
Swing to SWT and Back:
Patterns for API Migration by Wrapping

Thiago Tonelli Bartolomei and Krzysztof Czarnecki
University of Waterloo

Waterloo, Canada

Ralf Lämmel
University of Koblenz-Landau

Koblenz, Germany

Abstract—Evolving requirements may necessitate API migra-
tion—re-engineering an application to replace its dependence on
one API with the dependence on another API for the same
domain. One approach to API migration is to replace the original
API by a wrapper-based re-implementation that makes reuse of
the other API. Wrapper-based migration is attractive because
application code is left untouched and wrappers can be reused
across applications. The design of such wrappers is challenging
though if the two involved APIs were developed independently,
in which case the APIs tend to differ significantly. We identify
the challenges faced by developers when designing wrappers
for object-oriented APIs, and we recover the solutions used in
practice. To this end, we analyze two large, open-source GUI
wrappers and compile a set of issues pervasive in their designs.
We subsequently extract design patterns from the solutions that
developers used in the GUI wrappers.

I. INTRODUCTION

Wrapping is an established re-engineering technique to
provide access to existing functionality through a preferred in-
terface. One well-known form of wrapping serves the purpose
of migrating old procedural code to OO abstractions [1]. In
this case, one designs a convenient interface and implements
it in terms of legacy procedures and associated state.

Wrapping also has been used for API migration, and the
present paper follows this path. API migration by wrapping
means that an existing API is re-implemented in terms of
another API. As a result the original implementation is no
longer needed. As a benefit of wrapping, application code does
not need to be changed. Such wrapping has been specifically
researched for the purpose of API upgrade [2], [3], where the
wrapper allows application code to continue using the interface
of the earlier API version re-implemented on top of the new
version of the API.

Our efforts are not focused on API upgrade; instead we are
interested in wrapping as a means to perform API migration
across different APIs. Consider the following scenario which
is representative for the practical importance of such wrapping:

An effort on application integration requires to merge sev-
eral components which exercise different GUI APIs, say
x and y. For the sake of a uniform and amalgamated user
interface, one of the two APIs has to be eliminated, say
y. This can be achieved by API migration such that a
wrapper API y′ is used instead of y where y′ is a wrapper
around x. When compared to an approach that is based
on source-code rewriting, wrapping requires few (ideally,
no) adaptations of components using y.

In previous work [4], we studied API migration for two
different XML APIs in the Java platform: XOM and JDOM.

In terms of their interfaces, the chosen APIs are very similar,
but the actual implementations differ systematically in the
contracts for many methods. Our study was meant to measure
the effort needed to develop a sufficiently compliant wrapper
in such a situation. The overall result of that work is twofold:
a) wrappers need to involve a lot of tuning in order to achieve
semantical equivalence in terms of pre- and post-conditions;
b) full compliance of the wrapper’s implementation with the
original API may be impractical; compliance relative to an
‘application of interest’ is achievable though.

In this paper, we address a different aspect of API migration
by wrapping. That is, we try to understand the design of
the wrappers themselves. As long as the involved APIs are
very similar in terms of their interfaces and type hierarchies,
the wrapper design is arguably straightforward—the classic
ADAPTER design pattern [5] has to be applied systematically.
The wrapper’s design of our earlier work is indeed relatively
straightforward but a few special cases had to be dealt with. We
have studied wrapping for other APIs, and we have encoun-
tered wrapper designs that are considerably more involved due
to differences in deep type hierarchies, instantiation protocols,
and multiplicities in the adapter/adaptee relationships.

Contributions
• We report on a study of two large open source projects,

SwingWT and SWTSwing, which implement wrappers
between the most prominent Java GUI APIs, Swing and
SWT. This is the first design study of API wrappers.

• Based on the wrappers of the study and our earlier work,
we identify a set of design challenges faced by developers
when implementing wrappers around OO APIs.

• We analyze the solutions employed by developers for the
aforementioned challenges, and generalize these solutions
as (sketches) of design patterns, which can be used by
developers facing similar problems.

• We show that the obtained patterns occur frequently in
the wrappers of our study and our previous work. The
patterns are not specific to our subjects; they involve
mismatches that can occur between any pair of APIs.

Road-map of the paper §II sets up the basic notion of API
wrapping. §III describes the design of our wrapper study. §IV
identifies the challenges of API wrapper design. §V presents the
abstracted design patterns. §VI presents measurements regarding the
presence of the patterns in actual wrappers. §VII discusses threats to
validity. §VIII discusses related work. §IX concludes the paper.

II. BASICS OF API WRAPPING

A. Terminology

We say that we migrate from the source API to the target
API. Here source API refers to the original API that is to be
replaced, and target API refers to the API that is to be re-used
in re-implementing the source API. The term surrogate is used
for a type that is meant to re-implement a type of the source
API while preserving its interface. A wrapper is a collection
of such surrogates and possibly internal helper types.

B. The tailored ADAPTER pattern

The ADAPTER design pattern is the classic solution to
integrate a client class with types that have different interfaces
than it expects. The GoF [5] book describes two variants of
adapters: class and object. In both cases, an adapter class
extends the type expected by the client in order to intercept re-
quests and redirect them to the new target (the adaptee). Class
adapters integrate the adaptee through inheritance whereas
object adapters use object composition.

In the context of API migration, the adapter is the surrogate
object, and the adaptee is an object of the target API. Surro-
gates do not extend the expected types, i.e., the classes of the
source API; instead they replace them. Thereby the constructor
calls in the client application can also be retained. In principle,
the surrogates may even populate the same namespace as the
source API. For generality’s sake, and in order to avoid issues
with multiple inheritance, surrogates may prefer the object
adapter over the class adapter.

C. A simple example

Let us migrate applications using Java Vectors to
ArrayLists—a simple scenario borrowed from [6]. In the
source code of Fig. 1, we re-implement Vector (line 1).
Note that we preserve the superclass AbstractList. The
Vector surrogate acts as an object adapter, maintaining the
adaptee in an ArrayList field (l.2). Both objects have
associated lifecycles: an ArrayList object is created in the
constructor of a Vector (l.4). Because source and target APIs
are very similar in this example, most of the client requests
can be simply delegated to the adaptee (as in l.7) while some
semantic adjustments are encapsulated in the adapter (l.9-12).

As we migrate clients from Vector to ArrayList,
we also need to migrate them from Enumerations to
Iterators. Since Enumeration is a Java interface, we
simply copy it to the wrapper (not shown in the figure). We
also need to provide a concrete implementation of the interface
that acts as an adapter to Iterator and can be used by
other types of the wrapping layer. For instance, Vector’s
elements() method (l.13-15) creates a new adapter around
the iterator returned by its ArrayList adaptee.

III. STUDY DESIGN

A. Methodology

Our study is designed to answer these research questions:

1 public class Vector extends AbstractList implements ... {
2 ArrayList adaptee;
3 public Vector() {
4 adaptee = new ArrayList();
5 }
6 public void add(Object o) {
7 adaptee.add(o);
8 }
9 public void setSize(int ns) {

10 while (adaptee.size() < ns) adaptee.add(null);
11 while (adaptee.size() > ns) adaptee.remove(ns);
12 }
13 public Enumeration elements() {
14 return new EnumerationImpl(adaptee.iterator());
15 }
16 ...
17 }
18 public class EnumerationImpl implements Enumeration {
19 Iterator adaptee;
20 EnumerationImpl(Iterator i) { this.adaptee = i; }
21 public Object nextElement() { return adaptee.next(); }
22 ...
23 }

Fig. 1. Vector and Enumeration adapters.

What are the design challenges faced by developers
when implementing wrapping layers around OO
APIs? What are the solutions employed in practice?

The study is primarily based on two major open-source
wrapping projects implementing both directions between
Java’s GUI APIs Swing and SWT. Furthermore, the study takes
into account our previous work on a wrapper in the XML
domain [4].

The study was conducted in two steps. The first step
consisted in uncovering important design challenges faced
by developers; see §IV. We initially studied the APIs and
detected some incompatibilities that would potentially impact
the wrapper design. We then talked to the developers about
the general structure of their wrappers and the main challenges
they experienced. Finally, we investigated the wrappers’ source
code trying to understand the correspondences between types
of the source and target APIs.

The second step comprised understanding the solutions for
the identified challenges and eventually abstracting solutions
as design patterns; see §V. To this end, we performed archi-
tectural code queries and manual inspection on source code.
Our investigation resulted in 5 design patterns. Finally, we
designed simple metrics to provide evidence that the patterns
are indeed applied in practice; see §VI.1

B. Subjects

Table I presents the wrappers and APIs that are subjects
of our study. For wrappers, we indicate the API they replace
(source API) and the one they use instead (target API). For
the APIs, we show the studied version, used by the wrappers.
All sub-packages of top-level packages were included.

The central subjects are the GUI wrappers SwingWT
and SWTSwing, but we also leveraged our XML wrapper

1Supporting material, including the source code for every example in this
paper can be found at http://gsd.uwaterloo.ca/icsm2010/. The distribution also
contains additional wrapper implementations that were built to further validate
the discussion of §IV and §V.

Wrapper SwingWT SWTSwing XOM2JDOM

swingwt.sf.net swtswing.sf.net

Source API Swing SWT XOM
Target API SWT Swing JDOM

Types 617 660 42
Visible 506 361 40

Methods 6.115 5.894 587
Visible 5.480 3.246 432

Fields 2.296 2.613 69
Visible 1.814 1.068 16

Constants 1.188 572 16
NCLOC 30.818 64.564 7.257

APIver.
Swing1.4 SWT3.2.2 XOM1.2.1 JDOM1.1

Core Java API www.eclipse.org/swt www.xom.nu www.jdom.org

Top-Level java.awt
org.eclipse.swt nu.xom org.jdomPackages javax.swing

Types 1.986 600 110 73
Visible 1.212 401 50 52

Methods 18.627 8.639 884 908
Visible 12.833 5.424 358 644

Fields 7.438 5.016 279 256
Visible 2.965 2.522 17 52

Constants 1.943 1.606 17 29
NCLOC 234.164 89.901 19.395 8.755

TABLE I
THE SUBJECTS OF THE STUDY: THE WRAPPERS (LEFT) AND THE APIS (RIGHT).

XOM2JDOM available from a previous study. The GUI wrap-
pers were chosen because they wrap large, complex APIs, are
open-source and we could directly contact their main devel-
opers. The XML wrapper is mainly shown for comparison.
By the nature of the involved APIs, this wrapper has a much
simpler design than the GUI API wrappers, and it is less suited
for an objective discussion because we have developed it.

The table presents size metrics for wrappers and APIs.
We consider types, methods, fields, and constants (i.e., fi-
nal fields in Java). Visible entities are accessible by client
applications. In Java, public types count as visible whereas
public and protected members of public types count as visible.
We include protected members because clients may access
them by inheritance. The table shows that all wrappers have
fewer visible entities than their source APIs, i.e., they are not
complete. A client application which references some of the
missing elements would not compile if used with the wrappers.
Even though the wrappers cover only parts of the APIs, the
wrapper sizes, measured as number of non-comment lines of
code (NCLOC), are substantial: 1/3 and 1/4 of the size of the
respective target APIs.

IV. CHALLENGES OF GUI API WRAPPING

Now we examine the challenges that emerge when design-
ing wrappers around Swing and SWT. To this end, we use
two versions of a simple program with a GUI; one version
for Swing; another version for SWT. First, we observe the
differences between the two versions. Second, we discuss the
issues that arise in defining wrapping layers that serve both
directions. We use Swing2SWT and SWT2Swing to refer to
these directions. For instance, Swing2SWT is the wrapping
layer around SWT yet with Swing’s interface so that application
code written for Swing could execute with this wrapper and
get SWT widgets instead; likewise for SWT2Swing.

A. Sample-based inquiry into API differences

Fig. 2 shows the Swing and SWT-based GUIs for a program
that translates words from a list box—all words or only the
selected ones. Fig. 3 shows the source code of the program
with the Swing and SWT versions next to each other.

Lines 1-34 create the window and the three widgets: a scrol-
lable list of predefined words, a checkbox, and a push button.

Fig. 2. Swing and SWT versions of a simple GUI.

The handler of the button calls the reusable Translator
class which is also configured with the value of the checkbox
(l.20-21). The called method (l.36-40) recursively searches for
lists in a window, and depending on configuration, it translates
all words in the list or just the selected ones.

The two source-code versions are relatively straightforward.
In Swing (Fig. 3, left), JFrame (l.1) represents the main
window and JScrollPane (l.4-5) creates the scrollable
area in which the list resides. JList (l.11) implements the
MVC view, while DefaultListModel (l.6-10) implements
the MVC model expected by JList. JCheckBox (l.13)
and JButton (l.16) are the button widgets. Lines 18-23
register an ActionListener to the JButton. The listener
will receive a callback from the API when the button is
pressed. A layout is created for the window (l.25) and the
widgets are wired together (l.27-30). Swing maintains its own
thread; hence, lines 32-34 just open the window and set the
default operation for when the window is closed, leaving the
application thread free from GUI concerns.

The SWT version (Fig. 3, right) is strikingly similar. Shell
(l.2), List (l.4-5) and Button (l.13 and l.16) represent
the window, list and button widgets, respectively. Notable
differences include Button being configured to behave as a
checkbox (l.13) or a push button (l.16), and the lack of a scroll
pane widget since List can be configured to show a scroll bar
(l.5). Furthermore, widgets do not have to be wired since they
must always receive a parent in the constructor, except for top
level widgets such as Shell. Finally, SWT does not maintain
its own thread; hence, lines 31-34 implement a loop to control
the application’s main thread.

B. Non-trivial mapping multiplicities

Our first task is to map source API types to corresponding
target API types, thereby preparing the surrogates’ implemen-
tation. The trivial collection wrapper of §II only involved one-
to-one correspondences between adapter and adaptee. The GUI

1 final JFrame frame = new JFrame();
2 Container pane = frame.getContentPane();
3

4 JScrollPane scroll = new JScrollPane();
5 scroll.setPreferredSize(new Dimension(100, 70));
6 DefaultListModel model = new DefaultListModel();
7 model.addElement(”red”);
8 model.addElement(”yellow”);
9 model.addElement(”green”);

10 model.addElement(”blue”);
11 JList list = new JList(model);
12

13 final JCheckBox check = new JCheckBox(”Translate All”);
14

15

16 JButton translate = new JButton(”Translate”);
17

18 translate.addActionListener(new ActionListener() {
19 public void actionPerformed(ActionEvent e) {
20 new Translator().translateLists(
21 frame, check.isSelected());
22 }
23 });
24

25 pane.setLayout(new FlowLayout());
26

27 scroll.getViewport().setView(list);
28 pane.add(scroll);
29 pane.add(check);
30 pane.add(translate);
31

32 frame.pack();
33 frame.setVisible(true);
34 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
35 ...
36 public class Translator {
37 public void translateLists(Container container, boolean all) {
38 for (Component c : container.getComponents()) {
39 if (c instanceof JList) { ... }
40 }}}

1 Display display = new Display();
2 final Shell shell = new Shell(display);
3

4 List list = new List(shell,
5 SWT.BORDER | SWT.MULTI | SWT.V SCROLL);
6 list.setLayoutData(new RowData(100, 70));
7 list.add(”red”);
8 list.add(”yellow”);
9 list.add(”green”);

10 list.add(”blue”);
11

12

13 final Button check = new Button(shell, SWT.CHECK);
14 check.setText(”Translate All”);
15

16 Button translate = new Button(shell, SWT.PUSH);
17 translate.setText(”Translate”);
18 translate.addSelectionListener(new SelectionAdapter() {
19 public void widgetSelected(SelectionEvent e) {
20 new Translator().translateLists(
21 shell, check.getSelection());
22 }
23 });
24

25 RowLayout layout = new RowLayout();
26 layout.center = true;
27 shell.setLayout(layout);
28

29 shell.pack();
30 shell.open();
31 while (!shell.isDisposed ()) {
32 if (!display.readAndDispatch()) display.sleep();
33 }
34 display.dispose();
35 ...
36 public class Translator {
37 public void translateLists(Composite composite, boolean all) {
38 for (Control c : composite.getChildren()) {
39 if (c instanceof List) { ... }
40 }}}

Fig. 3. Swing (left) and SWT (right) source code versions of the GUI application displayed in Fig. 2.

wrappers require additional mapping multiplicities, presented
in Table II, which pose challenges to the wrapper design.

By analyzing the code of Fig. 3 we can see that SWT’s
Display (l.1) does not have a counterpart in Swing—this is
a case of No Target. While Swing2SWT can simply ignore this
type, SWT2Swing has to re-implement its services completely.

A challenge caused by Alternative Targets arises when a
source API type implements variants which are distributed
over different target API types. SWT’s Button, for example,
maps to both of Swing’s types JButton and JCheckBox,
but each specific Button object maps to either a JButton or
a JCheckBox object. This represents an issue for SWT2Swing
because a surrogate for Button must decide at runtime which
type of adaptee object is to be created.

Name Multiplicity Example(type/object)

No Target 0/0 Display→ ∅
Single Target 1/1 Vector→ArrayList
Alternative Targets */1 Button→JButton | JCheckBox
Composite Targets */* List→JList, ListModel

TABLE II
MAPPING MULTIPLICITIES WRT. A SINGLE SOURCE API OBJECT.

Fig. 3 also suggests mappings from JFrame to Shell
and JList to List. But closer inspection shows that a
Shell object in fact corresponds to a JFrame plus its
content pane, an object of type Container. Further, SWT’s
List already encapsulates its model and can be scrollable.
It should map, therefore, to a JList plus a ListModel
and a JScrollPane. These are examples of Composite
Targets, which force surrogates to maintain multiple adaptees
of potentially many types. SWT2Swing’s List surrogate,
for example, must keep JList and ListModel adaptees.
Note that Composite and Alternative Targets can be si-
multaneously present in a type mapping. SWT’s List, for
example, can have variants with and without scroll bars.
Its mapping with respect to Swing would then be List →
(JList, ListModel)|(JList, ListModel, JScrollPane).

Table II only shows multiplicities with respect to a single
source API object. The opposite direction of a Composite
Targets mapping, however, also represents an issue to wrappers
because multiple surrogates must coordinate around a single
adaptee object. In Swing2SWT, for example, JScrollPane,
JList and DefaultListModel surrogates have to share a
reference to a single List object. Finally, mapped types may
not completely agree in the features they offer and data they
carry. Shell’s disposed flag (l.31), for example, is missing

Component

Container

Window

Frame

JFrame
JComponent

JList

AbstractButton

JToggleButton

JCheckBox
JButton

JViewPort JScrollPane

Widget

Control

Scrollable Button

List

Composite

Canvas

Decorations

Shell

Fig. 4. One option for Swing and SWT Type Mappings.

in JFrame, and must be re-implemented by the surrogate.

C. Mapping varying type hierarchies

Fig. 4 shows an excerpt of Swing and SWT’s class hier-
archies, with the type mappings conjectured in the previous
section. Further, Component is mapped to Widget since
they are the super-types of all widgets in their corresponding
APIs. Also, Container is mapped to Composite because
they represent widgets that can have child widgets in the sense
of the COMPOSITE design pattern [5]. For List’s case of a
Composite Target we use a directed edge to JScrollPane
to express the uni-directionality of this mapping. Finally, we
note that the mappings of the open-source wrappers SwingWT
and SWTSwing are slightly different from Fig. 4.

Wrappers should provide surrogates that completely reflect
the inheritance hierarchy of the source API for two main
reasons. First, client applications can reference and extend
any visible type of the source API. Clients using surrogates
that do not comply with the hierarchy may not even compile.
For instance, if Swing2SWT exposed JList without exposing
its super-types, clients such as Translator (l.36), which
references JList’s super-type Container, would break.

Second, wrappers can take advantage of the source API’s
inheritance decomposition to reuse wrapping code. For in-
stance, JList and JButton have Component as a com-
mon super-type, and could reuse its methods. This kind of
reuse, however, can only be achieved if type mappings respect
covariance. Fig. 4 shows that Component→Widget and
Container→Composite are covariant mappings. Hence,
Swing2SWT can implement Component methods using a
Widget adaptee, and Container will be able to reuse
these methods since its adaptee, Composite, is a Widget.
Breaking covariance indicates a potentially serious API mis-
match. In Swing, for example, buttons extend Container
and can, therefore, have child widgets. Since SWT’s Button
does not extend Composite Swing clients that attach widgets
to buttons cannot be easily migrated to SWT.

Different functional decomposition of types in the inher-
itance hierarchy can lead to additional challenges, besides
broken covariance. In SWT, for example, a widget becomes
scrollable through inheritance, by extending Scrollable,
whereas Swing uses composition with JScrollPane. Finer
grained functionality can also be offered at different lev-
els in the hierarchy. SWT’s Control.pack() method,
called in the shell object (l. 29), for instance, maps to
Window.pack() in Swing. Since Control maps to
Component, the surrogate must verify that the adaptee is
actually a Window before delegating the method call.

D. Varying creation and wiring protocols

Swing provides distinct methods for creating widgets and
wiring them to parents. Thus, Swing clients can dynami-
cally create and modify their compositions. In contrast, SWT
enforces the parent-child relationship on constructors. Thus,
clients are more constrained.

Migrating from an API that is relaxed in how it establishes
object relationships to one that enforces relationships at con-
struction time presents a challenge to wrappers. Surrogates
may need to delay adaptee construction. This also means that
operations cannot be delegated as usual; they may need to be
re-implemented. Mapping from a strict to a relaxed API does
not present major challenges. The surrogate constructors must
create the adaptee and wire it to its parent.

For example, when a surrogate for JCheckBox is instanti-
ated (l.13), it cannot immediately construct the corresponding
SWT Button adaptee because the parent widget is unknown
until the checkbox is wired to the content pane (l.29).

E. Inversion of control

Wrappers may need to delegate control from the target API
back to the application. A simple and common scenario is
that an application receives control from the wrapper through
callbacks, by implementing suitable interfaces or extending
suitable classes of the source API. When there is a correspon-
dence between callbacks of both APIs, then one can delegate
the events generated by the target API to callbacks designed
for the source API.

For instance, our Swing application registers an
ActionListener to a JButton (l.18-23), which
corresponds to adding a SelectionAdapter to an SWT’s
Button. In Swing2SWT, hence, the JButton surrogate
must register a SelectionAdapter to its Button
adaptee and keep the ActionListener. When SWT
generates a SelectionEvent, it must be translated
into an ActionEvent and delegated to the original
ActionListener. SWT2Swing, naturally, will perform the
opposite mapping.

In general, applications may override any visible instance
method of the source API—giving rise to a major challenge.
A relatively regular case is when the overridden method has
a counterpart in the target API. In this case, wrappers must
intercept calls to the method of the target API by some
means, e.g., by using instrumented subclasses of the target

API, delegate to the overriding method of the subclass of the
surrogate. In this paper, we only deal with the listener scenario.

F. Correspondence of object identities

Surrogates may need to wrap results that are returned by
invocations of the target API. For instance, the surrogate
method for Container.getComponents() (l. 38) calls
the corresponding Composite.getChildren() on its
adaptee and receives objects of target API types, which must
be wrapped before returning to the application.

It can happen that the same target API object flows many
times to the application. If a new surrogate is created each
time, the application cannot determine that the apparently
different objects in fact denote a single object [7]. Thus, it
is necessary to manage the surrogate identities of objects of
the target API so that new surrogates are only created when
necessary. This challenge is exacerbated by the fact that the
type of the surrogate is not always fully implied just by the
type of the object from the target API.

G. Additional design challenges

We have identified additional challenges which are specific
to the studied APIs. First, Swing and SWT approach thread
handling differently. In Swing the application thread is free
after creating the GUI, and a Swing-specific daemon thread
maintains the windows and sends events to registered handlers.
In SWT the application must control the main thread, looping
while the window is not disposed and dispatching widget
events. The result is that Swing2SWT must control SWT’s
thread on behalf of client applications since they are not
designed with that in mind. SWT2Swing, on the other hand,
has to synchronize the application’s and Swing’s threads.

Second, Swing and SWT use layouts to determine how
widgets are arranged in a window, but perfect correspondences
between the layout types available in the APIs is rare. Even
for the simple layouts used in the example, FlowLayout in
Swing and RowLayout in SWT, the way in which applications
provide layout information varies – while in Swing the desired
size is set in the JScrollPane (l.5), in SWT the information
is passed as LayoutData to the List (l.6). Because layouts
are a well modularized concern of the APIs, the studied
wrappers re-implemented the source API layouts completely,
without trying to reuse target API layouts.

V. API WRAPPING DESIGN PATTERNS

We now present the patterns identified in the studied
projects. Each pattern addresses at least one of the challenges
described before. We abstracted the following patterns:

• Layered Adapter decomposes surrogates into layers, pro-
viding flexibility to implement mappings with Alternative
and Composite Targets (c.f., Table II and §IV-B).

• Stateful Adapter keeps additional state in an adapter to
re-implement features missing in the adaptee or to adjust
differences in interaction protocols (c.f., the discussion of
Shell’s disposed flag in §IV-B).

JListListModel

ScrollableJListAdapter
I

List
S

JListAdapter
<<Interface>> I

JScrollPane
T

TT

SimpleJListAdapter
I

Fig. 5. Layered Adapter for Alternative and Composite targets.

• Delayed Instantiation delays the instantiation of adaptees
until enough data is present; placeholders are used to store
interim data and execute operations—thereby addressing
the challenge of §IV-D.

• Inverse Delegation provides adapters in the inverse di-
rection to delegate target API events to the application—
thereby addressing the challenge of §IV-E.

• Wrapping Identity Map maintains the correspondence
between adaptees and surrogates in an identity map—
thereby addressing the challenge of §IV-F.

A. Layered Adapter

The classic ADAPTER pattern can be directly applied to
Single Target mappings, as defined in Table II. No Target map-
pings, on the other hand, must be completely re-implemented
by a surrogate. Mappings with Alternative and Composite
Targets demand more flexibility because the surrogate may
need to chose different combinations of adaptees at runtime.

In practice, we have seen that this flexibility is achieved by
decomposing the surrogate into a layered adapter. The class
diagram2 in Fig. 5 shows the general structure of the pattern in
the context of SWT2Swing’s List surrogate implementation.
Instead of directly referencing target API types, List main-
tains an object of an interface type, JListAdapter. Alterna-
tive mappings are uniformly accessed by the surrogate through
the implementation of different variants of the interface. Each
variant is an adapter with potentially many Composite Targets.

For example, SimpleJListAdapter composes JList
and ListModel whereas ScrollableJListAdapter
additionally inherits JScrollPane. Note how this structure
naturally represents the mapping definition for List, given
as a regular expression in §IV-B.

B. Stateful Adapter

The main goal of the ADAPTER pattern is to reuse existing
functionality. Unfortunately, delegation is often not possible
because mapped types may not agree on the features they
offer and data they carry. If a source API type assumes a
richer state than its target API counterparts, requests cannot be
simply delegated to adaptees—a Stateful Adapter must carry
the missing data.

Figure 6 outlines the structure of the two main scenarios
in which the pattern is used. In the first, Shell’s surrogate
re-implements functionality missing from JFrame, the dis-
posed flag. The second scenario comes from XOM2JDOM and

2Legend: class diagrams throughout the paper identify S©urrogate,
I©nternal, T©arget API and A©pplication types.

XMLOutputter

out(d: Document, s: OutputStream)

TSerializer
s: OutputStream

Serializer(s: OutputStream)

write(d: Document)

S

Shell
S

disposed: boolean

JFrame
T

Fig. 6. Stateful Wrapper scenarios.
1 public abstract class Component {
2 Widget adaptee;
3 abstract void createAdaptee(Composite parent);
4 ...
5 }
6 public class Container extends Component {
7 List<Component> pending = new ...;
8 void createPending() {
9 if (pending != null) for (Component c : pending) wire(c);

10 pending = null;
11 }
12 void wire(Component c) {
13 c.createAdaptee((Composite) getAdaptee());
14 if (c instanceof Container) ((Container) c).createPending();
15 }
16 public Component add(Component c) {
17 if(getAdaptee() == null) pending.add(c);
18 else wire(c);
19 return c;
20 }
21 ...
22 }
23 public class JButton extends AbstractButton {
24 String text;
25 void createAdaptee(Composite parent) {
26 Button button = new Button(parent, SWT.PUSH);
27 button.setText(text);
28 setAdaptee(button); ...
29 }
30 public void setText(String text) {
31 if(getAdaptee() == null) this.text = text;
32 else getAdaptee().setText(text);
33 }
34 ...
35 } Fig. 7. Delayed Instantiation.

exemplifies adjustment of interaction protocols. XOM clients
use Serializer to write XML documents to an output
stream. Clients first set the output stream in the constructor
and then call write methods passing only the document
to be written. XMLOutputter, JDOM’s counterpart, uses a
different protocol—clients must pass both the stream and the
document at each method call. Thus, the surrogate collects the
state and adjusts the protocol when dispatching operations.

C. Delayed Instantiation

Surrogates usually have their lifecycles bound to adaptees.
When migrating to target APIs that enforce object relation-
ships at construction time, surrogates may need to delay
construction of adaptees until the relationship is established in
terms of source API protocols. For example, in the Swing2SWT
excerpt of Fig. 7, JButton cannot create its Button
adaptee in a constructor because the parent object is yet un-
known – the parent-child relationship will only be established
when the JButton object is added to a Container with
Container.add (l. 16).

The FACTORY METHOD pattern [5] provides infrastructure
for delayed instantiation since it decouples surrogate and
adaptee lifecycles. In the example, Component declares the

createAdaptee() factory method (l. 3) to be implemented
by sub-classes. While no adaptee is available, operations
on surrogates must be deferred or re-implemented without
delegation. For example, JButton stores interim data in a
field text (l. 24) and re-implements its accessor methods
(l. 30). The factory method then creates the adaptee (l. 25)
and ensures interim data is delegated (l. 27).

Although Container.add sets the parent-child relation-
ship, it cannot trigger adaptee instantiation if the container
itself does not have an adaptee—if the adaptee is available, the
objects are wired (l. 18), otherwise, the object is added to a list
of child components pending adaptee instantiation (l. 17).
Eventually a component will be added to a top-level widget,
which always has an adaptee, which is when wire (l. 12)
will be executed. This will trigger the factory method on the
component, passing the parent widget’s adaptee as parameter
(l. 13). If the component is a container it may have pending
children, so createPending() is called (l. 14) to iterate
the list and cascade wiring (l. 9) of children.

Implementations of delayed instantiation must decide how
to store interim data and which operations to re-implement
or delay. In SwingWT, interim data is stored directly in
surrogate fields, as in our example; getters and setters are
re-implemented using interim data, whereas most of the re-
maining methods require proper adaptees.

In this solution, surrogate methods must always check if the
adaptee has already been instantiated to decide if the operation
should be delegated or simulated with the placeholder fields
(e.g. setText() in l. 30). Another option would be to
use the layered adapter pattern. An internal adapter variant
would implement a placeholder and the surrogate would swap
it to a final variant once the parent widget is known. This
alternative has the advantage that surrogates delegate to the
uniform internal adapter interface without having to check if
the adaptee has already been instantiated.

Factory methods in surrogates also prevent object adapters
from instantiating multiple adaptees. In Java, every constructor
must call a constructor of the super-class (except Object).
If adaptees are instantiated in all constructors, super-classes
will always instantiate an adaptee, which is then stored in a
field (as in l. 2). Sub-classes can only refine the adaptee by
overwriting the field after the fact, causing multiple adaptees
to be instantiated when only the refined one would suffice. In
contrast, factory methods can be properly overridden so that
multiple instantiations are avoided.

Re-implementation of all operations of a surrogate with
delayed instantiation ultimately violates the intention of reuse.
Wrappers should re-implement or delay those operations that
are often performed before the trigger in applications. Also,
wrappers should provide documentation regarding the opera-
tions that are ‘safe’ in this sense.

D. Inverse Delegation

This pattern deals with control flowing from the tar-
get API to the application. In particular, Inverse Delega-
tion allows application callbacks designed to work with the

JButton

addActionListener(...)

S T
Button

addSelectionListener(...)

<<Interface>>

ActionListener

actionPerformed(e: ActionEvent)

S

MyActionListener

actionPerformed(e: ActionEvent)

A

T
SelectionAdapter

widgetSelected(e: SelectionEvent)

I
InverseActionListener

widgetSelected(e: SelectionEvent)

Fig. 8. Inverse Delegation for callbacks.

source API to be executed when the corresponding events
occur in the target API. There are two main approaches
to implement the pattern. First, it is possible to apply the
ADAPTER pattern in the inverse direction, as outlined in
Fig. 8. When MyActionListener is registered to a surro-
gate (such as JButton), the surrogate creates an equivalent
listener of the target API (InverseActionListener),
which becomes an inverse adapter to the original listener.
When the target API generates an event in the Button,
InverseActionListener translates and delegates it back
to its ActionListener inverse adaptee.

Another approach, implemented in SwingWT and SWTSwing,
is to use the surrogate itself as inverse adapter. In Fig. 8,
JButton would register itself to Button and would keep
a list of ActionListeners. When MyActionListener
is registered, JButton simply adds it to the list. An event
in Button would then trigger JButton, which would then
translate the event and dispatch to the listeners in its list,
including MyActionListener.

E. Wrapping Identity Map

The semantics of some source API operations is to return
a new object at each call. For instance, the elements()
method in Fig. 1 returns a new Enumeration object each
time. In this case, a surrogate can simply wrap target API
objects into new surrogates before returning to the appli-
cation. For other operations it is necessary to maintain the
correspondence between adaptees and surrogates. For exam-
ple, in Fig. 9, Container.getComponents() (l. 12)
delegates the call to its adaptee (l. 13) and gets an array
of sub-widgets. It then iterates over the array wrapping
the target API objects into corresponding surrogates (l. 16).
Component.getSurrogate() (l. 3) consults a Wrapping
Identity Map (l. 2) to get the Component surrogate mapped to
the Widget adaptee. If the adaptee does not have a surrogate
yet a new surrogate is created on the fly (l. 5). Note that
createSurrogate (code omitted) receives as parameter
the surrogate class to be instantiated. This allows the method
to either instantiate the surrogate object reflectively (in which
case surrogates must conform to certain rules, like having a
default constructor and setters to adaptees) or implement a
hard-coded type mapping. Furthermore, because the operation
requests a surrogate of a certain type (Component in l. 16),
it is possible to have an adaptee mapped to different surrogates
depending on the context, which is necessary when many

1 public abstract class Component {
2 static Map<Widget, Component> map = new ...;
3 static Component getSurrogate(Widget adaptee, Class<?> sClass) {
4 if (! map.containsKey(adaptee))
5 map.put(adaptee, createSurrogate(adaptee, sClass));
6 return map.get(adaptee);
7 }
8 ...
9 }

10 public class Container extends Component {
11 public Component add(Component c) { ... }
12 public Component[] getComponents() {
13 Control[] controls = ((Composite) getAdaptee()).getChildren();
14 Component[] components = new Component[controls.length];
15 for(int i = 0; i < controls.length; i++)
16 components[i] = getSurrogate(controls[i], Component.class);
17 return components;
18 }
19 ...
20 }

Fig. 9. Identity Map.

Wrapper SwingWT SWTSwing XOM2JDOM

Surrogates 471 248 38
Interfaces 120 46 0
Classic Adapters 9 22 30
Layered Adapters 64 54 1
Remakes 278 127 7

Internal Types 146 412 4
Internal Adapters 87 227 3

Anonymous Adapters 63 120 0

Stateful Adapter 98 181 13
Delayed Instantiation 4 8 8
Inverse Delegation 20 59 1

Adapted Target API Types 20 26 1
Wrapping Identity Map 4 4 4

Class Adapters 23 179 1
Object Adapters 103 124 31
Other Adapters 57 52 3

Single Adaptee 21 45 19
Multiple Adaptees 78 79 12

TABLE III
WRAPPER METRICS FOR TYPES, PATTERNS, AND ADAPTERS.

surrogates share a single adaptee (the map in l. 2 would need
to be extended to account for multiple possible targets).

The identity map is only necessary if the surrogate is an
object adapter because class adapters are already typed by
both APIs and do not require translation. Maps can also be
designed on a per-type or system-wide basis; they can be
manually implemented using available map data structures or
a library can be designed to maintain the map and instantiate
surrogates reflectively if necessary. An additional issue with
identity maps is memory leak—correspondences should be
weak, i.e., garbage collection should not be prevented from
cleaning up objects only because they are in the map.

VI. WRAPPER METRICS

We designed straightforward metrics to provide evidence for
the presence of the wrapper patterns in the studied projects.
The metrics are described informally in the next sections, and
the results of the measurements are presented in Table III. We
also measure auxiliary properties of types and adapters.

A. Classic vs. layered adapters

A type present in a wrapper project can be either a sur-
rogate, when it represents a type of the source API, or an
internal type; see the breakdown of types at the top of the
table. A surrogate can be one of four kinds: an interface,
which is simply a copy of a source API interface; a remake,
which is a class that re-implements a source API’s type without
any reference to the target API (neither directly nor indirectly
through internal types); a classic adapter, which is a class that
references the target API directly but not indirectly; a layered
adapter, which references the target API indirectly through
internal types.

Internal types can provide services to the wrapper, such
as ListTargetAdapter in Fig. 5, and can themselves be
adapters, like JListAdapter. Internal adapters in Java can
also be implemented as anonymous types.

The measurements show that the majority of surrogates in
the GUI wrappers are remakes and interfaces. This is not
surprising given that the projects concentrate on wrapping
widget types. GUI wrappers also have more layered adapters
than classic adapters and encapsulate much of the adaptation
code in internal types, which reflects the high complexity
of the mappings. Most of SWTSwing implements the layered
adapter as described in Fig. 5 whereas SwingWT uses a
simple form without the uniform interface, which is indeed
not required when no alternatives have to be handled. This is
reflected in SWTSwing having many more internal types and
adapters than SwingWT. Since XOM2JDOM maps structurally
similar APIs, it relies mostly on classic adapters.

B. Breakdown of other patterns

The Stateful Adapter pattern is frequently used in the
studied projects. We have counted all classic adapters, layered
adapters, and internal types that carry additional data. We
consider as additional data any non-constant field whose type
is neither of a source API type (a relationship among surro-
gates) nor of a target API type (an adaptee). We exclude fields
which are referenced in methods for delayed instantiation
since they could represent interim data. Note that the defining
characteristic of the stateful adapter pattern is that the target
API cannot carry the data, whereas in delayed instantiation
the target API can carry the data but is not ready to do so.

The Delayed Instantiation pattern is needed for one of
the two GUI wrappers. That is, SwingWT needs to account
for SWT’s strict construction-time enforcement of parent-
child relationships. All SwingWT widgets implement delayed
instantiation by collecting interim data in surrogate fields.
XOM2JDOM does not need delayed instantiation because the
lifecycles of surrogates and adaptees are bound. We should
mention though that other XML wrappers may very well
require delayed instantiation. For instance, a migration from
XOM or JDOM to DOM would face the challenge that DOM
enforces document-element relationships at construction time.

The Inverse Delegation pattern is exercised by all wrappers.
The GUI wrappers use surrogates as inverse adapters. The

table shows a lower bound on the number of inverse delega-
tion instances in that it only counts class adapters to target
API listeners (name ends with Listener or Adapter).
XOM2JDOM implements a one-to-one inverse adapter ap-
proach for node factories used in de-serialization.

The Wrapping Identity Map pattern is exercised by all
wrappers. SwingWT uses a static hash map field for the
whole system hosted by Component, whereas SWTSwing
uses a hash map per Display instance. XOM2JDOM uses
a dedicated library that maintains a map per adaptee type and
instantiates surrogates reflexively if necessary.

C. Other adapter properties

The table also summarizes how wrappers reference tar-
get API types: class adapters reference through inheritance;
object adapters reference through object composition; other
adapters reference in some other way, e.g., through calling
target API static methods or having methods with target API
return types. A given wrapper type may be class and object
adapter simultaneously. We have not found any classic class
adapter in the wrappers—all class adapters were listeners
or part of a layered adapter pattern. This is also expected
because Java does not allow multiple class inheritance and
surrogates already implement the source API class hierarchy.
Note that SWTSwing uses predominantly class adapters since
the layered adapter pattern provides this flexibility.

Further, the table summarizes the multiplicity of field-based
references for adaptees in object adapters: we speak of a single
adaptee if an adapter type has a single field with a target API
type; if there is more than one, then we speak of multiple
adaptees. Here, we count both immediate and inherited fields.
We can see that many types use multiple adaptees.

VII. THREATS TO VALIDITY

The main threat to internal validity is related to the
identified challenges and patterns. Although we have been
systematic in analyzing the projects it can be that important
challenges and patterns were missed. The data regarding the
presence of patterns in wrappers were extracted by custom
made tools and may present small deviations. Since the data
only support our claim that patterns are indeed used in practice
small errors do not compromise the conclusions.

Threats to external validity concern the generalization of
our results and involve our choice of subjects. We think that
the challenges and patterns identified are not dependent on
the specific APIs and could be generalized to other settings.
However, since we have only studied GUI and XML APIs
for Java our conclusions are restricted to these domains.
Furthermore, the quality of the selected wrappers could in-
fluence the validity of the identified patterns. We hold that
the GUI wrappers are successful projects worth being studied
given the complexity of the APIs they wrap, their claims
of compatibility with the respective source APIs, and the
extensive user base. XOM2JDOM, which was developed by the
authors, also achieves high compliance levels with its source
API [4].

VIII. RELATED WORK

Wrapping is a general re-engineering technique to provide
access to existing functionality through a preferred interface.
Wrapping can serve different purposes, e.g., the migration of
old procedural code to OO abstractions [1], or the migration
of non-service-oriented functionality, or systems, e.g., a GUI-
based system, to services [8], [9], [10]. Our work contributes
to ‘the art of wrapping’ with substantially advanced forms of
the ADAPTER design pattern. We address layered adaptation,
delayed adaptee instantiation, and other peculiarities.

API upgrade refers to the re-engineering objective of
migrating applications across API versions. Both wrapping-
based [2], [3] and transformation-based [11], [12] approaches
have been studied. In such work, the involved APIs (in
fact, versions) are related to each other through refactorings,
which are then used to generate wrappers or to rewrite the
application. In contrast, our work addresses the complexities
of migration across different APIs, and it captures executable
assumptions about their correspondence as advanced wrappers.

Transformation-based API migration has been studied
both for the procedural paradigm [13], [14] and the OO
paradigm [6], [15]. Previous (OO-based) work assumes rela-
tively simple direct correspondences between types and meth-
ods of the API couple. In contrast, our work specifically
studies the peculiarities of API source-to-target mappings that
involve statefulness, delayed instantiation, or alternatives and
composition (thereby leading to layered adaptation).

Language conversion involves API migration. Previous
research mainly assumes a non-OO language (Cobol, C, etc.)
on the source side [16], [17], [18]. Our work is the first
to tackle current OO APIs with their type hierarchies and
protocols. A notable but limited exception is the approach of
[19]: simple API mappings, which can be useful for actual API
migration, are inferred from an application before and after
language conversion by matching code structure and names.

IX. CONCLUDING REMARKS

We have studied the design of two complex, practically
relevant wrappers for the major GUI APIs of the Java platform.
We have identified the design challenges that the developers
of these wrappers and likely developers of other wrappers
face. We have extracted solutions to these design challenges
(problems) and abstracted them as design patterns.

Given the apparent complexity of wrappers in practice, the
large number of APIs that play a role in current software devel-
opment and the need to maintain and integrate applications, it
appears to be a laudable objective to work towards generative
support for wrapper development or, more generally, API
migration. Compared to the transformation-based approaches
of the related work discussion, we would like to specifically
see that the identified patterns be addressed.

Another subject for future work concerns the semi-
automatic identification of an API mapping by a combination
of automated matching (as in [20]) and IDE-supported de-
veloper gestures. As far as matching is concerned, there is a

considerable body of related research in the data management
and meta-modeling communities.

REFERENCES

[1] H. M. Sneed and R. Majnar, “A case study in software wrapping,” in
Proc. of the International Conference on Software Maintenance (ICSM).
IEEE, 1998, pp. 86–93.

[2] I. Şavga, M. Rudolf, S. Götz, and U. Aßmann, “Practical refactoring-
based framework upgrade,” in Proc. of the Int. Conf. on Generative
Programming and Component Engineering (GPCE). ACM, 2008, pp.
171–180.

[3] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “Reba: refactoring-
aware binary adaptation of evolving libraries,” in Proc. of the Int. Conf.
on Software Engineering (ICSE). ACM, 2008, pp. 441–450.

[4] T. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm,
“Study of an API migration for two XML APIs,” in Proc. of the Int.
Conf. on Software Language Engineering (SLE), 2009.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[6] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library
migration,” in Proc. of the Int. Conf. on Object Oriented Programming,
Systems, Languages, and Applications (OOSPLA). ACM, 2005, pp.
265–279.

[7] U. Hölzle, “Integrating Independently-Developed Components in
Object-Oriented Languages,” in Proc. of the European Conference on
Object-Oriented Programming (ECOOP). Springer-Verlag, 1993, pp.
36–56.

[8] M. Li, B. Yu, M. Qi, and N. Antonopoulos, “Automatically wrapping
legacy software into services: A grid case study,” Peer-to-Peer Network-
ing and Applications, vol. 1, no. 2, pp. 139–147, 2008.

[9] B. Zhang, L. Bao, R. Zhou, S. Hu, and P. Chen, “A Black-Box strategy
to migrate GUI-Based legacy systems to web services,” in Int. Symp. on
Service-Oriented System Engineering (SOSE). IEEE, 2008, pp. 25–31.

[10] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana, “A wrap-
ping approach for migrating legacy system interactive functionalities to
service oriented architectures,” Journal of Systems and Software, vol. 81,
no. 4, pp. 463–480, April 2008.

[11] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in Proc. of the Int. Conf. on Software
Engineering (ICSE). ACM, 2005, pp. 274–283.

[12] J. H. Perkins, “Automatically generating refactorings to support API
evolution,” in Proc. of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE). ACM, 2005, pp. 111–114.

[13] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes,” in Proc. of the Int. Conf. on Software
Maintenance (ICSM). IEEE, 1996, p. 359.

[14] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in linux device drivers,” in Proc.
of the EuroSys Conference. ACM, 2008, pp. 247–260.

[15] M. Nita and D. Notkin, “Using Twinning to Adapt Programs to Alter-
native APIs,” in Proc. of the Int. Conf. on Software Engineering (ICSE),
2010.

[16] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Müller, and
J. Mylopoulos, “Code migration through transformations: an experience
report,” in Proc. of the Conference of the Centre for Advanced Studies
(CASCON). IBM, 1998, p. 13.

[17] A. J. Malton, “The Software Migration Barbell,” in ASERC Workshop
on Software Architecture, August 2001.

[18] J. Martin and H. Muller, “C to java migration experiences,” in European
Conference on Software Maintenance and Reengineering, 2002, pp.
143–153.

[19] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
API Mapping for Language Migration,” in Proc. of the Int. Conf. on
Software Engineering (ICSE), 2010.

[20] D. Ratiu, M. Feilkas, F. Deissenboeck, J. Jürjens, and R. Marinescu,
“Towards a Repository of Common Programming Technologies Knowl-
edge,” in Proc. of the Int. Workshop on Semantic Technologies in System
Maintenance (STSM), 2008.

