
Identification: A Novel Approach and a Case Study.
ICSM 2005: 357-366

[3] Antoniol, G., Guéhéneuc, Y.-G.: Feature Identification:
An Epidemiological Metaphor. IEEE Trans. Software
Eng. 32(9): 627-641 (2006).

[4] Baeza-Yates, R., B. Ribeiro-Neto. Modern Information
Retrieval, Addison-Wesley, 1999.

[5] Cleland-Huang, J., Chang, C. K., Christensen, M. J.:
Event-Based Traceability for Managing Evolutionary
Change. IEEE Trans. Software Eng. 29(9): 796-810
(2003).

[6] Cleland-Huang, J., Settimi, R., Ben Khadra, O.,
Berezhanskaya, E., Christina, S.: Goal-centric traceability
for managing non-functional requirements. ICSE 2005:
362-371.

[7] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y.-
G.: Cerberus: Tracing Requirements to Source Code
Using Static, Dynamic, and Semantic Analysis.
Proceedings of the International Conference on Program
Comprehension, June, 2008.

[8] Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.:
Determining the cost-quality trade-off for automated
software traceability. ASE 2005: 360-363.

[9] O.C.Z. Gotel and A.C.W. Finkelstein. An analysis of the
requirements traceability problem. In 1st International
Conference on Requirements Engineering, pages 94--
101, 1994.

[10] Hayes, J. H.; Dekhtyar, A.; Sundaram, S. K., “Advancing
candidate link generation for requirements tracing: the
study of methods,” Transactions on Software
Engineering, Volume 32, Issue 1, Jan. 2006 Page(s): 4 –
19.

[11] Hayes, J. H., Antoniol, G., Guéhéneuc, Y.-G.:
PREREQIR: A Window into Mental Models, University
of Kentucky Technical Report TR 493-08, March 6,
2008.

[12] Lehman, M.M. “Programs, Life Cycles, and Laws of
Software Evolution”. Proceedings of the IEEE, vol 68, no
9, 1980.

[13] Lientz, B.P., and Swanson, E.B. Software Maintenance
Management, Addison-Wesley Publishing Company,
1980.

[14] Marcus, A.; Maletic, J. “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing,” Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, Portland,
Oregon, 3 – 10 May 2003, pp. 125 – 135.

[15] Samuelson, P.: Reverse Engineering Under Siege.
Communications of the ACM, Volume 45, Issue 10, Oct.
2002, Pages 15-20.

[16] Schach, S., Jin, B., Wright, D., Heller, G., and Offutt, J.:
Determining the distribution of maintenance categories:
Survey versus empirical study. Kluwer's Empirical
Software Engineering 8(4):351-365.

[17] Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause,
P.: Rule-based generation of requirements traceability
relations. Journal of Systems and Software 72(2): 105-
127 (2004).

[18] Venables, W., Ripley, B.: Modern Applied Statistic with
SPLUS. Springer, Fourth Edition, 2002.

[19] Zhao, W., Zhang, L. , Liu, Y., Luo, J., Sun, J.:
Understanding How the Requirements are Implemented
in Source Code. Proceedings of the Asia-Pacific Software
Engineering Conference, December, 2003.

