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Abstract—A critical issue in software maintenance and evolu-

tion is change propagation: given a primary change that is made

in order to meet a new or changed requirement, what additional,

secondary, changes are needed? We have previously developed

techniques for effectively supporting change propagation within

design models of intelligent agent systems. In this paper, we pro-

pose how this approach is applied to support change propagation

within UML design models. Our approach offers a number of

advantages in terms of saving substantial time writing hard-coded

rules, ensuring soundness and completeness, and at the same time

capturing the cascading nature of change propagation. We will

also present and discuss the results of an evaluation performed

to assess the scalability of our approach.

I. INTRODUCTION

The ever-changing business environment demands constant
and rapid evolution of software and consequently, change is
inevitable if software systems are to remain useful. In this
context, a critical issue is change propagation [1]: given a
set of primary changes that have been made to software,
what additional, secondary, changes are needed to maintain
consistency within the system? For example, when adding a
message to a sequence diagram, a corresponding method may
need to be added to a class diagram.

Change propagation is very important in the process of
maintaining and evolving a software system. The software
maintainer has to ensure that the change is correctly prop-
agated, and that the software does not contain any inconsis-
tencies. Errors and bugs in software are partly due to unfore-
seen and uncorrected inconsistencies. Unfortunately, change
propagation is a complicated and costly process, especially in
complex software systems. The secondary changes may them-
selves introduce new inconsistencies, which may also trigger
additional changes and so on. Although many approaches
have been proposed, automated change propagation is still a
significant technical challenge in software maintenance and
evolution [1].

Furthermore, most of the existing change propagation ap-
proaches focus on source code (e.g. [2, 3]). However, as the
importance of models in the software development process has
been better recognised, it has become increasingly important to
provide support for dealing with changes at the level of design
models, particularly UML design models. Current modelling
environments provide some support for fixing inconsistencies
in a design model. For instance, IBM Rational Rose auto-
matically detects inconsistencies between class diagrams and

sequence diagrams, and suggests some potential resolutions
for fixing such inconsistencies. However, those design tools
do not adequately address change propagation problems: they
do not capture completely possible changes and are only useful
for trivial tasks [4, 5].

Previous work on change propagation within UML models
has mostly focused on fixing inconsistencies, with most work
aiming to automate inconsistency resolution by having pre-
defined resolution rules (e.g. [6]) or by identifying specific
change impact rules for all types of changes (e.g. [7]).
However, these approaches suffer from the correctness and
completeness issue. Since the rules are developed manually by
the user, there is no guarantee that these rules are complete (i.e.
that they generate all possible inconsistency resolutions) and
correct (i.e. that the resolutions actually fix a corresponding
inconsistency). In addition, a significant effort is required to
manually hard-code such rules when the number of consis-
tency constraints increases or changes.

The work in [8] addresses this issue by proposing an ap-
proach to automatically generate repair actions for consistency
constraints expressed in xlinkit [9]. Recent work by Egyed
et al. [5] proposes a mechanism for fixing inconsistencies
in UML design models by automatically generating a set of
concrete changes. Their approach uses pre-defined choice gen-
eration functions, which compute possible values for locations
in the model, for instance, possible new names for a method.
The generated options are checked against the constraints and
are rejected if they do not in fact repair the constraint, or
if they cause new constraint violations. However, this work
has several major limitations. Firstly, they consider only a
single change at a time, and consequently do not take into
account the cases where a single change may not resolve
all inconsistencies, or may even temporarily introduce new
ones before reaching a consistent state. Secondly, the choice
generation functions are written by hand, and may not be
complete, meaning that the approach is incomplete: it only
considers a subset of the possible ways of repairing a given
constraint violation. Finally, their approach does not consider
the creation of model elements, which in our opinion is an
important part of change propagation.

The work we present in this paper overcomes the above
issues by automatically generating inconsistency resolutions
for UML design models. Consistency constraints are specified
using the Object Constraint Language (OCL) [10], and pos-
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sible inconsistency resolutions are represented in the form of
repair plans (see section IV).

Our previous work has shown the effectiveness of our
approach in supporting change propagation within agent-
oriented design models [11–14]. This paper presents how our
approach can be applied to deal with changes within UML
design models. Although we use the same approach as in
our previous work, this paper will contribute to showing in
detail how our approach is in fact applicable to a UML
setting, which potentially leads to a significantly wider range
of applications. The key ideas of our approach are that (1) a
particular style of representation for repair plans — inspired
by Belief-Desire-Intention (BDI) style agents [15] — allows
a large number of possible inconsistency resolutions to be
represented compactly; furthermore, (2) these repair plans can
be automatically generated from the OCL constraints; and
finally, (3) using a cost calculation can reduce the number
of options to be presented to the user.

Our approach has several advantages over existing ap-
proaches for fixing inconsistencies in UML models1. Firstly,
tool developers save substantial time because they do not
need to write resolution rules or choice generation functions.
Secondly, designers are not required to do any work when
consistency constraints change. Finally, our approach provides
the designer with not just single change actions, but a series
of repair actions (including creation of new model elements
and/or relationships) which make the design consistent.

This paper is organised as follows. We begin with back-
ground on UML and OCL (Section II), and give an example
system design (Section III). We then present our approach,
firstly discussing how repair plans are generated (Section IV),
and then discussing how they are used to perform change
propagation (Section V). Section VI discusses our evaluation.
Finally, we discuss related work in Section VII and then
conclude (Section VIII).

II. BACKGROUND

The Unified Modelling Language (UML) has become the
de facto modelling language for object-oriented software de-
velopment. It has undergone various revisions and the latest
version 2.2 has recently been released. However, UML 2.2 is
not commonly supported in industry, in part, because of legacy
models and tools [16]. Although we apply our approach to
UML 1.4.2 [17], which was adopted as an ISO standard, as
will be seen our ideas and results can easily be applied to
other versions of UML.

UML has a set of diagrams which provide multiple perspec-
tives of the system under development. Due to space limitation
we consider only a fragment of the UML and focus on three
major diagrams: class, sequence and statechart diagrams. Class
diagrams are the most important structural diagrams which
capture the fundamental concepts of object-oriented develop-
ment: classes and their relationships. Sequence and statechart

1Extending our work to encompass code as well as design models is future
work.

diagrams play an important part in modelling in UML since
they capture the behavioural aspect. There is a great deal of
overlap between the three types of diagram. Model elements
defined in class diagrams are used in sequence and statechart
diagrams. Sequence diagrams and statechart diagrams are
complementary in that the former model interactions between
objects, whilst the latter depict the behaviour of a single object.
The three diagram types also cover a large range of modelling
elements in UML. In addition, they are the diagram types
most commonly described and studied in the literature [16].
We do not specifically address other types of diagram, such as
use case and activity diagrams. However, we do not see any
issues with supporting them since our approach operates at the
level of metamodels using consistency constraints which can
also be applied to such diagrams.

The remainder of this section briefly describes two of the
four entities that are used in our change propagation approach,
namely the metamodel and (OCL) consistency constraints.
The other two components are repair plan types (see section
IV) and the model, i.e. the design model for the application,
such as the video on demand (VOD) system described in
section III.

UML is defined using a metamodelling approach. Figure 1
depicts the relationships between major elements in a class
diagram: Class, Association, AssociationEnd and Operation,
and between two major elements in a sequence diagram:
ClassifierRole (usually referred to as objects in a sequence
diagram) and Message. According to the UML metamodel, a
Class has many AssociationEnds, and at least two of those
are needed to form an Association. In addition, a Class

can own multiple Operations and can be a base of several
ClassifierRoles, which can send or receive messages.

Class

ClassifierRole

Operation

Message

*

+base

1..*

+owner

0..1

+operation

*

+receiver

1

+receivedMsg

*

+sender1 +sentMsg

*

+successor

*

+predecessor*

AssociationEnd

-isNavigable : Boolean

Association

+participant 1+association

*

+owner

1

+connection

2..*

Fig. 1: An excerpt of UML metamodel

Figure 2 depicts the key elements of a state machine2 (alter-
natively called a statechart diagram). The behaviour of each
Class can be specified by multiple StateMachines (although
one is sufficient for most purposes). A StateMachine contains
a top-level State and a set of Transitions. All remaining states
are transitively owned by a state machine through its top state
and the state containment hierarchy. A State can be either a

2For the sake of simplicity we abstract away other entities such as
StateVertex, PseudoState, Guard, SubState, etc.



CompositeState (that contains other states), a SimpleState or
a FinalState. Each Transition has a source State and a target
State that is reached when the transition is taken. A transition
can have at most one trigger, which is the Event that fires
the transition. Each state has transitions departing from it and
entering it.

State Transition
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Fig. 2: An excerpt of UML metamodel concerning Class,
StateMachine, State, Transition

Consistency constraints for UML specify conditions that a
UML model must obey for it to be considered a valid UML
model, e.g. syntactic well-formedness and coherence between
different diagrams. Two such consistency constraints3 on how
UML class, sequence and statechart diagrams relate to each
other are given below. The first constraint is a standard UML
well-formedness constraint [17], whilst the second is not4,
but it is an example of a coherence constraint between two
diagrams [18].
C1: The name of a message (in a sequence diagram) must

match an operation in its receiver’s class (in a class
diagram).
Context Message inv c1:

self.receiver.base.operation→exists(op : Operation |
op.name = self.name)

C2: For any incoming message in an object of a sequence
diagram, there must exist a transition in the statechart
diagram of the object’s class that has the same name as
the message.
Context Message inv c2:

self.receiver.base.behaviour.transitions→exists(tr : Tran-
sition | tr.name = self.name)

III. EXAMPLE: VOD SYSTEM

The example we use is a design of a real, albeit simplified,
video on demand (VOD) system [16]. The VOD system allows
a user to select a movie to play. The user is also able to play,
pause and resume the movie. The class diagram (see Figure 3)
represents the structure of the initial VOD system. There are
three classes: “Display” for visualising movie streams and
receiving user inputs, “Streamer” for downloading and decod-
ing movies, and “Server” for providing data. The “Display”

3It is noted that we extensively use the shorthand of the collect OCL
operation here. For instance, in the first constraint self .receiver.base refers to
the set of base classes of the self ’s receiver and self .receiver.base.operation

results in the set of operations of all those base classes.
4It is noted that this constraint is not necessarily universally agreed upon.

class has four operations: “select()” for choosing a movie,
“stream()” for playing and retrieving the movie streams,
“draw()” for rendering the received movie stream, and “stop()”
for halting the movie being played. The “Streamer” class
has only two operations: “stream()” for streaming the movie
data received from the server, and “wait()” for halting the
streaming process. Finally, the “Server” has two operations:
“connect()”, which is called by clients (e.g. the Streamer), and
“handleRequest()” which deals with requests from clients.

+select()

+stream()

+draw()

+stop()

Display

+stream()

+wait()

Streamer

+connect()

+handleRequest()

Server

Fig. 3: Class diagram for the VOD system (redrawn based on
[16])

disp : Display st : Streamer

::User
1: select

2: stream

3: stream

4: draw

5: stop
6: wait

Fig. 4: A sequence diagram for instances of classes Display
and Streamer (redrawn based on [16])

The sequence diagram (see Figure 4) depicts a typical
scenario of interactions between the user, a Display object
(“disp”) and a Streamer object (“st”)5. The user selects a movie
that she wants to see (message 1). She then starts playing the
selected movie — in the sequence diagram the user sends a
message “stream” to the Display (message 2). The Display
then retrieves the movie stream from the Streamer (message
3) and renders the movie (message 4). When the user wants
to stop viewing the movie (message 5), the Display notifies
the Streamer to stop streaming (message 6).

The two statechart diagrams (see Figure 5) describe the
behaviour of the two classes: “Display” and “Streamer”. As
can be seen, the behaviour of the “Streamer” class simply
changes between the waiting and the streaming states depend-
ing on whether it is triggered by the “wait” or “stream” event.
Meanwhile, the behaviour of the “Display” class ranges over
three different states: “Idle”, “Ready” and “Playing”.

IV. GENERATING REPAIR PLAN TYPES

After consistency constraints are written (either by tool
developers or tool administrators), the repair plan types are
automatically generated from the constraints and form a library
of repair plan types. It is important to emphasise that this

5A Server object is also involved in these interactions but we do not show
it here.



Idle

Playing

Ready

select

draw

stop stream

Waiting

Streaming

streamwait

Display
Streamer

Fig. 5: Statechart diagrams for classes Display and Streamer
(redrawn based on [16])

generation is done once, when the constraints are specified.
It only needs to be re-done should the consistency constraints
change. In addition, the tool developers or tool administrators
are allowed to use their domain knowledge and expertise to
modify generated repair plans or remove plans that should
not be executed (however, doing this risks compromising
soundness and completeness).

Let us consider the first constraint, denoted as C1(self ),
that we have defined above. By analysing its definition we are
able to systematically identify several ways of fixing C1(self ).
In fact, we have defined a systematic process that translates
OCL constraints into a set of repair plans. This process (which
cannot be presented here due to lack of space — see [19,
Chapter 6] for details) is provably correct and generates a
complete set of repair plans6. In this case, since the constraint
is of the form ∃ x ∈ e • c(x) it can be fixed by either selecting
an existing item y ∈ e and making c(y) true, or by adding an
element z to e and ensuring that c(z) is true; in this case z

may be an existing element in the model or a newly created
element. More specifically, to fix C1(self ) we can:

• Take an operation op in self.receiver.base.operation, and
make op.name = self .name true (which can be achieved
by either renaming op or renaming self ).

• Take an existing operation op which does
not belong to self.receiver.base.operation, add
op to self.receiver.base.operation, and make
op.name = self .name true.

• Create a new operation op, add op to
self.receiver.base.operation, and make op.name =
self .name true.

As mentioned earlier, we represent repair plan types as
plans, inspired by Belief-Desire-Intention (BDI) agent systems
[15]. In such systems, a plan consists of three parts: a
triggering event, a context condition, and a plan body. When
an event is posted, it is matched against the triggering event of
the plans in the plan library, and those plans that match it are
considered to be relevant. The context condition of the relevant
plans are then checked7 to see which of the relevant plans are
applicable in the current state. One of the applicable plans is

6A formal proof of correctness and completeness of the derived repair plans
can also be found in [19, Chapter 6].

7In fact they are evaluated and each solution yields a plan instance. For
example, if the context condition is x ∈ {1, 2} then there will be two plan
instances, each of which corresponds to one of the two possible values of x.

selected, and its body is executed. The plan body may include
posting events that are handled through this process. This
approach is a good match for modelling change propagation
because (a) it naturally models cascades in the form of events
posted within plans; and (b) it naturally captures that a given
violated constraint (which we model as an event) can have
multiple ways in which it can be fixed.

The plan syntax that we use is an extension of AgentS-
peak(L) [15]: a plan is written as e : c ← b where e is
the event (corresponding to a constraint to be fixed); c is the
context condition, a Boolean condition; and b is the plan body:
a sequence of steps. Each step can be an action on the model
(e.g. creating an entity, adding/deleting a link, changing the
attributes of an entity, or deleting an entity), or posting an
event (corresponding to a sub-constraint) written as !e.

The above options for repairing C1(self ) can then be written
in our repair plan syntax as follows. We use “c1True(self)” to
represent making the constraint c1 true.
Plan P1: c1True(self) : op ∈ self.receiver.base.operation ←
!c1’True(op, self)

Plan P2: c1True(self) : op ∈ Set(Operation) ∧
op �∈ self.receiver.base.operation ← !(Add op to

self.receiver.base.operation) ; !c1’True(op, self)

Plan P3: c1True(self) ← Create an operation op ; !(Add op

to self.receiver.base.operation) ; !c1’True(op, self)

In the bodies of plans P1, P2 and P3, an event
c1’True(op, self ) is posted. This event corresponds to making
op.name = self .name true, which is handled by the following
plans.
Plan P4: c1’True(op, self) : self.name �= op.name ∧ self.name

�= null ← Rename op.name to self .name

Plan P5: c1’True(op, self) : self.name �= op.name ∧ op.name

�= null ← Rename self .name to op.name

Plan P6: c1’True(op, self) : self.name = op.name ← true
8

Plan P6 applies in the case where an attempt to repair c1�

(i.e. to ensure that self .name = op.name) turns out to be
unnecessary, because it has been achieved by other actions of
the repair plan. The repair plan generation process generates
similar plans for other constraints, but P6 is the only one that
is used in our example, and so the other “do nothing” plans
have been elided.

There is another event, Add op to

self.receiver.base.operation, that is posted within the body
of plans P2 and P3. Adding the operation op to the set
of operations self .receiver.base.operation can be achieved
in several ways, including9 making op an operation of the
class self .receiver.base, or changing self .receiver.base to an
existing class that owns the operation op. These are expressed
in terms of the following repair plans.
Plan P7: Add op to self.receiver.base.operation ← Connect

self.receiver.base with op

8A body of “true” means that this plan does nothing.
9Other options are less reasonable, e.g. creating a new class, adding op

to be one of the new class’s operations, and making the receiver’s class of
message self to be the new class.



Plan P8: Add op to self.receiver.base.operation : x ∈
Set(Class) ∧ op ∈ x.operation ← !(Change self.receiver.base

to x)

Similarly, changing self .receiver.base to an existing class x

that owns the operation op can be achieved in different ways
and is consequently represented as an event. The plans that
are able to handle this event include making x be the base of
self .receiver (plan 9) or making the receiver of message self

be an object that is an instance of class x (plan 10).
Plan P9: Change self .receiver.base to x ← Connect

self .receiver to x

Plan P10: Change self .receiver.base to x : o ∈
Set(ClassifierRole) ∧ o.base = x ← Connect self to o

Figure 7 summarises the repair plans (and subplans) for
constraint C1 (it is placed in section V-B, where it is used).
Using a similar approach [19, Chapter 6] we can automatically
derive repair plans for constraint C2.

V. CHANGE PROPAGATION PROCESS

The designer uses the tool to make some primary changes
to the design model and then the designer invokes the tool to
start propagating changes. The process of change propagation
in our framework then proceeds as follows:

A) We check whether the constraints hold in the design
model.

B) We use the library of repair plan types to generate plan
instances (i.e. repair options) for the violated constraints.

C) We calculate the cost of the different repair plan in-
stances. Since we recognise that fixing one violated
constraint may also repair or violate others as a side
effect, the cost of a repair plan includes the cost of its
actions (using basic costs defined by the designer), the
cost of any other plans that it invokes directly, and also
the cost of fixing any constraints that are violated after
executing this repair plan.

D) We present the cheapest10 repair plan instances11 to the
designer and ask for their selection; and the selected
repair plan instance is executed, updating the design
model. We assume here that repair plans which lead to
fewer changes to the model, and thus have lower costs,
are preferable.

We now describe how each of the steps in this process is
applied to our VOD example. In the current VOD design
(section III), the Display and Streamer classes have two
different methods with the same name “stream”. In order to
avoid the confusing dual use of the term “stream”, the designer
makes the following primary changes. It is emphasised that
these changes are proposed by [16] and intentionally include
design errors for the purpose of illustrating how undesirable
inconsistencies are identified and resolved.

10An alternative to only presenting the cheapest options is to show a ranked
list of repair options, or to show only the cheapest options but allow the user
to see more options if desired.

11Note that a given repair plan instance may perform a number of changes
to the model.

A1: Renaming the method “stream()” of class Display to
“play()”.

A2: Renaming the message “3:stream” to “3:play” in the
sequence diagram.

A3: Renaming the state transition named “stream” to “play”
in the Display’s statechart.

Figure 6 shows how the above changes are made to the initial
UML model (each change is marked with a � sign). We now
consider how our framework performs change propagation by
restoring consistency in this design.

+select()

+play()

+draw()

+stop()

Display

+stream()

+wait()

Streamer

disp : ::Display st : ::StreamerUser

1: select

2: stream

3: play

4: draw

5: stop

6: wait

Idle

Playing

Ready

select

draw

stop play

Waiting

Streaming

streamwait

Display Streamer

(A1)

(A2)

(A3)

Fig. 6: Design of the VOD system after primary changes are
made

A. Check constraints

After the designer completes making the primary changes
on the design of the initial system, the first step is checking
constraints, which involves the instantiation of pre-defined
constraints. For instance, the two constraints defined at the
end of section II are instantiated with respect to each in-
stance of the constraints’ context. There are 6 instances of
the first constraint, each corresponding to a message in the
sequence diagram. Each constraint instance is evaluated to
check for violation. For example, with respect to the constraint
instance C1(“2 : stream”) the evaluation first computes
self .receiver.base.operation where self .receiver is the object
“disp” (this object is on the receiving end of the message
as shown by the arrowhead), receiver.base is the class “Dis-
play” (object “disp” is an instance of class “Display”), and
base.operation is {“select()”, “play()”, “draw()”, “stop()”}
(the set of operations of the class “Display”). The evaluation
then returns false because there does not exist any operation
in the set base.operation that has the same name (i.e. stream)
as message “2:stream”.

Following a similar approach, we identify the following
constraints that are also violated after the primary changes are
made: C1(“3 : play”), constraint C1 evaluated on message
“3:play”; C2(“2 : stream”), constraint C2 evaluated on mes-
sage “2:stream”; and C2(“3 : play”), constraint C2 evaluated
on message “3:play”.



P1 c1True(self) : op ∈ self.receiver.base.operation ← !c1’True(op, self)
P2 c1True(self) : op ∈ Set(Operation) ∧ op

�∈ self.receiver.base.operation ← !(Add op to
self.receiver.base.operation) ; !c1’True(op, self)

P3 c1True(self) ← Create an operation op ; !(Add op to
self.receiver.base.operation) ; !c1’True(op, self)

P4 c1’True(op, self) : self.name �= op.name ∧ self.name �= null ←
Rename op.name to self .name

P5 c1’True(op, self) : self.name �= op.name ∧ op.name �= null ←
Rename self .name to op.name

P6 c1’True(op, self) : self.name = op.name ← true
P7 Add op to self.receiver.base.operation ← Connect self .receiver.base

with op

P8 Add op to self.receiver.base.operation : x ∈ Set(Class) ∧ op ∈
x.operation ← !(Change self .receiver.base to x)

P9 Change self .receiver.base to x ← Connect self .receiver to x

P10 Change self .receiver.base to x : o ∈ Set(ClassifierRole) ∧
o.base = x ← Connect self to o

Fig. 7: Example repair plans for constraint C1

B. Generate repair plan instances

After violated constraints are identified, the next step in
our change propagation framework is generating plan in-
stances for each of the violated constraints. It is important
to note that each repair plan type can generate multiple
(i.e. zero or more) plan instances, depending on its context
condition. For instance, let us consider the repair plan in-
stances for constraint C1(“2 : stream”) (where self = “2 :
stream” and self .name = “stream”) (refer to Figure 7 for
the repair plan types). Since self .receiver.base.operation =
{“select()”, “play()”, “draw()”, “stop()”}, repair plan P1
generates 4 plan instances (plans P11, P12, P13, and P14
in Figure 8), one for each of the existing operations in the
“Display” class. Each instance of Plan P1 posts event c1�True

which can be handled by three different plans P4, P5, and P6.
However, plan type P6 does not generate any plan instance
because its context condition does not hold (none of the
operations op in the “Display” class has the same name as
message self , i.e. “2:stream”). Therefore, there are 8 possible
options to repair constraint C1(“2 : stream”) using plan type
P1 (see Figure 8).

1) Rename operation “select()” to stream.
2) Rename operation “play()” to stream.
3) Rename operation “draw()” to stream.
4) Rename operation “stop()” to stream.
5) Rename message “2:stream” to select.
6) Rename message “2:stream” to play.
7) Rename message “2:stream” to draw.
8) Rename message “2:stream” to stop.
Similarly, let us consider the instances generated by plan

P2. Note that there are two existing operations that do not
belong to the Display class: “stream()” and “wait()”12. Figure 8
shows how plan instances are generated with regard to the case
op = “stream()”. In summary, plan P2 with respect to op =

12There are also repair plan instances generated with regard to the two
operations in the “Server” class. However, due to space limitation, we do not
consider them here.

“stream()” gives the following repair options to fix C1(“2 :
stream”):

9) Connect operation “stream()” to class “Display”, i.e. add
method “stream()” to class “Display”.

10) Connect object “disp” to “Streamer” class, i.e. add class
“Streamer” to the set of bases of object “disp”.

11) Connect message “2:stream” with object “st:Streamer”,
i.e. changing the receiver of message “stream” to object
“st”.

Similarly, plan P2 with respect to op = “wait()” gives
four repair options (not shown in Figure 8): options 10 and
11 above (because the change proposed is at the class level,
the same change is proposed for op = “wait()”); and the
following two options:

12) Connect operation “wait()” (of class “Streamer”) to class
Display, and rename operation “wait()” to stream.

13) Connect operation “wait()” (of class “Streamer”) to class
Display, and rename message “stream” to wait.

Plan P3 (not shown in Figure 8) involves the creation of a
new operation and it has only one instance:

14) Create a new operation, add it to class “Display” and
name it “stream”.

Overall, there are 14 different options for fixing constraint
C1(“2 : stream”). Repair plan instances for the other three
violated constraint instances are also created in a similar way.

C. Calculate cost
13

The next step in our framework is calculating the cost of
each repair option before presenting the cheapest ones to the
user for selection. Similarly to the notion of edit distance
on strings, we define the cost in terms of the number of
operations (i.e. creation, deletion, connection, disconnection,
or modification of model elements) needed to transform one
model into the other. In order to convert the cost to a single
number we need to define “exchange rate” values (termed
basic costs) that specify (for instance) how many creation
operations are equivalent in cost to a deletion operation. These
numbers do not correspond to any real cost and are somewhat
arbitrary, and thus we allow the designer to specify them.
In this example we use the following basic costs: the cost
of creation is 0, the cost of connection, disconnection, and
modification is 1, and the cost of deletion is 2. Other basic
costs can be used but may give a different outcome.

The cost of a repair option is then defined as the sum
of the costs of its repair actions and the costs of fixing
violated constraints existing after the repair option is executed.
The former cost component is calculated by simply summing
the cost of each primitive action in a repair option. On the
other hand, in order to work out the latter cost we need to
simulate the execution of a repair option. For example, the
cost of the first repair option (renaming operation “select()”
to stream) is the cost of the renaming action (which is equal

13Here we briefly describe a mechanism for plan selection based on cost
calculation which applied for this example. A more detailed presentation,
including algorithms and complexity results, can be found in [19, Chapter 7]
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Fig. 8: Repair plan instances for fixing constraint C1(“2 : stream”) with respect to plan types P1 and P2

Option Cost

1 1 + C1(“1:select”) + C1(“3:play”) + C2(“2:stream”)
+ C2(“3:play”)

2 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
3 1 + C1(“3:play”) + C1(“4:draw”) + C2(“2:stream”)

+ C2(“3:play”)
4 1 + C1(“3:play”) + C1(“5:stop”) + C2(“2:stream”)

+ C2(“3:play”)
5 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
6 1 + C1(“3:play”) + C2(“3:play”)
7 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
8 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
9 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
10 1 + C1(“3:play”) + C2(“3:play”) + C2(“2:stream”)
11 1 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
12 2 + C1(“3:play”) + C1(“6:wait”) + C2(“2:stream”)

+ C2(“3:play”)
13 2 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)
14 2 + C1(“3:play”) + C2(“2:stream”) + C2(“3:play”)

TABLE I: The cost of repair options for fixing C1(“2:stream”)

to the cost of a modification, i.e. 1) plus the cost of fixing
violated constraints. Assume that the first repair option is
executed, then constraints C1(“3:play”), C2(“2:stream”) and
C2(“3:play”) are still violated. In addition, there is one new vi-
olated constraint: C1(“1:select”) – the message “1:select” does
not correspond to any operation in class “Display”. Therefore,
the cost of the first repair option is 1 plus the costs of fixing
constraints C1(“1:select”), C1(“3:play”), C2(“2:stream”), and
C2(“3:play”). Table I shows the cost of the first repair option
(the first row) as well as the cost of other repair options for
fixing C1(“2:stream”).

The first repair option is an example where fixing an incon-

sistency may result in creating new inconsistencies. Repair
option 6 is, on the other hand, an example where fixing an in-
consistency may also lead to repairing other inconsistencies. In
fact, this repair option fixes not only constraint C1(“2:stream”)
but also constraint C2(“2:stream”).

In this example, it is easy to see that at this stage repair
option 6 gives the cheapest cost. However, in other cases
a full simulation, i.e. executing all repair plans, is needed
to determine the cheapest repair option. Pruning techniques
are applied to improve the performance as well as to detect
cycles; this is discussed in more detail in [19, Chapter 7]. We
briefly note here that repair option 6 (similarly to other repair
options) needs to expand to include plans that fix constraints
C1(“3:play”) and C2(“3:play”). We then need to follow the
same process to generate repair plan instances and calculate
cost for those two constraint instances. However, it is easy to
see that a cheapest repair option for both C1(“3:play”) and
C2(“3:play”) is renaming message “3:play” to “stream”.

D. Select one plan to execute and execute plan

After the cost of each repair plan is calculated, the next step
is presenting the cheapest plan or plans with their constituent
repair actions for user selection. However, since we have done
full planning in the previous step, what we present to the user
is repair plans that are able to fix not only one constraint but all

of the relevant constraints, i.e. C1(“2:stream”), C1(“3:play”),
C2(“2:stream”), and C2(“3:play”) in our example. In other
words, our approach supports making multiple changes at a
time, which may be intuitive from the user’s point of view. The
user chooses one of the repair plans and the framework will
execute the plans to apply (secondary) changes to the model.
These changes will make the model become consistent with



respect to the relevant constraints. For instance, in our VOD
example there is only one repair plan that has the cheapest cost
of 2: renaming message “2:stream” to “play”, and renaming
message “3:play” to “stream”. This repair plan is presented to
the user and if it gets chosen it will be executed. The model
will then become consistent with respect to constraints C1 and
C2.

VI. SCALABILITY

In the previous section, we showed that our framework is
able to produce good recommendations for a simple VOD sys-
tem. Furthermore, our evaluation with agent-oriented designs
also showed that our approach generates good recommenda-
tions for secondary changes [14]. However, a key question that
we need to address is whether our approach scales to larger
designs.

Generation of repair plans is performed at “compile” time,
and is thus not an issue. At runtime, the following steps
are performed: (A) check design for consistency with respect
to provided OCL constraints and a metamodel; (B) generate
repair plan instances for violated constraints; (C) compute cost
of different repair options; and (D) execute selected repair
plan, where selection is either choosing the cheapest plan or
asking the user (if there is more than one cheapest plan).
We now consider these steps and argue that our approach is
scalable.

For the first step, checking a UML design for consistency
against a set of OCL constraints can be done quickly, even for
large designs, as shown by Egyed [18].

For the second step, the repair plans that generate many
instances are the ones which have a context condition of the
form x ∈ Type(SE) where SE is a set of model elements, e.g.
plan P2. In some cases these rules will be disabled by the tool
developers or tool administrators because they do not make
sense: for instance, in our VOD example it is not feasible
to add an existing operation to a class if it already belongs
to another class. More generally though, it is possible to
improve efficiency by being “lazy” and instead of selecting an
element from Type(SE), leaving x undetermined and allowing
subsequent constraints to narrow down the selection. We leave
this for future work.

The third step involves computing the cost of different
repair options, and potentially takes the most time since it
uses look-ahead. However, as [18] observed, in practice the
consistency rules that are used are local in scope: the truth of
a given constraint is determined by a relatively small number
of elements. In particular, this number does not appear to
increase as the model grows. A consequence of this local scope
observation is that fixing a violated constraint (ignoring for the
moment the possibility of cascades) also requires only changes
to a relatively small number of elements, and hence is scalable.

Let us now consider the possibility of cascades, i.e. where
it is possible for fixing a constraint to break other constraints,
and hence require further fixes. There are two cases to con-
sider. The first is where there exists a simple local fix. In this
case, even when other repair options might involve cascades,

these options will not be explored, since they will be pruned
in favour of the local (and hence cheaper) options. For both
the ATM (discussed below) and the VOD designs, this was
the case: given constraint C1, where a plan for fixing it breaks
another constraint C2, then at worst the cost calculation par-
tially explored C2, and never explored any constraints broken
by fixing C2. The second case to consider is where extensive
change propagation is needed, and clearly in this case cascades
will occur, and will need to be explored. In this case the tool
is arguably of most value, since the secondary changes are
non-local, and consequently are difficult to manage manually.

In order to empirically explore the scalability of the third
step we used a case study of a larger example: the design
of an Automatic Teller Machine (ATM). The initial ATM
design (from [7]) covers basic functionalities: the customer
inserts his/her card, enters a PIN and then can perform
transactions such as withdrawal and deposit; the ATM also
prints receipts for all transactions. The design contains a class
diagram (18 classes such as ATM, Bank, Transaction) and
10 sequence diagrams (corresponding to 10 use cases such
as GetPIN, PrintReceipt). Classes are related by inheritance
(6), association (11) and dependency relationships (2). The
initial design has been encoded into the prototype that we
have implemented.

We introduced the same realistic requirement change as
in [7] to the initial design: the ATM needs to keep track of

how many times per session a user attempts to enter the PIN

- after 3 invalid PINs the card will be retained. We also
assume that the designer makes some initial changes to the
design: adding 3 messages incrementNumTries, resetNumTries

and displayRetainCard to the existing sequence diagrams. Our
prototype propagated the changes by adding 3 new methods
incrementNumTries, resetNumTries and displayRetainCard to
relevant classes in the class diagram.

To test our approach, we considered three model sizes: the
(original) full model; a medium model consisting of the main
classes that the changes affect and other classes associated
with the main classes, as well as sequence diagrams that the
main classes participate in; and a small model comprising only
the main classes and the sequence diagrams that are affected
by the initial changes. Figure 9 gives the sizes of these models
(top part), the number of plan instances generated14 for the
three constraints15 (middle part) and the running time16 for
calculating costs (bottom). As can be seen, the execution time
increases as the model grows. In particular, the number of
plan instances is dominated by plan P2 which produces a
plan instance for each operation in the model, and hence the

14Note that, because of the cost calculation, the number of options presented
to the user is considerably less than this.

15Two constraints are C1 and C2 as presented in section II. The other
constraint ensures that the message calling direction in a sequence diagram
matches the class association in a class diagram.

16All experiments reported in this paper were performed on a Mac running
OS X v10.4.7 and Java v1.5.0 06, with a 1.67Ghz CPU and 2GB RAM. Tests
were run with one user logged in and no applications running (except for the
terminal). Times are an average of 9 runs (we ignored the first run, since it
was inconsistent due to JVM startup).



execution time grows as the number of operations increases.
However, although the number of operations in the model
significantly increases (approximately 3 times between model
sizes), the execution time does not increase at the same rate.
This can be explained by the fact that we do not explore all
possible combinations. Rather, as soon as cheaper options are
identified, the search tree is pruned off.

A key point is that for the full model the tool took less than a
second. Furthermore, the tool’s execution time is dominated by
constraint checking17, and its efficiency could be significantly
improved by implementing Egyed “instant consistency check-
ing” [18], and by adding “lazy” generation for plan instances
with context conditions of the form x ∈ Type(SE).

Full Medium Small
Model Size:

Classes 18 10 2
Operations 63 28 8
Sequence Diagrams 10 6 3
Messages 37 20 9
Number of plans:

c(incrementNumTries) 65 31 11
c(resetNumTries) 63 29 9
c(displayRetainCard) 64 30 10
Total 192 90 30
Runtime (ms) 917.9 538.8 395.8

Fig. 9: ATM case study results

Finally, the fourth step at runtime is executing a selected
repair plan which is simply a matter of running the plan and
performing the changes, and this is quite cheap in terms of the
computational costs, since costs have already been computed
for the plan and all sub-plans.

VII. RELATED WORK

Since UML has become the de facto notation for object-
oriented software development, most research work in con-
sistency management has focused on problems relating to
consistency between UML diagrams and models [20]. Such
approaches have been advocated with the recent emergence
of model-driven evolution [4]. Several approaches (e.g. [21])
strive to define fully formal semantics for UML by extending
its current metamodel and applying well-formedness con-
straints to the model. Other approaches transform UML speci-
fications to some mathematical formalism such as Description
Logic [22]. The consistency checking capabilities of such
approaches rely on the well-specified consistency checking
mechanism of the underlying mathematical formalisms. How-
ever, traceability may be a problem: to what extent can a
reported inconsistency be traced back to the original model?
Furthermore, the identification of transformations that preserve
and enforce consistency still remains a critical issue.

17Part of the cost calculation involves checking which constraints are
violated after a repair plan is simulated.

Recently, Egyed [18] proposed a very efficient approach to
check for inconsistencies (i.e. violations of consistency rules)
in UML models. His approach scales up to large, industrial
UML models by tracking which entities are used to check
each consistency rule, and then using this information to
determine which rules might be affected by a change, and
only re-evaluate these rules. This work is complementary to
our work: it provides a rapid means of checking consistency
(which supports the first step of our approach), but does not
tackle the issue of how to restore consistency.

There are approaches that go further than just detecting
inconsistencies. Several approaches provide developers with
a software development environment which allows for record-
ing, presenting, monitoring, and interacting with inconsisten-
cies to help the developers resolve those inconsistencies [23].
Other works also aim to automate inconsistency resolution by
having pre-defined resolution rules (e.g. [6]) or identifying
specific change propagation rules for all types of changes (e.g.
[7]). However, these approaches suffer from the correctness
and completeness issue since the rules are developed manually
by the user.

In order to deal with this issue, Nentwich et al. [8] proposed
an approach for automatically generating repair options by
analysing consistency rules expressed in first order logic and
models expressed in xlinkit. However, they did not take into
account dependencies among inconsistencies and potential
interactions between repair actions for fixing them. In other
words, their work considers repair actions as independent
events, and thus does not explicitly deal with the cascading
nature of change propagation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach to support
change propagation during the maintenance and evolution of
UML design models. Change options are represented in terms
of repair plan types which allows us to compactly represent
a large number of repair options, and captures nicely the
cascading nature of repairing constraint violations, and the way
that a given constraint violation may be repaired in a number
of ways. We also proposed the use of a notion of repair cost
to provide an effective way of accounting for the side-effects
of a repair plan.

Using our approach, which has been implemented, tool
developers do not need to write resolution rules or choice
generation functions and consequently save substantial time.
More importantly, they avoid the issues of soundness and
completeness, since repair plan types are automatically gener-
ated from OCL consistency constraints, and are guaranteed
to be sound and complete. Our approach also takes into
account the cascading nature of change propagation in terms
of considering the side-effects of fixing a given inconsistency.

We have used a simple design of a VOD system to illustrate
how our approach can be applied in the context of UML
design models. In addition, we performed a case study on the
UML design of an ATM system to evaluate the scalability of
our approach. Furthermore, we have previously evaluated the



effectiveness and efficiency of our approach in the context of
agent-oriented designs [11, 14]. This evaluation showed that
the approach did scale to larger designs [11]; and that it was
useful for a range of change scenarios [14] drawn from actual
changes made to a real agent-based application. In particular,
the use of cost was effective in reducing the number of options
presented to the user.

The evaluation’s results also lead us to some potential
future work. Although we have conducted some evaluation to
assess scalability, there is a need for more extensive evaluation
with larger models. In addition, in order to fully understand
the applicability of our approach to UML models, a more
extensive investigation involving the whole UML metamodel
(including other types of UML diagrams such as use case
and activity diagrams) and consistency constraints is needed.
Furthermore, an interesting topic for future work is to apply
our approach to change propagation between design models
and source code. Finally, the approach and tool need to be
evaluated with human users to fully assess its effectiveness
and usability.

The evaluation assessing the effectiveness of our approach
[14] showed that in some cases the tool, which is integrated
with the Prometheus Design Tool (http://www.cs.rmit.edu.au/
agents/pdt) for supporting agent-oriented design, proposed a
large number of repair options, which makes it difficult for
the user to decide which one to use. One approach to avoid
presenting the user with a long list of repair options is to
use “staging” questions, i.e. to ask a series of questions that
cumulatively specify the desired repair option.

Assigning costs to basic repair actions (e.g. creation, con-
nection, disconnection, etc.) is a means for the user to adjust
the change propagation process. However, our evaluation in-
dicated several places where the outcome may be sensitive to
the basic costs. As a topic for future work, we want to perform
a more thorough exploration of the effects of varying the basic
costs.

Since the tool is still a research prototype, one area of future
work is to develop an industry-grade tool. This would include
a range of efficiency improvements, such as implementing
Egyed’s “instant consistency checking” [18].

In summary, although the results obtained from the evalu-
ation we conducted are relatively preliminary and necessarily
limited, they are quite encouraging and serve as concrete
indication that the approach developed is promising.
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