
Studying the Use of Developer IRC Meetings in Open Source Projects

Emad Shihab, Zhen Ming Jiang and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, K7L 3N6, Canada

{emads, zmjiang, ahmed}@cs.queensu.ca

Abstract
Open source developers communicate with each other

via various online outlets. Thus far, mailing lists have been
the main coordination mechanism. However, our previous
study shows that the use of developer IRC meetings is in-
creasing in recent years. In this paper, we perform a study
on the IRC meetings of two large open source projects: the
GTK+ and Evolution projects. We explore three dimen-
sions: who participates in the meetings, what do they dis-
cuss and how do they run the meetings. We find 1) that a
small and stable number of the participants contribute the
majority of messages in meetings, 2) that there are com-
monly discussed topics as well as project specific topics 3)
that meeting styles vary across different projects.

1. Introduction

Developers of Open Source Software (OSS) are dis-
tributed across the world [18, 25]. OSS developers rarely
meet in person, instead they coordinate most of their activi-
ties through online outlets, such as mailing lists, emails, bug
tracking systems, Internet Relay Chat (IRC) channels, IRC
meetings or instant messaging (IM) [23]. Thus far, mailing
lists have been the main communication medium for devel-
opers of open source projects [7]. Mailing lists provide an
open communication medium where all developers can re-
view code and discuss concerns [22, 26, 27, 30].

Developer IRC channels are common servers, open 24
hours a day, where developers can connect and discuss in-
formally, with no agenda agenda [19]. IRC channels are
mainly used to ask others questions that pop up at the spur
of the moment or to get quick feedback. IRC channels are
very similar to IM, except for the fact that messages, by de-
fault, are viewable by everyone logged into the channel.

On the other hand, developers use developer IRC meet-
ings to hold focused group discussions in a short period of
time. The meetings are chaired by a meeting chair and are
usually used to discuss several maintenance and project re-
lated issues such as upcoming releases, major bugs or task
assignments.

Prior studies examined the developer IRC channels
of distributed industrial and open source development
teams [13, 17, 21]. However, very little is known about de-
veloper IRC meetings in the software maintenance and en-
gineering communities. This limited knowledge is mainly
attributed to the fact that developer IRC meetings are rarely
archived. This paper aims to highlight the wealth of infor-
mation that can be obtained from developer IRC meetings.
We explore the IRC meeting archives for two large open
source projects (Evolution and GTK) along the following
three dimensions:

1. Meeting participants. We quantified the contribution
of participants and their stability over time.

We found that key project members partici-
pate in IRC meetings and that a small and
stable group of the participants contributes
the majority of the IRC messages.

2. Meeting content. We explored the characteristics of
the topics discussed in the meetings.

We found that both projects share similar
topics, such as bugs and patches, while hav-
ing project specific topics that are consis-
tent across time.

3. Meeting style. We characterized the communication
style of the participants and studied their addressing
patterns.

We found that meeting styles vary across
projects and that participants often address
one another directly.

To the best of our knowledge, this paper and our prelimi-
nary study [29] are the first to study developer IRC meetings
in a distributed open source development setting.
Overview of paper. Section 2 details the role of IRC meet-
ings. Section 3 describes the studied projects. Section 4



(a) IRC discussion continues on bugzilla/mailing list

(b) Mailing list discussion being discussed in IRC meeting

Figure 1: IRC discussions complementing other coordina-
tion mechanisms

presents the process used to mine the IRC archives. We
present and analyze our results in Section 5. We discuss
the implications of our findings, possible future work and
our threats to validity in Section 6. The related work is dis-
cussed in Section 7. Section 8 concludes the paper.

2. The role of IRC meetings

In our previous preliminary study [29], we showed that
the usage of IRC meetings among OSS developers is grow-
ing over time.

In this paper, we sought to study the role of IRC meet-
ings. We inspected the meeting logs for two large projects
(Evolution and GTK+). We found that IRC meetings serve
three roles:

1. To complement other coordination mechanisms (e.g.
mailing lists).
The excerpt in Figure 1(a) shows an IRC discussion
that is moved to another coordination mechanisms (in
this case the mailing list or bugzilla). Figure 1(b)
shows a mailing list discussion that is brought up in
the IRC meeting.

2. To substitute physical meetings.
Figure 2 shows an excerpt that highlights the use of
IRC meetings as a substitute to physical meetings. In
the excerpt, some of the developers note their reluc-
tance to travel to particular destinations (in this case
the United States) and use the IRC meeting as a sub-
stitute.

3. To answer questions and brainstorm.
Figure 3 depicts a small brainstorming session
that is initiated by a question from the participant
federico. During our study, we observed that many
question-answer/brainstorming discussions are held in
the developer IRC meetings.

3. Studied projects
In this paper, we study the IRC meetings of the Evolution

and GTK+ projects. We study these two projects for the fol-
lowing three reasons: 1) both projects are large open source
projects that have a rich history (more than 8 years of devel-

Figure 2: IRC meetings as a substitute for physical meetings

Figure 3: IRC discussions for brainstorming

opment), 2) both projects cover two different domains (mail
client and graphical library), and 3) both projects regularly
hold and archive their developer IRC meetings.

Evolution is the mail client of the GNOME desktop.
It provides email, address book and calendar function-
ality [2]. The GTK+ project is a library used to create
graphical user interfaces (GUIs) for Windows and UNIX
like platforms [4]. Developer IRC meetings are held by
the GTK+ and Evolution development teams on a regular
basis to discuss various project related issues, (i.e. bugs,
release schedules and task assignments). However, the
meetings are open to anyone interested in the project.
We obtained the developer IRC meeting logs that are
held in #gtk-devel [3] and #evolution-meet [1].
The number of meetings held, the number of different
participants attending the meetings and the number of
message lines is shown in Table 1.

Table 1: IRC meeting statistics for the studied projects

No. of meetings No. of participants No. of message lines

Year Evolution GTK+ Evolution GTK+ Evolution GTK+

2004 - 34 - 44 - 5,105
2005 21 38 65 66 4,442 5,991
2006 - 13 - 24 - 1,252
2007 10 8 23 37 1,281 1,941
2008 31 14 28 44 3,725 2,903



Figure 4: Sample IRC meeting log

The Evolution project started archiving their IRC meet-
ing logs in 2005. The logs for 2006 were not available
on their web site, therefore, in our study we use the IRC
meeting logs from the years 2005, 2007 and 2008. The
IRC meeting logs for the GTK+ project were archived since
2004 till present. In our study, we considered the logs from
the time they were first archived till the end of December
2008.

We studied 105 of the 107 IRC meetings for GTK+ (two
of the GTK+ meetings were summarized and no meeting
logs were made available) and 62 IRC meetings for Evolu-
tion. In total, we studied 26,640 IRC messages (17,192 for
GTK+ and 9,448 for Evolution) from 167 meetings, held
over a period of 8 years (5 years for GTK+ and 3 years for
Evolution). A total of 218 (127 for GTK+ and 91 for Evo-
lution) unique participants contributed to these meetings.

4. Mining IRC archives
In this section, we detail the approach used to process the

archived IRC data. In a nutshell, we first examine the IRC
logs to determine the different types of message formats.
Next, we build a message parser which extracts the individ-
ual messages. Then, we resolve multiple name aliases and
reconstruct the individual IRC messages. Finally, we store
the data in a database for further examination. Each of these
steps is detailed in the following subsections.

4.1. IRC logs

Each IRC meeting is logged in a separate text file. A
sample meeting log is shown in Figure 4. After obtain-
ing the IRC meeting logs, a manual inspection yielded two
types of IRC meeting logs. In the GTK+ project, the ma-
jority of the logs were comprehensive and included the start
time (denoted as A in Figure 4), the list of attendees (de-
noted as B), the messages exchanged by the meeting partic-
ipants (denoted as C) and the end time of the meeting (de-

noted as D). The IRC logs from the Evolution project were
generally less descriptive and only the messages exchanged
by the meeting participants (denoted as C in Figure 4) were
included.

4.2. Message parsing

We manually inspected the IRC logs and identified five
different types of IRC message lines (as shown in Figure 5).
In some cases, the month, date and time are included in the
time stamp, while in others only the time is logged. In other
cases, the time stamp was omitted altogether. It is worth
noting here that this manual step is done only once, before
we design and build our message parser.

After successfully identifying the different message for-
mats, we built an IRC message line parser. The IRC mes-
sage parser uses regular expressions to handle the different
message formats. Given the limited number of IRC meet-
ings in both projects, we were able to verify the accuracy
of our parser for each meeting. We found this approach to
work well in our case since we only had to deal with five
different message formats.

4.3. Multiple name resolution

Participants of IRC meetings assign themselves nick-
names before they join and sometimes change their nick-
names during the meeting. Therefore, there can be multi-
ple nicknames (aliases) for the same person. This so called
multiple alias problem is similar to the multiple alias prob-
lem observed in mailing lists [8].

Figure 5: Different IRC messages formats



For example, the participant jrb uses five different
aliases:

jrb
<jrb>
<jrb_>
<jrb_meet>
<jrb_sick>

Using name similarity heuristics, we resolved the major-
ity of the aliases, however, manual inspection was required
to resolve some of the rare cases. Furthermore, the major-
ity of the IRC meeting participants use abbreviated names,
therefore, methods such as the one proposed by Robles and
Gonzalez-Barahona [28] may be used to accurately identify
the participants’ real names. Such identification becomes
extremely important when multiple data sources (i.e. source
code repositories, mailing lists and IRC meeting logs) are
used together and one needs to create a unique identifier for
each participant across all sources.

4.4. Data storage

After parsing the message lines, we reconstructed the
IRC messages in preparation for storage in the database.
Each IRC message contains three properties: date, name
and message.

The information is stored in a PosgreSQL database for
further use. The use of a database eases the exploration of
the data at hand since we could rapidly explore different
questions and generate specialized views to answer these
questions.

5. Results and analysis
Our findings are presented below. First, we discuss the

participant’s attendance, their contribution and their stabil-
ity over time. Then, we present our findings on meeting
content. Lastly, we study the meeting organization and ad-
dressing patterns.

5.1. IRC meeting participants

We sought to examine the people who attend the IRC
meetings. By understanding who attends these meetings
and their contribution and attendance pattern, we can bet-
ter understand the use of these meetings and the benefit
of studying the discussion in these meetings. Our study is
structured along the following three research questions.

Who participates in the meetings?
For each project, the project documentation states that the
meetings are attended by the “Evolution team” for the Evo-
lution project and the “GTK+ team” for the GTK+ project.
Team in this context refers to the core development team
of the project. However, the meetings are open to everyone
who is interested in the projects.

To investigate whether the core developers attended the
IRC meetings or not, we obtained the names of the core

developer team of the GTK+ project from the project’s web
site. Then, we manually linked the real names to their IRC
nicknames as used in the IRC meetings. We were able to
identify the IRC nicknames of 9 of the 10 core developer
team members.

We measured the attendance of the core team during the
year 2008 and found that out of the 14 meetings held in
2008, 8 of the 9 identified core team members attended at
least 1 meeting and 50% of them attended more than half of
the meetings held that year. Further, the average number of
participants per meeting in the year 2008 is 10 participants.
We can conclude that the core development team regularly
attends the IRC meetings and that the meetings are popu-
lar (i.e. frequently attended) amongst other developers. We
elaborate on this point and quantify the participant contri-
bution next.

We did not perform the same analysis on the Evolution
project since we were unable to obtain a list of its core de-
velopers.

How much do participants contribute?
The Pareto principle, states that the majority of the effects
come from a minority of the causes. For instance, research
shows that 20% of the code contains 80% of the bugs [11].

We conjecture that there exists a few participants (whom
we call the dominant group) in IRC meetings that are re-
sponsible for most of the posted messages. In open source
development, there is typically a central group that is re-
sponsible for important tasks, such as official releases [23].
They are members who are very knowledgeable about the
project or members who are responsible to coordinate the
project development efforts. This central body guides and
supports newcomers and less active participants (whom we
call the casual group). It is important to investigate whether
a dominant group exists for two reasons: 1) participants can
directly address their questions to the dominant group so
they can receive more accurate and speedy responses and 2)
the discussions of dominant group members are often used
by others who are less knowledgeable about the project in
the future.

To identify the dominant group, we measured the top
20% most active participants in an IRC meeting based on
the number of posted message on a yearly basis. For exam-
ple for the GTK+ project in 2004, we took the top 9 (20% of
the 44 participants) and labeled the participants as the dom-
inant group. We studied the contribution by the dominant
group in the GTK+ and Evolution IRC meetings. The re-
sults are shown in Table 2. We observe that on average the
dominant group (i.e. 20% of the participants) contributes
close to 80% of the IRC messages in both projects.

We compared the dominant group members for the year
2008 with the core development team members. We found
that 60% of the dominant group for the GTK+ project is
made up of members from the core development team. The



Table 2: Percentage of messages contributed by the Domi-
nant and Casual groups

Evolution GTK+

Year Dominant Casual Dominant Casual

2004 - - 82.5% 17.5%
2005 80.0% 20.0% 81.7% 18.3%
2006 - - 75.8% 24.2%
2007 83.6% 16.4% 74.9% 25.1%
2008 85.2% 14.8% 84.6% 15.4%

Average 82.9% 17.1% 79.9% 20.1%

other 40% of the dominant group are members that are not
part of the core development team. This finding posts two
interesting points: 1) the core development team is actively
involved in the IRC meetings and 2) there are non-core
members who contribute significantly to the IRC meetings
and closely mingle with the core development team. Inves-
tigating the role of the active group of non-core members is
an interesting question which we plan to study in the future.
Nevertheless, the dominant group plays an important role in
the IRC meetings.
How stable are contributions by the participants?
Now that we have determined that the dominant group con-
tributes significantly to the meetings, we study the stabil-
ity of the contribution by the dominant and casual group
members. A relatively stable pattern of contribution by the
dominant group (i.e. one that does not change frequently)
is desirable because it means that dominant group members
are actively involved in the meeting and contribute at the
same rate over time, instead of contributing heavily in a few
meetings and remaining silent in other meetings.

We use the Cosine Distance (CD) similarity metric to
measure the variance in the rate of contribution by partici-
pants to the meetings. The CD similarity metric measures
the similarity between the groups in two consecutive years.
We chose to use the CD as the measure of similarity be-
cause it takes into account the presence of a participant (i.e.
if they are there or not) and their level of contribution when
measuring similarity. It outperforms other simple measures
such as intersection or proportion which only measure the
existence of a participant but not their level of contribution.
The CD similarity is defined as

CD(P,Q) =
∑

x P (X)Q(X)√∑
x P (X)2

√∑
x Q(X)2

The CD metric takes as input two participation distributions
– one for each of the years under study. Each distribution
has the contribution of each of the participants for that year.
So when comparing the dominant group from the year 2005
to the year 2006, the 2005 and 2006 participation distri-
bution for the dominant group are used. The participation

Table 3: Cosine distance of the Dominant and Casual
groups

Evolution GTK+

Year Dominant Casual Dominant Casual

2004-2005 - - 0.86 0.37
2005-2006 - - 0.70 0.16
2006-2007 - - 0.91 0.13
2007-2008 0.98 0.51 0.77 0.19

Average 0.98 0.51 0.81 0.21

distribution records the percentage of messages contributed
by each participant. A value of 0 for the CD metric means
that the pattern of contribution by the group has changed
drastically across two years. A value of 1 for the CD metric
indicates that the pattern of contribution by group is very
stable.

The results are shown in Table 3. We observe that on
average, the contribution pattern by the dominant group
is very stable. Overall, the contribution pattern by domi-
nant group members is at least twice as stable as the casual
group. This is a positive sign indicating that expert mem-
bers, who are critically important to the IRC meetings are
actively and consistently participating and imparting their
knowledge in the meetings. We plan to explore, in more
detail, the contribution variations of the developers in the
future.

5.2. IRC meeting contents

We study the content of the meetings to understand the
value of conducting such meetings over other communica-
tion mechanisms such as mailing lists and bugzilla. We ex-
amine the topics discussed during the meetings. In partic-
ular, we examine the topics common across projects, the
topics specific to a project as well as the time-specific top-
ics.

What are they talking about?
We use the data from the IRC meetings to examine the dis-
cussed topics. Determining the different topics discussed
in the IRC meetings is a good indicator of the use of the
meetings and provides evidence of the usefulness of the in-
formation in these meetings, serving as an guidance for fu-
ture exploration of such logs to support the maintenance and
evolution of large software projects.

To determine the most frequently discussed topics, we
visualize the word tokens from the developer IRC meeting
logs using a tag cloud [6]. A tag cloud counts the frequency
with which a word is mentioned in the text and adjusts the
size of each word according to its frequency. More fre-
quently mentioned words are shown in bigger and bolder
font in the tag cloud. Viewing the cloud, we can quickly



(a) Meetings in 2004

(b) Meetings in 2008

Figure 6: Tag cloud of top 50 words used in the GTK+ IRC
meeting

Figure 7: Tag cloud of top 50 words used in the Evolution
IRC meetings in 2008

spot the most frequently discussed words in the meetings
and we can infer the most popular topics in the meetings.

Informal language and names of participants are com-
monly used in the meetings. The use of informal language
serves as noise and makes it difficult to extract useful in-
formation from these messages. We stemmed all words,
removed all names and stop words and created a tag cloud
of the top 50 words using the exchanged IRC messages.

Figures 6(a) and 6(b) show the most frequently used
words in the GTK+ meetings in the years 2004 and 2008,
respectively. We find that general topics such as bug,

release, patch, API, work and time are frequently
discussed in both tag clouds. In addition, there are top-
ics that are time specific and which change with time. For
example, in the year 2004, the term python is discussed
frequently, while in 2008 we see that deprecate is dis-
cussed frequently and the term python is no longer in the
top 50 words. GTK+ is a graphics library so terms like API,
windows, and button are project specific terms.

Figure 7 plots the tag cloud of the top 50 words
for the Evolution project. Again, main topics such as
bug, release, patch and work are frequently dis-
cussed. Further, project specific terms such as mapi and
exchange are also frequently discussed in the Evolution
IRC meetings. MAPI and Exchange are Microsoft mail
technologies. These topics are very specific to Evolution
which is a mail client.

Our findings post three interesting points: 1) there exist
common topics, such as bugs and patches that are discussed
frequently over time within projects and across projects,
2) there exist project specific topics that are discussed fre-
quently over time and 3) there exist time specific topics that
are discussed within a project during specific time periods.
We discuss these three findings in more detail.

Common topics across projects. As we have seen earlier,
common topics such as bugs and patches appear in the tag
clouds that were created from IRC meetings at different
times and even in different projects. To investigate this find-
ing in more detail, we manually inspected the IRC meet-
ings. We find that common software development tools
like bugzilla, and project management issues like bugs and
patches are regularly discussed in IRC meetings.

To illustrate, we show excerpts from meetings in differ-
ent years and from different projects (shown in Figure 8).
In Figure 8(a), the issue tracking tool bugzilla, is referred
to in GTK+ in the different years (across time) and in Evo-
lution as well (across projects). Figure 8(b) presents the
IRC discussions that are related to project management is-
sues. These project management issues like patches and
releases are also discussed in the IRC meetings across time
and across projects.

Project specific topics. Topics that are specific to a
project, but are not time sensitive are commonly discussed
in IRC meetings as well. For example, we found that the
term widget appears in the years 2004 and 2008 in the
GTK+ project. Furthermore, the term exchange, which is
short for Microsoft Exchange, and its associated API mapi,
is used commonly in the Evolution project.

Figure 9 presents excerpts that support our findings. We
find that widgets are being discussed in the GTK+ project
in 2004 and in 2008 because GTK+ is a graphics library.
On the other hand, Microsoft Exchange (a mail server) is
discussed in Evolution (which is a mail client). The term
exchange is also frequently discussed in Evolution in



(a) Related to the use of development tools

(b) Related to project management

Figure 8: Common topics across projects

prior years as well (2005 and 2007). We were surprised to
note the common use of the term share in the Evolution
project. Further investigation shows that this is due to the
chair of most Evolution meetings in 2008 using the phrase
“anything to share with us?” repeatedly as he goes around
the table asking for updates. This pattern of conducting a
meeting is explored further in the following subsection on
meeting style.

Time specific topics. Some of the topics discussed in
the meetings are time specific. For example, there might
be topics (e.g. features or bugs) that become popular
during a certain period of time then are seldom discussed
afterwards. There are also maintenance related discussions
that become more frequent at different stages of the project
(e.g. deprecated code during code clean up phases in a
project and release plans and documentation around the
time of a new release).

Figure 9: Project specific topics

Figure 10: Time specific topics

From the tag clouds for the GTK+ project, we observe
evidence of the time specific topics. For example, in 2004
the term python is listed as one of the top 50 words used
in the IRC meetings. In 2008, the term python is no
longer listed as being in the top 50 words and the term
deprecate now appears in the tag cloud. We extracted
excerpts to help explain why these terms are popular during
these specific times. It can be observed from Figure 10 that
in the year 2008, the IRC meetings are discussing issues
related to deprecating some of the GTK+ code. Through
manual inspection, we observed that discussions related to
code deprecation were becoming more popular over time.
Also, in 2004, the GTK+ developers were discussing the
pros and cons of using C versus Python while they were ex-
ploring the idea of adding support for python in the GTK+
library. With the decision to support python done in 2004,
the popularity of the term python dropped.

5.3. IRC meeting style

In our study on meeting style, we examine how IRC
meeting are run. In particular, we identify the different
types of meeting styles and study the various addressing
patterns.



Table 4: Percentage of agenda, update and other meetings
in the Evolution and GTK+ projects

Evolution GTK+

Agenda 9.2% 56.5%
Update 87.7% 25.0%
Other 3.1% 18.5%

How are the meetings run?
In this subsection, we examine how the IRC meetings are
run. We found three styles of meetings: agenda meetings,
update meetings and other meetings. Agenda meetings are
organized meetings that follow a specific agenda. Agenda
items are discussed in the meeting and most of the agenda
items are addressed before the meeting adjourns. Update
meetings are meetings where participants meet to provide
progress updates and discuss any difficulties they are fac-
ing. The other type of meetings are meetings that do not
follow an agenda nor a update style. They are brief meet-
ings that are put together to discuss a very specific point.
From our observations, they are usually meetings that dis-
cuss a specific bug or release. In all of the meetings, there
exists a meeting chair who coordinates the meeting.

To quantify the types of meetings, we manually inspect
all of the GTK+ and Evolution developer IRC meetings
and categorize them as follows: if a meeting followed an
agenda, we classify the meeting as an agenda meeting, if
a meeting chair was asking other participants for updates,
then we classify the meeting as an update meeting and if
a meeting is not classified by the previous two categories,
then we include it in the other meeting category. In some
rare cases, the meeting chair addressed an agenda and then
went on to ask for updates from the participants. In such
cases the meeting was counted as both an agenda and a up-
date meeting.

We present the results of our findings in Table 4. The
majority (87.7%) of the meetings held by the Evolution de-
velopers are update meetings; on the other hand, the major-
ity (56.5%) of the meetings held by the GTK+ developers
are agenda meetings.

We extracted some excerpts from the meeting logs and
present them in Figures 11 and 12. In Figure 11 the agenda
and agenda items are regularly being referred to in the
GTK+ meetings. On the other hand, Figure 12 shows the
meeting chair of the Evolution meeting constantly asking
for updates from other participants. The frequent use of the
phrase “anything to share with us” led to the word share
being one of the most frequent words for the GTK+ project
as noted in Figure 9.

How do participants address each other?
Participants can post messages to all the participants in the
IRC meeting or directly address another participant in the

Figure 11: Agenda meetings in the GTK+ project

Figure 12: Update meetings in the Evolution project

channel. Direct addressing is used to ask a question or to
ask for an update from a specific participant. Studying the
direct addressing patterns has many advantages. For ex-
ample, it can be used to identify key project members (i.e.
managers often use direct addressing to ask questions to
other team members) and to study the social connectivity of
the development team (i.e. members that address each other
frequently are most likely to work closest together) [12].

Direct addressing is usually achieved by specifying the
target’s nickname followed by a semicolon or another type
of punctuation [24]. Figure 12 shows an example where di-
rect addressing is used. We measured and quantified the
number of direct-addressing messages in the GTK+ and
Evolution projects.

We found that a large number of the IRC messages are
direct-addressing messages. 39.6% of the GTK+ messages
and 54.4% of the Evolution messages are direct-addressing
messages. Further, we found that the most active IRC meet-
ing participants (i.e. the participants with the most mes-
sages posted) are also the participants with the highest num-
ber of direct-addressing messages. For example, the top 10
most active participants in the GTK+ meetings account for
more than 66% of the direct-addressing messages. A simi-
lar trend is observed for the Evolution project as well.

We observe that, in agenda meetings, the meeting chair
usually directly addresses other participants to discuss their
agenda items. In update meetings, the chair would directly
address participants to ask for progress updates.



6. Discussion
IRC meetings are an important coordination mechanism

that needs to be studied further by the software maintenance
community. IRC meetings allow us to study the dynamics
of the open source development community. They provide
us with features that are unmatched by other static coordina-
tion mechanisms such as mailing lists. In contrast to mail-
ing lists, participants in IRC meetings must respond quickly
instead of being able to think more about their replies like in
mailing lists. Using IRC logs we can recognize the differ-
ent personalities of OSS developers (e.g. more vocal versus
deep thinker personalities). We can also observe firsthand
the characteristics of good project leaders, expert designers,
and great mentors based on their live interaction with others
in the IRC meetings. Given the short-length and real-time
medium of IRC meetings, we can better understand the pri-
orities of open source projects. What are the topics that are
worth raising through this limited time medium? Why are
these topics raised in the IRC? How are these topics raised
through other mediums like the mailing list. As one of the
first exploratory studies of IRC meetings, we discuss inter-
esting avenues for further research along the three dimen-
sions used in our study: participants, content and style.

Meeting participants. With a large number of meet-
ings focusing on providing status updates, the meeting data
could be used to identify domain experts. This first hand
information can be leveraged to enhance cost and effort es-
timation. In addition, the same first hand information can
also be leveraged to enhance current methods used to iden-
tify domain experts. We noted that some of the core mem-
bers of project are not active participants in these meetings
while others actively participate. It would be interesting to
use the participation in IRC meetings as an indicator of fu-
ture core members and of departing core members. Finally,
the real-time exchange of IRC meetings provides us with
insight about the personalities of developers.

Meeting content. Our study on IRC meeting content
reveals that IRC participants discuss topics that are time
specific, project specific and topics that are common across
time and projects. For example, we noted that both projects
use bugzilla as their issue tracking system. We can use the
data from IRC meetings to compare and contrast how these
issues are reported, managed and reviewed across different
projects. This type of information is valuable to studies on
the open source development process. In addition, the in-
formation from IRC meetings can be used to study how key
project members discuss and settle major project decisions
in real-time instead of over mailing lists.

Meeting style. Our study on meeting style shows that
different projects run their meetings differently. Nowadays,
many open source and commercial projects distribute their
software development across the world. Studying the IRC
meeting style can enhance studies which evaluate the coor-

dination overhead of remotely located developers [9]. Fur-
thermore, by studying the IRC meeting interaction, we can
gain insight in best practices and options for future active
project communication tools such as the Jazz platform [5].

Threats to validity
The archived IRC meeting data used in our study does

not contain private messages which may have been sent
during meetings. This type of data is not archived. Fur-
thermore, although our study focused on two large open
source projects, our findings might not generalize to all
open source projects.

7. Related work
Previous work used information from IRC channels to

study: the culture and beliefs in the open source community
and coordination and communication networks that emerge
in globally distributed commercial software development
teams.

Elliott and Scacchi [15–17] used data gathered from
GNU IRC channels to study the organizational cultural be-
liefs and values of free software virtual organizations and
their affect on the software development process. They
found that culture beliefs and values have a significant im-
pact on the processes of free software development.

Gutwin et al. [20] examined how distributed developers
maintain group awareness. They found that awareness is
primarily maintained through IRC channels, Internet radio
and mailing lists.

Cataldo et al. [14] used data from developer IRC chan-
nels to study task dependencies and the coordination activ-
ities performed by individuals. They proposed a technique
that can identify the best “fit” individual for a task. They
showed that their technique can reduce the amount of time
required to perform a task.

Cataldo and Herbsleb [13] studied the evolution of com-
munication networks of a geographically distributed com-
mercial software development project. They found that over
time a core group of developers emerged as a liaison be-
tween teams located in different locations. They also found
that this core group contributed the most to the develop-
ment effort. In addition, they found that members of the
core group rotated in and out of the core based on the de-
pendencies of their technical work at the time.

Our study differs from the previous work by Elliot and
Scacchi [15–17] in that we focus on developer IRC meet-
ings and not developer IRC channels. Previous work by
Cataldo et al. [13, 14] and Gutwin et al. [14] also studies
IRC channels, not IRC meetings. Further, in their studies,
IRC data from a commercial software development team
was used. There are differences between open source soft-
ware development and commercial software development
that may make their findings inapplicable to open source
software development [23].



8. Conclusions
OSS Developers use Mailing lists, Instant Messenger,

IRC channels and meetings to communicate with each
other. Prior research focused on mining developer mailing
lists (e.g. [10] ) and IRC channels (e.g. [13, 17]). How-
ever, little work has studied the use of IRC meetings. At the
same time, previous work [29] shows that IRC meetings are
increasing in popularity (i.e. frequently attended) among
OSS developer.

In this paper, we studied the developer IRC meetings
from two large open source projects along three dimensions:
meeting participants, content, and style. Our study high-
lights the usefulness of studying IRC meetings and provides
interesting directions for future research.

References

[1] Evolution IRC team meetings.
http://projects.gnome.org/evolution/meetings.shtml.

[2] The evolution project. http://projects.gnome.org/evolution/.
[3] Gtk meetings space. http://live.gnome.org/GTK+/Meetings.
[4] The GTK+ project. http://www.gtk.org/development.html.
[5] Jazz community site. http://jazz.net/.
[6] Wordle - beautiful word clouds. http://www.wordle.net/.
[7] O. Baysal and A. J. Malton. Correlating social interactions

to release history during software evolution. In MSR ’07:
Proceedings of the Fourth International Workshop on Min-
ing Software Repositories, 2007.

[8] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan. Mining email social networks. In MSR ’06: Pro-
ceedings of the 2006 international workshop on Mining soft-
ware repositories, 2006.

[9] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy.
Does distributed development affect software quality? an
empirical case study of windows vista. In ICSE ’09: Pro-
ceedings of the 31st international conference on Software
engineering, 2009.

[10] C. Bird, D. Pattison, R. D’Souza, V. Folkiv, and P. Devanbu.
Latent Social Structure in Open Source Projects. In FSE ’08:
Proceedings of the 2008 ACM SIGSOFT symposium on the
Foundations of Software Engineering, pages 24–35, 2008.

[11] B. Boehm and V. R. Basili. Software defect reduction top 10
list. Computer, 2001.

[12] G. Breach. I’m not chatting, I’m innovating! lo-
cating lead users in open source software communities.
http://www.business.uts.edu.au/management/workingpapers
/files/Breach2008.pdf.

[13] M. Cataldo and J. D. Herbsleb. Communication networks in
geographically distributed software development. In CSCW
’08: Proceedings of the ACM 2008 conference on Computer
supported cooperative work, 2008.

[14] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: implica-
tions for the design of collaboration and awareness tools. In

CSCW ’06: Proceedings of the 2006 20th anniversary con-
ference on Computer supported cooperative work, 2006.

[15] M. S. Elliot. The virtual organizational culture of a free soft-
ware development community. In Proceedings of the 3rd
Workshop on Open Source Software Engineering, 2003.

[16] M. S. Elliott. Communicating and mitigating con-
flict in open source software development projects.
http://www.ics.uci.edu/ melliott/commossd.htm, 2002.

[17] M. S. Elliott and W. Scacchi. Free software development:
Cooperation and conflict in a virtual organizational culture.
In Free/Open Source Software Development, Idea Publish-
ing, 2004.

[18] J. Feller and B. Fitzgerald. Understanding open source soft-
ware development. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[19] D. M. German. The gnome project: a case study of open
source, global software development. Software Process: Im-
provement and Practice, 2004.

[20] C. Gutwin, R. Penner, and K. Schneider. Group awareness in
distributed software development. In CSCW ’04: Proceed-
ings of the 2004 ACM conference on Computer supported
cooperative work, 2004.

[21] M. Handel and J. D. Herbsleb. What is chat doing in the
workplace? In CSCW ’02: Proceedings of the 2002 ACM
conference on Computer supported cooperative work, 2002.

[22] A. E. Hassan. The road ahead for mining software reposi-
tories. In Proc. FoSM 2008. Frontiers of Software Mainte-
nance, 2008.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study
of open source software development: the apache server. In
ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, 2000.

[24] P. Mutton. Inferring and visualizing social networks on in-
ternet relay chat. 2004.

[25] E. Raymond. The cathedral and the bazaar. Knowledge,
Technology & Policy, 12(3):23–49, September 1999.

[26] P. C. Rigby, D. M. German, and M.-A. Storey. Open source
software peer review practices: A case study of the apache
server. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, 2008.

[27] P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists
Tell Us? A Preliminary Psychometric Text Analysis of the
Apache Developer Mailing List. In MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software
Repositories, 2007.

[28] G. Robles and J. M. Gonzalez-Barahona. Developer iden-
tification methods for integrated data from various sources.
SIGSOFT Softw. Eng. Notes, 30(4), 2005.

[29] E. Shihab, Z. M. Jiang, and A. E. Hassan. On the
use of internet relay chat (IRC) meeting by developers of
the GNOME GTK+ project. In Proceedings of the 6th
IEEE Working conference on Mining Software Repositories
(MSR), 2009.

[30] P. Weissgerber, D. Neu, and S. Diehl. Small patches get in!
In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, 2008.


