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Abstract 
 
Undocumented software systems are a common 
challenge for developers performing maintenance 
and/or reuse.  The challenge is two-fold: (1) when no 
comments or documentation exist, it is difficult for 
developers to understand how a system works; (2) when 
no requirements exist, it is difficult to know what the 
system actually does.  We present a method, named 
ReORe (Reuse or Rewrite) that assists developers in 
recovering requirements for a competitor system and in 
deciding if they should reuse parts of their existing 
system or rewrite it from scratch.  Our method requires 
source code and executable for the system and assumes 
that requirements are preliminarily recovered.   We 
apply ReORe to Lynx, a Web browser written in C.  We 
provide evidence of ReORe accuracy:  56% for 
validation based on textual and static analysis and 94% 
for the final validation using dynamic analysis. 
 
Keywords:   Maintenance, reuse, requirements, 
documentation, static analysis, dynamic analysis, feature 
identification, data mining. 
 
1. Introduction and Problem Statement 
 

Maintenance is the longest and most costly phase of 
the software lifecycle [13][16]. The cost of maintenance 
is often measured in the number of expended person 
hours. It is widely accepted that most of the effort 
invested in maintenance goes for understanding the 
source code, generally written by developers other than 
the maintainers.  Often, software is poorly documented: 
it lacks in-line comments, design, and requirements.  As 
a result, it is not so surprising that 47% of software 
maintenance effort is devoted to understanding the 
software [12][16].  

Although much research has been carried out to 
reduce maintenance costs, to the best of our knowledge, 
there has been little work on the application of these 
methods and techniques to a priori maintenance, i.e., to 
help managers make the decision to reuse parts of the 
old system or to completely rewrite a new system. Our 
work addresses this application by introducing a 

method, ReORe (Reuse or Rewrite, pronounced Ree-
Oh-Ree).  Given a set of requirements (possibly a 
generic requirement document generated using semi-
automated techniques [11]), ReORe uses Information 
Retrieval (IR) techniques in combination with dynamic 
feature identification to assess code that can be reused 
to bring a system up-to-date with competitor systems. 

A typical scenario in which to apply our method 
follows. A company owns a proprietary system, Sprop, 
that is becoming obsolete because of its technology and 
of market shifts: competing companies have introduced 
new technologies and functionalities that Sprop lacks. 
The management of the company faces the dilemma of 
either maintaining Sprop to bring it up-to-date or 
rewriting a new system from scratch (getting out of the 
market is not an option).  Data is required to support an 
informed decision: the obsolescence of Sprop and the 
amount of reusable code must be quantified. This data 
must include the requirements of the competing 
systems, Scptitor, (listing their technologies and features) 
and the entities of the source code of Sprop that could be 
reused to implement these requirements (including any 
structures, classes, functions, methods, and so on). 
Underpinning the ReORe method is the idea that the 
management of the company will assign tasks to 
developers, experts of the application, and software 
architects to optimize effort and minimize the usage of 
the most valuable resources.  
    In this paper, we present our method and illustrate its 
application in a real-world situation: We apply ReORe 
to the Lynx text-oriented open-source Web browser  
(i.e., Sprop) to assess the feasibility of evolving this 
browser to fulfill the requirements of state-of-the-
practice browsers such as Mozilla Firefox and Microsoft 
Explorer (i.e., Scptitor).  In the case study, the first three 
authors played the role of developers while the fourth 
author acted in the role as the most valuable resource of 
the application:  the architect. 
     The paper is organized as follows: Section 2 
discusses the recovery of requirements. Section 3 
presents ReORe.  Section 4 details the design of the 
case study. Section 5 describes the application of the 
approach to Lynx while Section 6 discusses the results 
and threats to validity. Section 7 presents related work. 
Finally, Section 8 concludes and outlines future work. 
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Figure 1. Synopsis of ReORe.  

 
 

2. Recovering Requirements  
 
The first part of our method is concerned with obtaining 
the requirements of the competing systems, Scptitor. Most 
systems do not have comprehensive requirements. 
Therefore, the developers must collect requirements 
themselves, because it is unlikely that the competitors 
will provide them freely. In this context, the developers 
perform absolutely legal actions by purchasing and 
exercising the functionalities of Scptitor [15]. 
    Obtaining requirements is a preliminary activity to 
our method but out of the scope of this paper. 
Therefore, we only succinctly present the essential 
details of another method, PREREQIR [11], to obtain 
requirements. The PREREQIR method divides into three 
steps performed by the developers to: 
(1) obtain and vet a list of requirements from diverse 
stakeholders using anonymous questionnaire, 
(2) structure the requirements by mapping them into a 
representation suitable for grouping via pattern-
recognition and similarity-based clustering, and 
(3) analyze the clustered requirements to divide them 
into a set of essential and a set of optional requirements. 
    The outcome of the PREREQIR method is a set of so-
called synthetic sentences that together form the 
requirements of a system. The synthetic sentences 
represent the cluster of requirements and therefore 
subsume the stakeholders’ understanding of the system. 
 

3. The ReORe Method 
 
Once a set of requirements for the competing 

systems is available, ReORe can be applied in five 
steps, shown in Figure 1.  ReORe assumes the 
availability of a set of requirements R written in textual 
form and of a set of source code entities E from Sprop 
that implement the system under study.  
 
Step 1: Textual processing of requirements and code. 
The developers process both the requirements R and the 
set of entities E in parallel. Any requirement ri or entity 
ej is considered as a textual sentence and the developers 
apply standard natural-language processing techniques 
to extract sets of characterizing tokens, {ri} and {ej}, 
from {ri} and {ej}. Specifically, stop-word removal, 
stemming, and tokenization are applied to obtain the 
two sets of tokens {ri} and {ei}.  
 
Step 2: IR-based tracing of requirements to code. 
Developers use term frequency–inverse document 
frequency [4] to compute the similarity between any ri 
and any ej. Developers consider each ej as a document 
and ri as a query against the set of documents and obtain 
a ranking of each ej for each ri. Developers only keep as 
a match those entities ej that have a similarity greater 
than zero and, more generally, higher than a given 
threshold. We advocate the use of outlier analysis 
because developers are interested in the outliers of the 
similarity distribution: pairs (ri, ej) with a relatively high 
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similarity score. The standard outlier threshold 
definition1 (see also [18]) may or may not be pertinent 
and thus the threshold should be manually verified and 
assessed. Consequently, developers consider the entity 
ej as relevant to the implementation of the requirement 
ri if ej is returned by the query ri with a similarity higher 
than some threshold identifying outliers in the similarity 
distribution.  
 
Step 3: Selection of relevant traceability matches. 
Developers manually evaluate the rankings obtained in 
Step 2.  For each ri, they retain only the entities ej that 
they believe to concretely participate in the 
implementation of ri; they label these ej as reusable 
entities and link them to the requirement ri. This 
evaluation is necessarily manual because only the 
developers can assess, using their knowledge of the 
system and contextual information, whether an entity ej 
really participates in the implementation of  requirement 
ri.  
 
Step 4: Dynamic analysis. Developers build and 
execute scenarios that exercise the requirements for 
which a consensus concerning their implementing 
entities exist. Two kinds of scenarios must be 
developed: (1) scenarios exercising core functionalities 
and requirements and (2) scenarios specifically devoted 
to some particular requirement.  The execution of the 
scenarios supports the collection of trace data. Core 
scenarios serve to identify the core implementation 
entities, likely to constitute the infrastructure of the 
system. More specific scenarios collect data that can 
then be studied by the architect in the fifth step, to again 
rank the entities and confirm/invalidate the matches 
from the previous steps. 
 
Step 5: Final validation. Combining both textual and 
static analysis (entity extraction, stop-word removal, 
stemming, and tokenization), dynamic analysis (trace 
data), and requirements, developers are able to identify 
and to validate the entities ej implementing a 
requirement ri. This last step should be performed by 
the architect of the system to benefit from her expertise 
without overloading her with work. 

A major advantage of ReORe is its ability to greatly 
reduce the possibility of introducing, during any step, 
subjective judgments that could influence the final 
results. The multi-step process uses the developers in 
the early steps, whose results are then checked by the 
architects in the final step. Within the early steps, the 
developers separately develop lists of requirements and 
possible matching entities. A different developer is 
responsible for “breaking” any ties in their results.  The 
architects do not have information about the method 
applied by the developers to obtain the requirements and 
                                                 
1 http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm 

the list of entities that may implement these 
requirements.  Also, the architects are not aware that the 
developers work from ranked lists that are based solely 
on textual and static information.  

 
4. Case Study Definition and Context  
 
The goal of the case study reported in the following 
sections is to apply ReORe to make an informed 
decision on maintaining or rewriting an outdated 
system. The purpose of the study is to assess the 
applicability of ReORe. The quality focus of the study is 
ensuring high traceability between requirements and the 
existing source code, to help managers make their 
decision. The perspective of the study is that of a 
company developing a Web browser that must decide to 
maintain or rewrite a new browser.  

For the sake of reproducibility, we assume the 
existence of a company developing the Lynx Web 
browser.  Lynx2 is known as “the text Web browser”, 
i.e., it is a free, open-source, text-only Web browser and 
Gopher client for use on cursor-addressable, character 
cell terminals. Its development began in 1992 and it is 
now available on several platforms, including Linux, 
UNIX, and Windows. It has been used widely both in 
academia and in industry and can reasonably be 
expected to be found in some companies.  

We mimic the process that Lynx developers must 
follow to assess the feasibility and the cost of replacing 
portions of Lynx code to port it/enhance it to modern 
technologies in an attempt to create a competitor to 
more recent browsers such as Mozilla Firefox, Opera, or 
Microsoft Internet Explorer.  

As in any real-world scenario, we assume that the 
complete set of requirements for competing Web 
browsers is unavailable or incomplete, and that the only 
available documents (possibly also incomplete) are user 
manuals.  Thus, developers would first apply a method 
to recover the requirements of competing systems.  
They could use our own PREREQIR method, summarized 
in Section 2. Then, they would apply ReORe to match 
the requirements with entities from the source code of 
their Web browser and to check the matches using code 
inspection and dynamic trace analysis.  The Lynx Web 
browser is implemented in C. Thus, without any loss of 
generality, in the following we choose to focus on 
functions as the main entities implementing the 
requirements. 

The developers do not need to compare the 
requirements from the competing Web browsers with 
those of Lynx because such a comparison would only 
help to quantify the obsolescence of their own browser.  
This information would be of scarce assistance because 
their company already knows that their system is 
                                                 
2 http://lynx.isc.org/ 
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obsolete and that it must evolve or fade out. 
Furthermore, such a mapping would not help to 
understand how much code is reusable. 

As mentioned above, Lynx is largely written in C, 
mostly following the ANSI standard; macros are used to 
parameterize function definitions. The case study 
utilizes Lynx version 2.8.5 compiled and executed 
under a Linux RedHat server version 5. The Lynx 2.8.5 
code-base is organized into three main directories (lib, 
src, and www); it contains about 2,074 functions 
contained in 91 source code files for a total of 147 
KLOC (counted using the GNU word counting utility 
wc). Configuration definition, function forward 
declarations, macros, and global data declarations are 
organized into 156 header files for a total of 27 KLOC. 

The default configuration has been used to produce 
an executable version of Lynx (i.e., no special switch 
was used). Lynx behavior is largely modifiable via a 
configuration file and thus configuration details such as 
external mailer, external editor, or the address of a 
printer were later passed on to the executable via the 
configuration file. 
    For the sake of this case study, the first three authors 
played the role of developers while the last author 
played the role of architect. The empirical study aims to 
address the following research questions: 
• RQ1: is ReORe able to effectively reduce the 

information processed in the different steps while 
ensuring the traceability between requirements and 
the existing code? 

• RQ2: what is the effort required for the application 
of ReORe? 

 
5. Applying ReORe to evolve Lynx 
 
   This section describes each step of ReORe as applied 
to the Lynx case study. 
 
Premise: Recovering Requirements. The first step of 
our method is concerned with obtaining the 
requirements of the competing systems, Scptitor. 
Developers chose to apply PREREQIR [11].  

For our case study, the first three authors used a 
convenience sample of more than 200 of their 
colleagues and acquaintances and sent them an 
anonymous questionnaire to obtain prioritized lists of 
requirements for Web browsers. Among the 200 
recipients, 25 sent back the questionnaires, out of which 
22 were kept for this study. Any questionnaire that was 
not totally completed was omitted. 

Consequently, the developers obtained 128 essential 
requirements (e.g., “the browser shall support back and 
forward actions”) generated in the form of synthetic 
sentences; these are essential requirements in that at 
least two respondents submitted them. Another set of 
181 optional requirements have been identified; these 

are singleton requirements: either variants of one of the 
128 essential requirements, requirements provided by a 
single respondent, or very general requirements (e.g., “it 
should be easy to use”). Thus, given that Lynx is made 
of about 2,074 functions and that there are, overall, 128 
+ 181 = 309 requirements, the set of all possible 
matches among requirements and functions is 309 × 
2,074 = 640,866 matches, i.e., if all functions were to 
contribute to all requirements. A summary of the 
number of requirements, functions and matches—after 
each step of the matching—is reported in Table 1. 

 
Table 1: Lynx functions, requirements, and matches 

requirements–functions. 
Essential Requirements 128 
Optional Requirements 181 
Total Number of Requirements 309 
Number of Functions 2,074 
Number of Possible matches 640,866 
Matches with similarity > 0 138,896 
Matches with similarity > 20% 738 
Dynamic Analysis Matches 88 
Final Inspection Matches 83 

 
Step 1: Textual processing of requirements and code. 
Developers applied the first step of our method: they 
used natural-language processing techniques to tokenize 
the requirements and the 2,074 functions of the Lynx 
Web browser. They obtained the two sets {ri} and {ej} 
including, respectively, 309 and 2,074 items. Traditional 
filtering (e.g., punctuation removal), camel-case 
splitting, stopping, and stemming are applied to the 
requirements and functions, {ri} and {ej}, that are then 
mapped into a vector space. The dictionary (after 
processing) contains 5,192 stems, thus requirements and 
functions are represented with 5,192 dimensions. 
 
Step 2: IR-based tracing of requirements to code. 
Second, for each tokenized requirement ri, developers 
ranked the functions that possibly implement the 
requirements. We use a vector space model computed 
with  TF-IDF and cosine similarity ranking [4]. Pairs (ri, 
ej) with ranking of zero are discarded in this step to 
reduce the search space from 640,866 to 138,896 
candidate matches. Nevertheless, a manual inspection of 
the remaining matches is still infeasible. The cosine 
similarity distribution is highly skewed toward low 
values and the developers, thus, limited themselves to 
the matches in the higher fringe of the distribution.  
    Mean and median of similarity are 0.023 and 0.012, 
respectively. The 25% and 75% percentile values are 
0.006 and 0.026. Maximum similarity value is 62% and 
inter-quartile range is about 0.021. Standard outlier 
definition [18] suggests that anything above a threshold 
of 1.5 times the inter-quartile range from the 75% 
percentile is to be considered a mild outlier, i.e., about 



 5

0.06  (6%) similarity in our case. However, the relative 
distance of Lynx code to the new requirements is 
substantial and a threshold computed as above requires 
a similarity just above 6% for a pair (ri, ej) to be kept for 
inspection. The use of such a threshold would retain 
about 12,000 matches, still quite a sizeable inspection 
task. The inspection of a few matches led the developers 
to the suitable compromise of choosing a threshold of 
8/9 times the inter-quartile range, which yields a value 
of 20% similarity. Consequently, 738 pairs (ri, ej) rank 
above this threshold. Although this threshold may still 
appear to be a low, it is worth noting that no pair (ri, ej) 
has a score above 62% similarity.  
    For example, the requirement: 
 

“the system shall allow internet cookies to be 
downloaded in the local file system” 

 
is matched to the set of functions: 
 
Functions Ranks 
src/LYCookie.c::newCookie 
src/LYCookie.c::LYProcessSetCookies 
src/LYCookie.c::LYSetCookie 
src/LYCookie.c::ARGS1 
src/LYDownload.c::LYdownload_options 

0.3489 
0.3088 
0.2942 
0.2797 
0.2559 

 
where, in the first line, it is reported that a function 
newCookie, contained in file LYCookie.c, belonging 
to the directory src, is matched to the requirement with 
a similarity of 0.3489.   
 
Step 3: Selection of relevant traceability matches. 
Based on the chosen similarity threshold, requirements 
{ri} are divided into two sets (see Table 2). The first 
subset, A, is the set of the 186 requirements (out of the 
309) for which at least one match is above the threshold; 
this subset is actually the set containing the most likely 
pairs (ri, ej).  
 

Table 2: Requirement breakdown - Sets A and B. 
Requirements Set A Set B 
Essential 88 40 
Optional 98 83 
Overall 186 123 

 
    The second subset, B, is the subset comprising the 
remaining 123 requirements for which no one single 
function among the 2,074 achieved at least 20% 
similarity. Regardless of the set, each requirement ri is 
associated with its ranked list of matching functions. 
Table 3 reports the mean and standard deviation of the 
ranked lists for the two sets, A and B. 

As reported in the literature on traceability, relevant 
matches are usually in the top ranked positions 
[1][14][10]. Yet, sometimes, even a match that is ranked 

very low can still be relevant. As shown in Table 3, 
ranked lists in Sets A and B contain more then 400 
functions.  Inspecting and validating such a high 
number of pairs (ri, ej) would simply result in discarding 
a very high number of false positives. 
 
Table 3: Summary statistics of ranked lists for Sets 

A and B. 
 Average 

candidate 
list length 

Candidate 
list standard 
deviation 

Set A (>= 20%) 464 523 
Set B (< 20%) 425 478 

 
Therefore, to balance effort and false positives, 

developers designed the validation of matches in the 
following way. For each {ri} in sets A and B, the top 
five most relevant candidate pairs (ri, ej) are retained. In 
addition, five other matches are randomly chosen with a 
uniform distribution between the remaining matches. 
Consequently, even matches ranked very low still have 
at least a chance of being manually validated. 

Two developers independently evaluated each of the 
matches by inspecting function stems manually to assess 
whether the function indeed implements the 
requirement. Each developer vetted each function as 
either “Yes,” “No,” or “Maybe.” A majority consensus 
was determined for each requirement after combining 
the developers’ votes conservatively: only functions 
vetted as “Yes” by both developers are promoted to the 
next step, all other combinations are considered to be 
incorrect matches and are removed from consideration. 

 
Table 4: Agreement and disagreement between 

developers’ votes on the two sets. 
Set Ranking 

Range 
Yes  No One 

Yes  
1-5 128 226 324 A 
6-10 2 790 20 
1-5 25 407 69 B 
6-10 0 570 10 

 
Vetted lists were merged by the third developer who 

was not involved in the vetting process. The decision to 
only retain functions ranked “Yes” by both developers 
for the next step may appear overly conservative. 
However, subsequent steps (dynamic analysis and final 
validation) could re-introduce removed functions, if 
really relevant. Furthermore, static analyses, such as 
caller-callee or data dependency relations in the final set 
of functions, could be used to recover missed matches; 
we plan to implement this recovery in future work.   

As reported in Table 4, among the five highest 
ranking functions (listed as “1-5”), “Yes” are 
predominant, with an average of 14% for the 186 set A 
requirements. Table 4 also shows that, for the top five 
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matches, there is a 35% disagreement (only one of the 
developers said “Yes”).  Among the five randomly-
selected functions, few are evaluated as “Yes.”  For 
example, in Set A, only two “Yes” were given for 
functions in the random five (listed as “6-10”).  As 
expected, for subset B, the number of positive 
agreements is only 25, i.e., 2%: most matches are 
discarded (977 total “No” responses for 1,230 matches). 
 
Step 4: Dynamic analysis. Developers used dynamic 
analysis to gather information and further filter 
candidate matches.  Given each requirement for which 
at least one function, i.e., a pair (ri, ej), was vetted 
“Yes” by both developers, another developer built a 
scenario that attempted to exercise the relevant 
functions and performed dynamic analysis. There are 55 
scenarios for set A and 13 for set B. Once a scenario 
was built and executed with success, trace data were 
collected using Valgrind/Callgrind as done in [3][2]3.  
    The dynamic analysis was performed in two steps. 
The first step aimed at executing three basic scenarios, 
to gather functions likely to constitute the core functions 
contributing to the implementation of Lynx (e.g., 
functions handling HTTP, SSL, and FTP protocols). 
These functions may be relevant to a possible rewriting 
of the Web browser.  

Table 5 reports the numbers of distinct functions and 
their relative scenarios. The numbers are cumulative: for 
example, the functions in the line relative to the SSL 
scenario are added on top of the basic HTTP scenario. 
Overall, in this first step of dynamic analysis, 547 
functions were flagged as potentially reusable. 

 
Table 5:  Recovered backbone functions via three 

basic scenarios. 
Scenario Number of  

Functions 
HTTP 382 
SSL 137 
FTP 28 

 
    Following this first step, for each of the 55 
requirements in set A and 13 in set B, a scenario was 
created and dynamic data collected.  Scenario creation is 
a costly activity. First, a requirement is carefully read; 
the Lynx configuration file is then inspected to check if 
its parameters have been set up properly (e.g., external 
mailer, printer, startup page, mouse activation, etc); 
then, Lynx user documentation is inspected to verify if 
any other set up is required. Finally, a check is 
performed to verify that the operating system 
configuration is sound and that other support programs 
                                                 
3 Note that if test cases already exist for some of these 
scenarios, this step can be performed with much less effort.  
However, the proposed method does not assume the existence 
of such test cases. 

are running. For example, to exercise a scenario related 
to the requirements on FTP or HTTPS, the developer 
must ensure that an FTP server or a secure Web server 
is available. 

Once a proper configuration and environment are 
ascertained, a scenario is built in a narrative way. 
Continuing with the example of HTTPS, a scenario 
could be “the user starts Lynx, passing as a parameter 
the file linx.cfg; she types G and enters the address of 
the secure Web server https://127.0.0.1; when 
prompted, she enters her username and password; 
finally, she types Q and exits the Web browser.” Four 
hours of work were required to setup the environment, 
define, and execute the first scenario. Overall, about 40 
hours of manual activity were needed to define and run 
68 scenarios (i.e., 55 for set A) and to analyze data and 
filter matches.  
    Once trace data was collected for a scenario, the 
developer verified whether or not the candidate 
functions appeared in the trace. If not, it was necessary 
to check if the binary code of the missing functions was 
linked into the Lynx executable or if it was dead code 
and, thus, would never be called. Sometimes, the source 
code was inspected to check for the presence of 
processor macros preventing compilation, such as 
hardware architecture or operating system 
dependencies. 
 

Table 6: Retained and discarded matches in the 
dynamic trace collection phase. 

Set Ranking 
Range 

Retained Discarded 

1-5 77 51 A 
6-10 1 1 
1-5 10 15 B 
6-10 - - 

 
   As reported in Table 6, in this step, for set A, 60% of 
the pairs (ri, ej) in the top five positions were promoted 
to the final verification step while only one of the two 
functions ranked in position 6-10 were retained. It is 
worth noting that set B contains 1,230 pairs (ri, ej) and 
only ten out of the 25 (See Table 4) were considered 
relevant once dynamic analysis was performed.  
 

Step 5: Final validation. Finally, the architect 
manually validated the matches of each requirement 
with each function using several sources of available 
information, ranging from execution traces, source 
code, and interactions with the system. Figures reported 
in Table 7 show a substantial agreement with those in 
Table 6, confirming the matches from previous steps. It 
is important to underscore that the author playing the 
role of the architect was not involved in prior phases to 
avoid any possible bias. 
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Table 7: Retained and discarded matches in the last 
phase. 

Set Ranking 
Range 

Retained Discarded Added 

1-5 73 4 12 A 
6-10 1 - - 
1-5 9 1 1 B 
6-10 - - - 

Overall 83  13 
 
This step is important to further reduce possible 

mismatches. As shown by the data of Table 6, this step 
actually helped in adding 13 pairs of requirements-
functions. Interestingly, three of these functions were 
not tagged as relevant to three distinct requirements in 
the previous steps. These three functions are not 
compiled under Linux due to preprocessor flags; they 
were discovered by inspecting the code of other relevant 
Linux functions.  The other 10 were functions that the 
dynamic analysis discarded as non-executed. 

 
Table 8: Final requirement break down into Sets A 

and B. 
Requirement Set A Set B 
Essential 23 5 
Optional 23 4 
Overall 46 9 

. 
   Overall, the architect spent about 10 hours on this 
step. As shown in Table 8, the applied method provides 
evidence that 28 requirements out of the 181 essential 
requirements and 27 out of the 128 optional 
requirements have at least one pair (ri, ej) and, thus, 
some form of initial implementation.  However, three 
out of the five essential requirements of set B (in Table 
8) are variants of other requirements that were already 
captured in the 23 essential requirements. Two of the 
three deal with printing and one with bookmarking. The 
remaining two requirements of set B are related to the 
possibility of changing font size, font type, and browser 
look-and-feel. These are not variants of any of the 
requirements in set A.  

Overall, developers obtained evidence that only 25 
essential requirements have some initial 
implementation. 
 
6. Discussion  
 
    In scenarios such as the one presented above, a 
ground truth will hardly ever be available. An a-priori 
gold set of pairs (ri, ej) with which to compare the 
results of ReORe is unavailable due to the lack of 
knowledge for legacy systems, imprecision in collecting 
requirements, and the focus of the implementation or 
evolution strategy on a subset of the most important 
customer requirements.  Therefore, we cannot quantify 

ReORe in terms of  information retrieval measures such 
as precision and recall because neither “the” set of 
correct matches (ri, ej) nor the subset of implemented ri 
are known.  

One way to assess the accuracy and circumvent the 
intrinsic impossibility of computing recall or precision 
is to consider ReORe as a waterfall process in which 
each step plays the role of the Oracle for previous steps. 
Accuracy is thus quantified as the percentage of 
matches for which an agreement between any two 
subsequent steps was found; this accuracy is 
representative of the effort saved. 

It is important to note that a function may be related 
to different requirements and that some of the 96 
functions reported in Table 7 may also be in the set of 
core functions executed by the scenarios of Table 5.  
Indeed, out of the 96 functions, there are only 52 unique 
functions. Interestingly, only one function of the 10 in 
set B (see Table 7) was not in the set of functions 
collected in set A. This fact seems to suggest that it does 
not really pay-off to investigate low ranked functions 
and pairs (ri, ej).  However, Table 8 may suggest the 
usefulness of inspecting pairs (ri, ej) in set B to check 
for the presence or absence of some initial 
implementation of requirements in the legacy system. 
Indeed, out of the five essential requirements discovered 
in Set B (see Table 8), three are somehow captured by 
other requirements in Set A (i.e., by some of the 23), the 
other two are newly discovered essential requirements 
not comprised in the 23.  

 
Table 9: Accuracy achieved in the two main phases: 

manual ranking versus dynamic analysis and 
dynamic analysis versus final inspection. 

 Accuracy 
 Dynamic 

Analysis 
Final 
Inspection 

1-5 60% 95% Set 
A 6-10 50% - 

1-5 40% 90% Set 
B 6-10 - - 
Overall 56% 94% 

 
Table 9 reports the accuracy computed as defined 

above. For example, dynamic analysis validated 77 
matches and discarded 51 of the set A top five positions 
(see Table 6). This means that the dynamic analysis only 
exercised 77 functions out of the 128 classified relevant 
in Table 4. In other words, 60% of functions went on to 
the next steps; about 40% of the matches produced in 
the first steps are false positives. These false positives 
are not inspected by the architect and, thus, also 
represent effort saved: the most valuable resource does 
not need to inspect these matches. As reported in Table 
9, accuracy in the final inspection achieved a higher 
value; indeed, the 95% accuracy for set A and top five 
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matches means that only a few false positives slipped 
through the dynamic analysis step.  
    It should also be noted that functions activated by the 
three basic scenarios and reported in Table 5 may or 
may not be matched to any high level requirements. 
These functions are likely to participate in some kind of 
infrastructure, a set of utilities on top of which 
requirements are implemented. It is interesting to note 
that, out of the 52 functions recovered, 35 are not 
contained in the set of 547 functions. These are 
functions specific to some requirements and are not part 
of the infrastructure or of the three basic browser pieces 
of functionality: access via HTTP, FTP, or SSL to a 
remote resource.  

 
• Answer to RQ1: we believe that the answer to 

RQ1 is yes because there is an order of magnitude 
of difference between the initial search space (in 
Table 1) and the number of pairs inspected by the 
architect (in Table 7). Moreover, matches have 
been discovered and validated with a subset of 
essential requirements and the method also enables 
the architect to recover missing matches. Further 
work beyond the goal of this paper is needed to 
quantify false negatives. Evidence collected in the 
case study also suggests that ReORe may well pay 
off in a smoother evolution process, at least for a 
Web browser. Indeed, only about 20% of the 
essential requirements of a modern and graphical 
browser such as Mozilla Firefox or Microsoft 
Internet Explorer are reflected in Lynx source code: 
out of 2,074 Lynx functions, only 52 relate to one 
or more “modern” requirements. This may well be 
the situation of many legacy systems that risk being 
confined to a market niche. 

 
• Answer to RQ2: the scenario we have presented is 

that of a company facing market pressure to evolve 
one of its products due to technology evolution, 
competitor market share, or repositioning to a more 
profitable niche. We believe that Lynx is 
representative of a product that is confined to 
particular needs, such as a text-based environment. 
Therefore, any company facing a similar evolution 
challenge would be willing to invest a few hundred 
hours to make an informed decision.  Indeed, in the 
case of Lynx, it took the developers about 85–90 
hours of manual labor to perform requirement 
mapping into the existing code base. Clearly, more 
effort must be acknowledged for the preliminary 
step of requirement gathering, market analysis, and 
customer survey.  Yet, the authors are not Lynx 
experts or Lynx developers, whereas any company 
facing the evolution dilemma is likely to possess a 
deeper know-how of and expertise with the source 
code, thus reducing the effort of the requirement 
mapping. With Lynx, the effort required to assess 

matches was just a fraction of the effort required to 
develop a system of the size of Lynx. However, we 
have only one data point and cannot generalize to 
other systems or domains without further studies. 

 
Our method is underpinned by the idea that the most 

expensive steps, such as scenario building and trace 
collection, and the most valuable resources, such as the 
architect in the final validation step, should be carefully 
planned and managed to minimize resource usage (i.e., 
RQ1). We emphasize that subsequent filtering and 
information reduction steps did not prevent the recovery 
of missing functions in the last step, and, in fact, 
discovered new functions relevant to three 
requirements. The application of ReORe took only 
about one hundred hours, saving valuable time and 
effort and assisting the management in making an 
informed decision (i.e., RQ2). 
 
6.1 Threats to Validity 
 

External validity threats concern the generalization 
of our findings. We believe that our findings support the 
evidence that ReORe can be applied and that modern IR 
techniques and tools help reduce the cost of data 
collection. The scenario presented is realistic and likely 
to be representative of many real-world situations. 
However, the size of the systems, the technology gap, or 
the difficulty in obtaining requirements may prevent 
others from applying our method as-is.  
    Construct validity threats concern the relationship 
between the theory and the observation. Such threats 
can be due to errors introduced by measurement 
instruments. Requirement and code indexing and 
similarity computation were performed using widely 
adopted toolsets.  For example, we used the Perl stopper 
and stemmer available from the Virginia Polytechnic 
Institute and State University.  Also, a TDF-IDF 
implementation is made available by the open-source 
Lucene project.  Nevertheless, we cannot exclude the 
possibility that another chain of tools may produce 
slightly different results or that different developers 
would rate functions in different ways. One critical 
element is the choice of the thresholds. We 
experimented with rank thresholds (e.g., the five most 
similar elements plus an additional five randomly 
selected pairs (ri, ej)); other developers may apply 
different strategies, such as score thresholds (e.g., the 
elements with scores in the top 1%) or the gap threshold 
algorithm introduced by Zhao [19].  These strategies 
would produce different sets of candidate matches that 
must be verified and thus, as shown in [7], may impact 
accuracy.  We plan to better assess the influence of 
thresholds in future work. Dynamic analysis depends on 
the test cases used to exercise the system. It might be 
that some functions were not invoked despite their 
relevance. Also, it is possible that some functions were 
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(conditionally) compiled only under particular 
configurations. Nevertheless, the final validation step 
limited this threat, by recovering functions discarded by 
the dynamic analysis. 
   Reliability validity concerns the possibility of 
replicating the study and obtaining the same results. The 
source code and documentation of Lynx are publicly 
available; the set of collected requirements are available 
from the authors upon request.  
    Internal validity refers to the influence of 
independent variables on dependent variables and the 
existence of confounding factors. The main threat to the 
internal validity of this study is the level of subjectivity 
introduced by developers. However, as explained in 
Section 2, a multiple-step approach limits this threat 
because each step validates/integrates the results of the 
previous one. Also, bias was limited by separating each 
step so that developers contributing to one step were not 
involved in other steps.  Also, different techniques 
(static analysis, IR, dynamic analysis, and code reading) 
were applied. Moreover, the final ranking was made by 
an expert who was not aware of the process and tools 
used in the previous steps.  
 
7. Related work 
 
    Our method relates to prior work on traceability using 
static and dynamic data and on recovering  
requirements.  
 
7.1 Traceability using Static Data 
 
    Many advances have been made in the area of 
traceability of static data (such as source code, 
comments, design documents, user manuals, and so on).  
Researchers apply simple keyword searches, rule-based 
approaches, and information retrieval techniques to the 
traceability of many software artifacts.  Gotel and 
Finkelstein [9] define the traceability problem.  
Antoniol et al. [1] describe the use of information 
retrieval techniques to recover traceability between code 
and user’s manuals. Marcus and Maletic [14] repeated 
Antoniol’s study and also apply latent semantic 
indexing. Cleland-Huang et al. introduce event-based 
tracing [5] and goal-centric tracing.  Spanoudakis et al. 
[17] discuss rule-based traceability of UML models and 
code. Egyed et al. [8] discuss value-based traceability. 
Hayes et al. [10] discuss the use of feedback as well as 
introduce measures for evaluating traceability methods.  
 
7.2 Traceability using Dynamic Data 
 
    A hybrid approach to feature identification and 
comparison was presented by Antoniol and Guéhéneuc 
in [3]. The approach applies parsing, reverse 
engineering, processor emulation, and dynamic analysis 

to obtain data on the functions executed when 
exercising a feature. The data is analyzed using an 
epidemiological metaphor to identify functions most 
likely to be part of the implementation of the feature. 
This approach can be used to understand large, multi-
threaded object-oriented systems.  It produces a ranked 
list of functions and classes participating in a feature.  It 
supports the extraction and examination of any micro-
architecture as well as supports the comparison of 
micro-architecture evolutions.  

 
7.3 Recovering Generic Requirements for an 
Application  
 
    The authors previously discuss the mining of domain-
specific mental models to obtain pre-requirements 
information (PRI) in [11].  Such PRI (or generic 
requirements) can be used to support traceability, can be 
applied as checklists when building applications within 
the domain, can be used to support reuse, etc.  PREREQIR 
uses partition around medoids and agglomerative 
clustering to obtain, structure, analyze, and label textual 
PRI from a group of diverse stakeholders.  In a study of 
the Web browser domain, with information obtained 
from 22 stakeholders, we found that about 55% of the 
PRI were common to two or more stakeholders and 
42% were outliers.  We automatically labeled the 
common (essential) and outlier (optional) PRI (82% 
correctly labeled) to build a generic requirement 
document for Web browsers.  The current work assumes 
the existence of such a requirement document.  
 
8. Conclusions and future work 

 
This paper proposed ReORe, a method to trace 

requirements into source code using static, textual, 
dynamic, and requirements analyses, to assess whether 
to rewrite or reuse code from a system being updated to 
challenge competing systems.   

We evaluated our method using a case study related 
to the assessment of the Lynx Web browser, with 
respect to its competitors such as Mozilla Firefox or 
Microsoft Internet Explorer. Due to the very nature of 
the problem addressed, traditional measures of precision 
and recall could not be obtained.  Instead, we evaluated 
the accuracy of ReORe as the percentage of candidate 
matches judged relevant in one step and retained in the 
following step. We showed that the accuracy in the two 
labor intensive steps was 56% and 94%. These results 
support the evidence that the most valuable resources 
(the architect, in our case study) are less involved in 
non-productive tasks, i.e., the task of discarding 
spurious matches. As reported in the discussion, only 
6% of false positives were discarded by the architect. 

There was some evidence suggesting that it does not 
pay-off to investigate low ranked functions and pairs (ri, 
ej). However, there was also evidence that the 
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evaluation of low ranked pairs (ri, ej) resulted in the 
discovery of some functions that might not have been 
found otherwise. In the case of Lynx, only two essential 
requirements (out of the original 128) and one function 
were from requirements with top similarity score below 
20%. 

Overall, we concluded that the evolution of Lynx 
could require quite a substantial effort because only a 
fraction of the code (about 25 %) can be reused and 
only 25 essential requirements are reflected in the 
present code base. Lynx is a niche product and likely 
will remain so. The lesson learned in the case study of 
Lynx is that the more a company waits, the more likely 
it will have to rewrite its system from scratch.  

As part of our future work, we plan to examine the 
use of static analyses for recovering missed matches.   
We plan to assess the influence of different threshold 
strategies.  We also plan to apply ReORe to other 
systems with other developers. 
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