
   

 
 
 

Who Can Help Me with this Source Code Change? 
 

Huzefa Kagdi1, Maen Hammad2, and Jonathan I. Maletic2

1Department of Computer Science 
Missouri University of Science and Technology 

Rolla Missouri 65409 

2Department of Computer Science 
Kent State University 

Kent Ohio 44242
{hkagdi, mhammad, jmaletic}@cs.kent.edu 

 
 

Abstract 
An approach to recommend a ranked list of 

developers to assist in performing software changes to a 
particular file is presented.  The ranking is based on 
change expertise, experience, and contributions of 
developers, as derived from the analysis of the previous 
commits involving the specific file in question.  The 
commits are obtained from a software system’s version 
control repositories (e.g., Subversion).  The basic 
premise is that a developer who has substantially 
contributed changes to specific files in the past is likely 
to best assist for their current or future change.  
Evaluation of the approach on a number of open source 
systems such as koffice, Apache httpd, and GNU gcc is 
also presented.  The results show that the accuracy of the 
correctly recommended developers is between 43% and 
82%.  New developers to a long-lived software project, 
or project managers, can use this approach to assist 
them in undertaking maintenance tasks, e.g., bug fix or 
adding a new feature.  The approach can be realized as a 
plug-in to development environments such as Eclipse. 

1. Introduction 
It is a routine practice to seek advice from other 

developers, with more knowledge than oneself, when 
undertaking a maintenance task to a large software 
system.  Among the, possibly hundreds of, developers on 
the project team a select few typically have deep 
knowledge about any one particular file or component.  
For a new team member just joining a project or a 
manager on a very large system, finding the best person 
to help out can sometimes be a tedious task.  One typical 
solution is to email the project team (or a selection of the 
team) and ask for advice on who is the most 
knowledgeable about a given file. 

This is particularly acute in collaborative open source 
projects where developers come and go from the team 
and no one project manager may exist.  The knowledge 
of who to ask for advice leaves when a developer leaves.  
Even in long-lived development projects in industry or 

government there is a regular amount of developer 
turnover. 

Fortunately, all this knowledge does not completely 
disappear when developers or managers leave a project.  
Version control systems keep an excellent record of who 
changed a file and when the change occurred.  Here, we 
present an approach and tool, called xFinder, that 
recommends a ranked list of developers who are very 
likely to have good knowledge of the file(s) planned to 
be modified.  This ranked list is obtained by mining the 
historical records found in the commits that are stored in 
software repositories of the project. 

Our approach uses several heuristic criteria to infer 
developer expertise, change activity, and commit 
contributions in the context of a particular file.  
According to a recent study [5], the programmer activity 
(frequency and recent date) is a good indicator of the 
knowledge developers have in the code. 

We evaluate our approach on a number of open source 
projects.  For each project, we examine the set of 
commits for a given duration of time.  We divide these 
commits into two portions.  The first portion is the 
training-set and the second one is the evaluation-set.  The 
training-set is mined for developer expertise and we see 
how well it can be used to recommend developers for the 
files that are changed in the commits in the evaluation-
set.  Results show that this is a viable and simple 
approach to recommending developers to assist in 
maintenance tasks.  

The paper is organized as follows.  Sections 2 and 3 
detail our approach and the heuristics used, an example 
that demonstrates our prototype is in Section 4.  The 
evaluation of the technique is given in Section 5 and 
Section 6 gives threats to validity.  Related work is given 
in Section 7 and we end with conclusions and future 
work. 

2. Contribution Measures 
The basic premise of the approach is that the 

developers who contributed substantial changes to a 
specific part of source code in the past are likely to best 
assist for its current or future change.  These past 



   

contributions are used to derive a mapping of the 
developers’ expertise, knowledge, or ownership to 
particular entities of the source code - a developer-code 
map.  Once a developer-code map is obtained, a list of 
developers who can assist in a given part of the source 
code can be obtained in a straightforward manner.  Now, 
the question is where to find a historical account of 
source code changes and how to use them to form a 
developer-code map.  Our approach uses the source code 
repository of a software system.  More specifically, the 
commits in repositories that record source code changes, 
as submitted by developers, to the version-control 
systems (i.e., Subversion).  The commits are used as both 
the historical archive of source code changes and to 
derive a developer-code map.  Next, we describe the 
various aspects of commits in detail. 

2.1. Subversion Commits 
Source code repositories store metadata such as user-

IDs, timestamps, and commit comments in addition to 
the source code artifacts and their differences across 
versions.  This metadata explains the why, who, and 
when dimensions of a source code change.  Modern 
source-control systems, such as Subversion, preserve the 
grouping of several changes in multiple files to a single 
change-set as performed by a committer.  Version-
number assignment and metadata are associated at the 
change-set level and recorded as a log entry. 

Figure 1 shows a log entry from the Subversion 
repository of kdelibs (a part of KDE repository).  A log 
entry corresponds to a single commit operation.  This 
commit log information can be readily obtained by using 
the command–line client svn log and a number of APIs 
(e.g., pysvn).  Subversion’s log entries include the 
dimensions author, date, and paths involved in a change-
set.  In this case, the changes in the files khtml_part.cpp 
and loader.h are committed together by the developer 
kling on the date/time 2005-07-25T17:46:20.434104Z.  
The revision number 438663 is assigned to the entire 
change-set (and not to each file that is changed as is in 
the case with some version-control systems such as 
CVS).  Additionally, a text message describing the 
change entered by the developer is also recorded.  Note 
that the order in which the files appear in the log entry is 
not necessarily the order in which they were changed.  
Clearly, each commit stores the developer and the 
corresponding files changed. 

A software system that is a long-lived would have 
gone through a numerous commits during its evolution.  
As can be seen from the above commit example, the 
relationship between a developer and the files in any 
given commit is one-to-one.  However, a developer may 
contribute multiple commits with the same file.  Also, 
multiple developers may change the same file in different 
commits.  Therefore, commits give an opportunity to 

analyze for the exclusive and (the level of) shared 
contributions of developers to files.  Next, we discuss, a 
few ways of gauging developer contributions from 
commits. 
 
<?xml version="1.0" encoding="utf-8"?> 
<log> 
  <log entry revision="438663"> 
    <author>kling</author> 
    <date>2005-07-
25T17:46:20.434104Z</date> 
    <paths> 
      <path 
action="M">khtml_part.cpp</path> 
      <path action="M">loader.h</path> 
    </paths> 
    <msg> 
       Do pixmap notifications when  
       running ad filters. 
    </msg> 
  </log entry>  
</log> 

Figure 1.  Part of kdelibs subversion log message. 

2.2. Commit Contribution 
One measure of the developer contribution is the total 

number of commits, i.e., source code changes performed 
in the past.  A developer who contributes a larger number 
of changes on specific parts of source code than some 
other developer can be considered as relatively more 
knowledgeable on those parts.  We analyzed the commit 
contributions of the koffice developers and focused on the 
total number of commits performed by each developer on 
all the files.  We considered commits performed in 304 
days between 1/6/2006 and 31/3/2007.  The total number 
of commits that have been extracted is 5642 and there 
were about 4991 different files in these commits.  The 
number of developers that are involved during this time 
period is 60.   

Table 1 shows the frequency distribution of 
developers according to their total number of commits, 
i.e., commit contribution.  All the developers contributed 
more than one commit.  Most of the developers have a 
small number of commits.  For example, 24 developers 
contributed between 2 and 10 commits.  The total 
number of commits of these 24 developers forms only 
2% of the total commits in the considered period of 
koffice.  On the other hand, we can see that one developer 
has more than 1040 commits and his commit contribution 
is about 19% of the total commits.  Most of the commits 
are done by a very small number of developers. These 
results show that the number of developers contributing a 
substantially large portion of total commits (i.e., experts) 
in the open source projects is quite small.  One should 



   

also note that many developers do not have significant 
commit contributions. 

 
Table 1.  Frequency distribution of developers over 
their commit contribution showing that only a small 

fraction of developers contribute a substantially large 
portion of total commits in a subset of koffice change 

history. 
No. Of 

Commits 
No. Of 

Developers 
Commit 

Contribution 
2 - 10 24 2% 

11 - 20 7 2% 
21 - 30 3 1% 
31 - 40 4 2% 
41 - 50 1 1% 
51 – 60 1 1% 
61 – 70 2 2% 
71 – 80 2 3% 
81 – 90 1 1% 

91 – 100 1 2% 
101 – 110 1 2% 
121 – 130 1 2% 
141 – 150 2 5% 
161 – 170 1 3% 
191 – 200 1 3% 
251 – 260 1 4% 
261 – 270 1 5% 
271 – 280 2 10% 
381 – 390 1 7% 
521 – 530 1 9% 
721 – 730 1 13% 

1041 – 1050 1 19% 
Total 60 100% 

2.3. Developers and Files  
The frequency and extent of changes to files 

committed by developers can be yet another measure of 
contribution.  A developer who commits changes to files 
has (or acquires) of knowledge of these files.  The more 
number of commits by a developer on a selected few files 
across a large number of commits could indicate frequent 
interactions and deeper knowledge of those files.  On the 
other hand, a developer commit spanning across a large 
number of files may indicate that the developer has a 
wider knowledge of the system.  So, there are two types 
of expertise that can be inferred: deep expertise and wide 
expertise.  These two types of expertise are used in the 
approach to identify experts. 

Another factor is the number of files that are updated 
exclusively by only a specific developer and no one else 
across a large number of commits.  This could give an 
idea of the importance of a particular developer.  For 

example, a developer who alone committed changes to 
10 files over a long period of time most likely has more 
expertise concerning these files than anyone else.  

Table 2 shows the frequency distribution of 
developers over the unique number of files they 
exclusively changed in a subset of the koffice change 
history.  More than a half of the total developers 
contribute exclusively to quite a small number of files.  
This indicates that the importance of the majority of the 
developers and their expertise are restricted to a small 
part of the system.  Only a few developers change a large 
number of files exclusively.  This indicates the presence 
of developers whose impact and knowledge span across a 
substantial portion of the system. 

 
Table 2.  Frequency distribution of developers over 
the unique number of files they exclusively changed 

in a subset of koffice change history. 
No. Of 

unique files 
No. Of 

Developers 
1-50 33 

51-100 7 
101-150 6 
151- 200 2 
201 - 250 1 
251-300 3 
401 - 450 2 
451 - 500 1 
501 - 550 2 
551-600 1 
950-1000 1 

1001-1050 1 
Total 60 

2.4. Activity 
Another consideration for developer contribution is 

the workdays, i.e., activity, involved in changes that are 
committed.  The activity of a specific developer is the 
percentage of his or her workdays over the total 
workdays of the system.  Here, a developer’s workday is 
considered as a day on which (s)he submits at least one 
commit.  A developer can submit multiple changes on a 
given workday.  A system’s workday is considered a day 
on which at least one commit is submitted.  A day on 
which no commits are submitted is not considered a 
workday.  Thus, the activity of a specific developer is his 
or her total workdays over the total number of the 
system’s workdays. 

The workday information can be easily obtained from 
the date component of the commit as seen in Section 2.1.  
For example, if we consider a period of 100 workdays 
from the lifetime of a system, and one developer 
committed five revisions in five different days during 



   

these 100 days, then his activity is 5%.  In our analysis of 
the koffice project, we found that most of the developers 
have just a few workdays. The total number of workdays 
for koffice, in this case, is 304 days. 
Table 3 shows the distribution of developers over the 
percentage of workdays (activity) and their total commit 
contributions.  We can see that most of the developers 
have a small activity period.  This observation is in a way 
similar to the analysis of the commit contributions.  Only 
a small number of developers are active or have major 
commit contribution.  As shown in Table 3, there are 37 
developers whose work activity is less than 5% of the 
total workdays in the considered subset of koffice 
development history.  

It is interesting to investigate the relationship between 
the activity and commit contribution of the developer.  
For instance, does the most active developer have the 
largest commit contribution?  Figure 2 shows this 
relationship for a subset of the koffice project (also 
supplementary data in Table 1 and Table 3).  As we can 
see, the most active developers (top three) also have the 
most commit contributions.  In general the commit 
contribution and the activity of developers tend to be 
similar.   

Now that we have described some of the ways of 
inferring developer contributions, we next describe how 
to use them to recommend developers to assist for a 
change in a source code file.  

3. Developer Expertise and Recommendation 
We use a combination of the three contribution 

measures to infer candidate developers who could best 
assist for a change in a given source code file.  The 
contribution measures that are used are the commit 

contribution, the most recent activity date, and the 
number of active workdays.  All these measures are 
obtained from the commits in the source code 
repositories of the system.  We use these measures to 
determine developers that are likely to be experts in a 
specific source code file, i.e., developer–code map.   

 
Table 3.  Frequency distribution of the developers 
over the number of workdays they are active in a 

subset of koffice development period along with their 
commit contributions.   

Developer 
Activity 

No. Of 
Developers 

Commit 
Contributions 

1% - 5% 37 8% 
6% - 10% 7 8% 

11% - 15% 4 7% 
16% - 20% 2 4% 
21% - 25% 1 3% 
26% - 30% 1 3% 
31% - 35% 3 14% 
36% - 40% 1 7% 
41% - 45% 1 5% 
46% - 50% 1 9% 
56% - 60% 1 13% 
66% - 70% 1 19% 

Total 60 100% 
 
The developer-code map is represented via the 

developer-code vector DV for the developer d and file f, 
as shown below, 

DV(d, f) = <Cf, Af, Rf>, where: 

Commits vs. Activity

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Developers

%Activity

%Commits

Figure 2.  Frequency distributions of developers over activity and commit contributions in a subset of koffice 
development history.  It shows that the most active developers also tend to have the most commit contributions 



   

 Cf is the number of commits, i.e., commit 
contributions that include the file f and are 
committed by the developer d. 

 Af is the number of workdays in the activity of 
the developer d with commits that include the file 
f.  

 Rf is the most recent workday in the activity of the 
developer d with a commit that includes the file f. 

Similarly, the change contributions to the file F can be 
represented via the file-change vector FV, as shown 
below, 

FV(f) = <C’f, A’f, R’f>, where 
 C’ f is the total number of commits, i.e., commit 

contributions, that include the file f. 
 A’ f is the total number of workdays in the activity 

of all developers with commits that include the 
file f.  

 R’ f is the most recent workday with a commit that 
includes the file f. 

The contribution or expertise factor, termed Xfactor, 
for the developer d and file f can be computed using a 
similarity measure of the developer-code vector and the 
file-change vector.  Here, we use the Euclidean distance 
to find the distance between the two vectors.  Distance is 
an opposite of similarity, this means that lesser the value 
of the Euclidean distance, greater the similarity between 
the vectors.  The Xfactor can be given as follows, 

Xfactor(d,v) = 

! 

1

DV (d , f )" FV ( f )
 

Xfactor(d,v)= 

! 

1

(Cf "C ' f )
2

+ (Af " A' f )
2

+ (Rf " R' f )
2

 

 
We use the Xfactor as a basis of the recommendation 

method used to suggest a ranked list of developers to 
assist with a change in a given file.  The developers are 
ranked based on their Xfactor values.  The developer 
with the highest value is ranked first.  Note that we 
discard all the developers for which the developer-code 
vector DV(d, f)  for any given file is zero (case that would 
give an undefined Xfactor value).  Of course, there 
maybe some files that have not been changed in a very 
long time, or this is the first change where a file is added.  
As a result, there will not be any recommendation.  To 
overcome this problem, we look for developers who are 
experts in the package that contains the file, and 
recommend them instead.  The package here means the 
immediate directory that contains the file. 

We define the package expert as the one who updated 
the largest number of different (unique) files in a specific 
package.  We feel the package experts are a reasonable 
choice and a developer with experience in several files of 
a specific package can most likely assist in updating a 
specific file in that package.  As a final option, if no 

package expert can be identified, we turn to the idea of 
the system expert.  The system means a collection of 
packages.  It can be a subsystem, a module, or a big 
project (e.g. kspread, koffice, gcc …etc).  The system or 
project expert is the person(s) who are involved in 
updating the largest number of different (unique) files in 
the system.  The person who updated more files should 
have more knowledge about the system.  In this way we 
move from the lowest, most specific expertise level (file) 
to the higher, broader levels of expertise (package then 
system).  According to this approach, we guarantee that 
the tool always gives a recommendation (unless this is 
the very first file added to the system).  The procedure 
for the suggested approach is given in Figure 3. 

Recommender (f, p, maxFileExperts,   
                  maxPackageExperts,  maxSysExperts, h) 
Begin 
// f: the file name 
// p: the package name that contains f 
// h:  the period of history    
 
For each developer d appeared in h do  
   Begin    

if  Xfactor(f,d) > 0 then add d to fileList  
     descendingSort(fileList) by the Xfactor values 
     show fileList [1 …maxFileExperts] 
   End for 
 
If fileList.size( ) >= maxFileExperts, then Exit 
  
For each developer d appeared in h do 
   Begin  

//no. of files in package p updated by d  
if fileCount (p,d) > 0 then add d to packageList 
ascendingSort(packageList) by fileCount values 
show packageList [1 …maxPackageExperts] 

   End for 
 
If packageList.size( ) >= maxPackageExperts,  
                                                                then Exit 
For each developer d appeared in h do 
   Begin          

 //no. of files in the whole system updated by d 
 if fileCount (d) > 0 then add d to sysList 
 ascendingSort(sysList) by fileCount values 
 show sysList [1 …maxSysExperts] 

   End for 
 
End 
 
Figure 3: The procedure to give a ranked list of 

developer candidates. 
 



   

The three integer parameters; maxFileExperts, 
maxPackageExperts, and maxSysExperts are determined 
by the user of the tool.  As we will see in the validation 
section, three seems to be a reasonable heuristic for both 
maxFileExperts and maxPackageExperts.  Additionally, 
we suggest that the values of these parameters follow the 
property maxSysExperts >= maxPackageExperts >= 
maxFileExperts.  To help understand the process we now 
present a detailed example/scenario of using our 
approach.   

4. xFinder  
We realized our approach in the form of a tool, 

namely xFinder (for expert finder).  We now give a 
detailed example of using our approach and xFinder on 
part of the koffice open source system.  Consider a 
situation where a developer needs help in updating the 
file kspread/Canvas.cpp, which is a file in the koffice 
project.  Suppose that four is the maximum number of the 
recommended developers (maxFileExperts).  xFinder 
will give the list of developers shown in Figure 4, which 
is part of the xFinder tool interface. 

 

 
Figure 4: The recommended developers generated by 

xFinder for the kspread/Canvas.cpp source file  
 
The four developers IDs that appear in the “File 

Experts” list are the IDs of all developers who previously 
updated this file and are ranked according to their Xfactor 
in this file (kspread/Canvas.cpp).  Only four IDs have 
been shown because the (maxFileExperts) parameter is 
set to four.  

 

 
Figure 5: The recommended developers generated by 
xFinder for the commands/KWPageInsertCommand.h 

header file 
 

As another example, consider the header file 
commands/KWPageInsertCommand.h, which is also part 
of koffice.  The recommendations for this file are shown 
in Figure 5. 

Note that there are no file experts here.  That is, there 
is no historical information for this file in the period of 
time specified by the user.  Here, the user may have 
limited the mining period to one year previous from the 
current date.  As the approach suggests, when there are 
no file experts or their number is less than a predefined 
value (maxFileExperts), the package experts are 
recommended.  The package experts are ranked 
according to their experience in the package that contains 
the files.  In the above example, the maximum number of 
the package experts (maxPackageExperts) is four. 

One final example, if the file kounavail/kounavail.h is 
used as input to the tool.  The three parameters 
maxFileExperts, maxPackageExperts, and 
maxSysExperts are all set to three.  The tool generates 
the recommendation lists that are shown in Figure 6. 
 

 
Figure 6: The recommended developers generated by 
xFinder for the kounavail/kounavail.h header file 
 
The system expert list appears here because the 

recommended package experts are less than three (the 
maxPackageExperts parameter).  One important note 
here, the priority in the ranking is for file experts, then 
package experts, and finally the system experts.  From 
the previous example, the top ranked developer in the 
third list has the rank order three. 

 
Figure 7: Invoking xFinder to find the experts in 

Canvas.pp source file 
 
xFinder has been implemented using Java as a plug-in 

tool for Eclipse IDE.  The tool can be invoked by 
clicking on the xFinder command that appears in the 
right click menu of the file (Figure 7).  The tool has a set 



   

of input parameters (Figure 8) that need to be set by the 
user.  These parameters are the mining history and the 
three integer parameters that control the sizes of the three 
expert lists.     

 
Figure 8: Snapshot of xFinder input screen where its 

parameters are set by the user 

5. Evaluation 
The main goal of the evaluation is to assess the 

accuracy of our approach in correctly recommending the 
developers for a change in a given source code file.  We 
use the source code version history as the data source for 
both training and evaluating our approach.  The general 
methodology is to take a test-pair of file and developer, 
(f, d), from a commit, c.  We trigger our approach to 
recommend a ranked list of developers for the file f by 
mining the commits that occurred before the commit c.  
If the developer d is in the recommended list, we 
consider that the pair (f, d) was correctly recommended.  
We repeat this process for a number of test pairs and 
report the accuracy in terms of percentage. 

Since the (maximum) number of developers 
recommended can be more than one, we also evaluate the 
accuracy with regards to the ranked order at which the 
correct developer d from the test pair is recommended.  
This is an important factor, as there is a very little 
meaning in claming an accurate recommendation, if the 
correct developer is listed towards the bottom in a long 
litany of candidates suggested.  In other words, one could 
simply say that the correct developer is one of all the 
developers who contributed to this project, and claim 
accuracy.  We report the accuracy results for each 
individual rank (e.g., at rank 1, rank 2, and rank 3) in the 

recommended list. 
Another goal is to compare the accuracies of 

recommendations made with individual component, i.e., 
commit contributions, activity, most recent workday, 
package expertise, and system expertise, and their 
combination that are used in our approach.  

We use a subset of the version histories of eight open 
source projects, shown in Table 4, for the evaluation 
process.  These projects were selected to include 
diversity in the sizes, programming languages, and 
application domains, development organizations, and 
processes.  A set of commits is extracted from the version 
history of each project.  The name of the file is in the 
format package-name/file-name.   

The extracted set of commits is divided into two sets: 
a training set and a testing set.  The testing set contains 
commits that occur at a later period than the commits in 
the training set.  The number of commits in the training 
set is larger than the number of testing set.  The training-
set was used as the data source for our approach to 
generate a list of developers for the data in the testing set.  

For each commit, we extracted the committer ID, the 
date of the change, and the names of all the files in this 
revision.  From the commits in the test set, we extracted 
the files and the developers who updated these files 
(actual developers) and they are represented in the form 
of a test pair (file name, committer ID).  The file name is 
used as a help request.  The recommendation given by 
the tool for that request is compared with the committer 
ID in the test record.  

For example, we extracted the commits in a time 
period of about 10 months from the koffice project.  The 
revision information of the first 297 days was used as a 
training set.  There were 5565 commits performed during 
these days.  The commits of the last 7 days are used to 
generate the test set.  From the commits of these seven 
days, we gathered 272 test pairs for evaluation.  For each 
record the file name is used as an input to the tool.  The 
resulting list of recommended developers is compared 

Table 4: Recommendation correctness over eight projects. The training set size is the number of commits 
and the test set size is the number of tested (file, developer) pairs. 

Training Set  
(Commits) 

Test Set 
(file, developer) 

File Expert Package 
Expert 

System 
Expert 

 
System 

Size Period Size Period Rank 
1 

Rank 
2-3 

Rank 
1-3 

Rank 
1-3 

 
 

Total 

kdelibs 5885 11 months 145 5 days 26% 14% 7% 1% 48% 
kdenetwork 863  11 months 75  10 days 28% 4% 29% 0 61% 

kdebase 5579 11 months 188 5 days 41% 7% 12% 1% 61% 
kdemulimedia 473 11 months 52  1 month 23% 6% 14% 0 43% 

Kdesdk 724 11 months 165  1 month 13% 6% 48% 0 67% 
Apache- Httpd 535 14 months 57  1 month 23% 25% 17% 14% 79% 

gcc 7236 2 years 106 14 days 27% 21% 10% 2% 60% 
koffice 5565 10 months 272 7 days 52 % 11 % 18 % 1 % 82% 

 



   

with the second element of the record (committer).  If the 
recommended developer is the actual developer who 
appeared in the record, then the recommendation is 
considered correct.  The rank of the actual developer 
within the recommendation list is also taken into account 
in the evaluation of the accuracy.  Here, we set the 
maximum number of developers recommended 
parameter to three at file expertise, package expertise, 
and system expertise levels. 

Table 4 shows the recommendation accuracy of the 
projects considered in our evaluation.  In case of the 
koffice project, for 52% of the test records, the correct 
developer was the first one in the file expert level.  In 
11% of the test cases, the correct occurred at the 
recommended ranked second or third.  In 18% of the test 
case, the correct developer was recommended as one 
among the top three ranked developers at the package 
expert level, i.e., there were no (correct or incorrect) 
recommendation at the file expertise level.   Finally, if 
the correct developer did not appear at both the file 
expertise and package expertise levels, he was 
recommended among the top three at the system expert 
level in 1% of the test cases.  In total, 82% of the test 
cases in koffice have an accurate recommendation of the 
developers at file, package, or system expertise level, and 
are always among the top three ranked candidates.  The 
accuracies among the considered projects range from 
43% to 82% with a number of them falling between 60% 
and 70%. 
 
Table 5: Comparing the recommendation correctness 

of two measures for package experts 
 

System 
No. Of 

Updated Files 
 

[Rank 1-3] 

Commit 
Contribution 

 
[Rank 1-3] 

kdelibs 7% 6% 
kdenetwork 29% 24% 

kdebase 12% 12% 
kdemulimedia 14% 10% 

Kdesdk 48% 43% 
Apache - Httpd 17% 14% 

gcc 10% 11% 
koffice 18 % 17% 

 
Now, we examine the impact including the package 

and system expertise measures on the accuracy.  Once 
again, the result in Table 4 show the accuracy is 
increased in all the projects with the inclusion of these 
measures.  In case of some projects the accuracy is more 
than doubled.  While most of the accuracy gain can be 
attributed to the package expertise measure, we found at 
least one project (Apache httpd) in which the system 
expertise measure contribute almost as much as the 

package expertise measure.  This shows that including 
the package and system level expertise measures is 
worthwhile and improves accuracy substantially. 

Another question here is why we used a seemingly 
orthogonal measure for package and system expertise 
contributions.  We defined package expertise of a 
developer based on the number of unique files updated 
by that developer in a given package.  A measure similar 
to commit contribution that is used for file expertise 
could have been used for package level expertise.  That 
is, package expertise of a developer could be defined as 
the number of commits that are committed by the 
developer in a given package.  Table 5 shows the results 
of the comparison of these two different definitions of 
package expertise on the same data sets as previously 
discussed.  In seven out of eight projects, the definition 
of package expertise (Column 2) measure used in our 
approach outperforms the other (Column 3).  In one 
project (gcc), the commit contribution measure of 
package expertise measure is slightly better than our 
definition of package expertise. 

In our approach we use three different developer 
contributions (measures) to determine file experts.  Now, 
we examine as to how using any of these three measures 
independently compare with the use of their combination.  
In order words, is any one of these measures as ‘good’ a 
parameter as, or better than, the combination used in our 
approach?  To answer this question, we examined the 
same data sets by using these three measures 
independently.  We are concerned about examining the 
file level experts (file expert list), because a different 
measure is used to determine package experts (number of 
unique files updated).   

In two out of eight projects (kdemultimedia and 
Apache httpd), the accuracy obtained via the developer-
code vector, i.e., Xfactor, is better than, any other 
measure.  In only one project (gcc) the developer-code 
vector does not give the best result.  In the remaining five 
projects the accuracy of the developer-code vector is 
good as the maximum accuracy of the three measures. 
Thus, in seven out of eight projects the developer-code 
vector gives at least the maximum accuracy of the three 
other measures.  These results show that the combination 
of the measures, i.e., developer-code vector is possibly a 
better recommender.  Even if the accuracy may not 
increase in some cases, we can be sure, with high 
confidence, that we got the maximum accuracy among 
the three individual measures. 

6. Threats to Validity 
There are some threats that may affect the validity of 

the accuracy of results.  We used different history periods 
to get the training set.  Obviously, it is difficult to use one 
fixed period across different projects due to the variation 
in their different evolution aspects.  For example, some 



   

projects have more activity in one month than another 
does in one year.  As a result the sizes of the data sets 
also vary.  In the validation process we used the 
committer ID which represents the developer’s identity.  
We do not know exactly who changed the file, but only 
who committed from the repository data.  Also, if the 
developer has more than one ID [12], the accuracy of the 
result will be affected.  The validation has been applied 
on a subset of only eight projects.  Another area of 
investigation is the use of other similarity measures for 
vectors (e.g. Cosine or Manhattan distance) for 
computing the XFactor values and their impact on the 
recommendation accuracy.  Finally, all the projects that 
we used for testing are open source projects.  We do not 
claim that the results presented here would hold equally 
on other types of projects (e.g. closed source).   

Our tool needs version history in order to give a 
recommendation.  If there is not a “good” portion of 
development history, our tool will most likely not be able 
to function with a high accuracy (or in the worst case not 
provide any recommendation at all).  The accuracy of the 
recommended list seems to improve with an increase in 
the training set size, however this has certain limits.  This 
could be attributed to the fact that when open source 
projects evolve, their communities also evolve [11], so 
the relationship between the length of the historical 
period of time and the accuracy of the recommendation is 
not very decisive.   This is an interesting issue of future 
investigation. 

7. Related Work 
McDonald and Ackerman [8] developed a heuristic 

based recommendation system called the Expertise 
Recommender (ER) to identify experts at the module 
level.  Developers are ranked according to the most 
recent modification date.  When there are multiple 
modules, people who touched all the modules are 
considered.  Vector based similarity are also used to 
identify technical support.  For each request three query 
vectors are created; symptoms, customers, modules.  This 
vector is then compared with the person’s profile.  This 
approach depends on user profiles that need to be 
additionally and explicitly collected upfront.  This 
approach has been designed for the specific organizations 
and not tested on open source projects.     

Mino and Murphy [9] produced a tool called 
Emergent Expertise Locator (EEL).  Their work is 
adopted from a framework to compute the coordination 
requirements between developers given by Cataldo et al. 
[4].  EEL helps in finding the developers who can assist 
in solving a particular problem.  The approach is based 
on mining the history of how files have changed together 
and who has participated in the change.  In our approach 
we also include the activity, i.e., workdays, of the 

developers and identify experts at the package and 
system levels and not only at the file level.  

Expertise Browser (ExB) [10] is another tool to locate 
people with a desired expertise.  The elementary unit of 
experience is the Experience Atom (EA).  Experience is 
measured by the number of these EAs in a specific 
domain.  The smallest EA is the code change that has 
been made on a specific file.  In our approach, the 
number of EAs corresponds to the commit contribution.  
Again we included more than one parameter in deterring 
file experts. We also used two different measures to 
identify experts: one measure for file experts and another 
for package and system experts.    

Anvik and Murphy [2] did an empirical evaluation of 
two approaches to locate expertise.  As developers work 
on a specific part of the software, they accumulate 
expertise.  They term this expertise implementation 
expertise.  The two approaches are based on mining the 
source and bug repositories.  The first approach examines 
the check-in logs for the modules that contain the fixed 
source files.  Recently active developers who did the 
changed are selected and filtered.  In the second 
approach, the bug reports from bug repositories are 
examined.  The developers are selected from the CC lists, 
the comments, and who fixed the bug.  They found that 
both approaches have relative strengths in different ways.  
In their first approach, the most recent activity date is 
used to select developers.  This study focuses on identify 
experts to fix bugs or to deal with bug reports.  Our 
approach uses only source code repositories and no other 
repositories (e.g., bug repositories).        

A machine learning technique has been used in [1] to 
automatically assign a bug report to the right developer 
who can resolve it.  The classifier obtained the machine 
learning technique analyzes the textual contents of the 
report and recommends a list of developers.  Another 
text-based approach is used in [13] to build a graph 
model called ExpertiseNet for expertise modeling.  Our 
approach uses expertise measures that are computed in a 
straightforward manner from the commits in source code 
repositories (and does not employ a machine learning 
like technique). 

There are also works on using MSR techniques to 
study and analyze developer contributions.  German [7] 
described in his report some characteristics of the 
development team of PostgreSQL. He found that in the 
last years only two persons have been responsible for 
most of the source code.  Tsunoda et al. [14] analyzed the 
developers’ working time of open source software.  The 
email sent time was used to identify developers’ working 
time.  Bird et al. [3] mined email archives to analyze the 
communication and co-ordination activities of the 
participants. Yu and Ramaswamy [16] mined CVS 
repositories to identify developer roles (core and 
associate).  The interaction between authors is used as 



   

clustering criteria.  The KLOC and number of revisions 
are used to study the development effort for the two 
groups.  Weissgerber et al. [15] analyze and visualize the 
check-in information for open source projects. The 
visualization shows the relationship between the lifetime 
of the project and the number of files and the number of 
files updated by each author.  German [6] studied the 
modification records (MRs) of CVS logs to visualize 
who are the people who tend to modify certain files. 

8. Conclusions and Future Work 
We presented an approach to identify expertise in 

open source projects.  The approach recommends a 
ranked-list of experts in a specific source file.  The 
analyzed contribution includes commit contribution, 
activity, recent activity date, and the number of files 
updated.  This combination of contribution measures can 
be computed efficiently by only examining commit logs 
and yet still achieves high accuracy.  This differs from 
previous approaches to this problem that examine a wide 
range of artifacts from a number of different repositories 
or employ more computationally expensive techniques. 

We validate the approach using a subset of eight open 
source projects.  The validation shows that the approach 
gives a reasonable accuracy results and it can be a base 
for or part of other expertise identification tools. 

In future, we plan to evaluate the approach on more 
open source projects with very large historical 
information.  We also plan to extend the approach to 
identify experts in syntactic entities (e.g., class and 
method).  So we will have then lower levels of expertise.  
We will also investigate other contribution/expertise 
measures to include in the approach (e.g., the interaction 
between developers).   

9. References 
[1] Anvik, J., Hiew, L., and Murphy, G. C., "Who Should Fix 
This Bug?" in Proceedings of 28th international conference on 
Software engineering (ICSE '06), Shanghai, China, 20-28 May 
2006, pp. 361 - 370. 

[2] Anvik, J. and Murphy, G., "Determining Implementation 
Expertise from Bug Reports", in Proceedings of Fourth 
International Workshop on Mining Software Repositories 
(MSR'07), Minneapolis, MN, May 20-26 2007. 

[3] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and 
Swaminathan, A., "Mining Email Social Networks", in 
Proceedings of 2006 International Workshop on Mining 
Software Repositories (MSR '06), Shanghai, China, May 22-23 
2006, pp. 137-43. 

[4] Cataldo, M., Wagstrom, P., Herbsleb, J., and Carley, K. M., 
"Identification of Coordination Requirements: Implications for 
the Design of Collaboration and Awareness Tools", in 
Proceedings of 20th anniversary conference on Computer 
supported cooperative work (CSCW'06), Alberta, Canada, 
2006, pp. 353 - 362. 

[5] Fritz, T., Murphy, G., and Hill, E., "Does a Programmer's 
Activity Indicate Knowledge of Code?" in Proceedings of 6th 
Joint Meeting of the European Software Engineering 
Conference and the ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (ESEC/FSE'07), Cavtat, 
Croatia, September 3-7 2007, pp. 341 - 350. 
[6] German, D. M., "An Empirical Study of Fine-grained 
Software Modifications", Empirical Software Engineering, vol. 
11, no. 3, September 2006, pp. 369-393. 
[7] German, D. M., "A Study of the Contributors of 
PostgreSQL", in Proceedings of 2006 International Workshop 
on Mining Software Repositories (MSR '06), Shanghai, China, 
May 22-23 2006, pp. 163 - 164. 

[8] McDonald, D. and Ackerman, M., "Expertise 
Recommender: A Flexible Recommendation System and 
Architecture", in Proceedings of 2000 ACM Conference on 
Computer Supported Cooperative Work (CSCW '00), 
Philadelphia, PA, December 2-6, 2000, pp. 231-240. 

[9] Minto, S. and Murphy, G., "Recommending Emergent 
Teams", in Proceedings of Fourth International Workshop on 
Mining Software Repositories (MSR '07), Minneapolis, MN, 
May 20-26 2007. 

[10] Mockus, A. and Herbsleb, J., "Expertise Browser: a 
Quantitative Approach to Identifying Expertise", in Proceedings 
of 24th International Conference on Software Engineering 
(ICSE '02), Orlando, FL, May 19-25 2002, pp. 503-512. 

[11] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., 
and Ye, Y., "Evolution Patterns of Open-Source Software 
Systems and Communities", in Proceedings of International 
Workshop on Principles of Software Evolution (IWPSE'02), 
Orlando, Florida, 2002, pp. 76-85. 
[12] Robles, G. and Gonzalez-Barahona, J. M., "Developer 
Identification Methods for Integrated Data From Various 
Sources", in Proceedings of 2005 international workshop on 
Mining software repositories (MSR'05), St. Louis, Missouri, 
2005, pp. 1-5. 

[13] Song, X., Tseng, B., Lin, C., and Sun, M., "ExpertiseNet: 
Relational and Evolutionary Expert Modeling", in Proceedings 
of 10th International Conference on User Modeling (UM'5), 
Edinburgh, UK, Jul. 24-29 2005. 

[14] Tsunoda, M., Monden, A., Kakimoto, T., Kamei, Y., and 
Matsumoto, K.-i., "Analyzing OSS Developers' Working Time 
Using Mailing Lists Archives", in Proceedings of 2006 
International Workshop on Mining Software Repositories 
(MSR '06), Shanghai, China, May 22-23 2006, pp. 181 - 182. 

[15] Weissgerber, P., Pohl, M., and Burch, M., "Visual Data 
Mining in Software Archives to Detect How Developers Work 
Together", in Proceedings of Fourth International Workshop on 
Mining Software Repositories (MSR'07), Minneapolis, USA, 
May 20-26 2007. 
[16] Yu, L. and Ramaswamy, S., "Mining CVS Repositories to 
Understand Open-Source Project Developer Roles", in 
Proceedings of Fourth International Workshop on Mining 
Software Repositories (MSR'07), Minneapolis, USA, May 20-
26 2007. 
 


