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Abstract — Software repositories hold applications that 
are often categorized to improve the effectiveness of various 
maintenance tasks. Properly categorized applications allow 
stakeholders to identify requirements related to their 
applications and predict maintenance problems in software 
projects. Unfortunately, for different legal and 
organizational reasons the source code is often not 
available, thus making it difficult to automatically 
categorize binary executables of software applications. 

In this paper, we propose a novel approach in which we 
use Application Programming Interface (API) calls from 
third-party libraries as attributes for automatic 
categorization of software applications that use these API 
calls. API calls can be extracted from source code and more 
importantly, from the byte-code of applications, thus making 
automatic categorization approaches applicable to closed 
source repositories.  We evaluate our approach along with 
other machine learning algorithms for software 
categorization on two large Java repositories: an open-
source repository containing 3,286 projects and a closed-
source one with 745 applications.  Our contribution is 
twofold: not only do we propose a new approach that makes 
it possible to categorize software projects without any 
source code using a small number of API calls as attributes, 
but also we carried out the first comprehensive empirical 
evaluation of automatic categorization approaches. 

 
Index Terms — closed-source, open-source, software 

categorization, machine learning. 

I. INTRODUCTION 
Different software repositories mushroomed in the past 

decade with many of them containing massive amounts of 
source code and different software artifacts. To facilitate 
browsing and searching of these repositories, software 
systems are placed into categories (e.g., text editors, 
financial, or databases). Since many stakeholders are 
engaged in maintaining software, these stakeholders benefit 
from properly categorized software repositories for two 
reasons.  First, grouping applications with similar features 
(i.e., units of functionality) allows stakeholders to decide 
what features they should implement in their own 
applications that belong to same groups or categories [7, 17] 
Second, stakeholders can determine what problems or bugs 
are common to many applications in the same category, and 

in turn predict what problems or bugs other applications 
from the same category are likely to encounter [27, 29]. 

Automatic categorization of software applications in 
repositories is increasingly gaining acceptance since it 
reduces the manual effort significantly [4, 6, 7, 16, 17, 21, 
24, 25].  Currently, software applications are categorized by 
applying text classification approaches; terms (i.e., words in 
identifiers and comments) are extracted from the source code 
of applications and these terms, also called attributes of the 
applications, serve as the input to a machine learning 
algorithm that eventually places applications into categories. 
Even though automatic categorization approaches do not 
achieve perfect precision, they still enable stakeholders to 
quickly benefit from categorized applications when solving 
software maintenance tasks. 

A common key assumption for all existing automatic 
software categorization approaches is that the source code of 
open-source applications is always available. Unfortunately, 
it is often not true in case of commercial software 
development.  Many organizations can release only the 
executable forms of their applications for various legal and 
organizational reasons. Furthermore, consulting companies 
such as Accenture, IBM, and HP Global Services do not own 
the source code that they produce – their clients do 1 . 
Therefore many commercial organizations cannot use the 
source code in software categorization approaches.  

In reality, many consultants who build mission-critical 
software for different industries, especially for financial and 
biopharmaceutical companies, often work in “cleanrooms,” 
where the source code is written and kept on company 
premises in physically secured environments [9, 15]. 
External consultants from outsourcing companies such as 
Accenture, IBM, and HP Global Services come to the 
cleanroom of the client company to write client’s 
applications. Actions of these consultants are tightly 
monitored; electronic connections to outside of the 
company’s network, phone calls, USB keys, and cameras are 
strictly forbidden. Once the applications are built, their 
executables are often released to consulting companies for 
testing. Cleanroom development effectively negates the 
opportunity for consulting companies to accumulate 

                                                             
1Accenture policy 69 says that source code constitutes confidential 
information because it is information or material, not generally 
available to the public, that is generated, collected or used by the 
Company and that relates to its business, research and development 
activities, clients, or employees. 



 

knowledge about applications they build, and more 
importantly to use this knowledge for different software 
maintenance tasks. 

Our idea is to use external Application Programming 
Interface (API) calls from third-party libraries and packages 
that are invoked in software applications (e.g., the Java 
Development Kit (JDK)) as a set of attributes for 
categorization.  Doing so is based on the fact that 
programmers typically build software using API calls from 
well-defined and widely used libraries [11].  The intuition 
behind our approach is that APIs are already grouped in 
packages and libraries based on their functionalities, and this 
grouping can be combined with machine-learning 
approaches to categorize applications.  For example, a music 
player application is more likely than a text editor to use a 
sound output library, and finding APIs from this library in 
the music player application enables us to put it in a proper 
category.  Moreover, APIs are common to many software 
programs and invocations of the API calls can be extracted 
from the executable form of applications because the API 
calls exist in external packages and libraries. A key question 
is how selecting APIs for categorizing applications compares 
with approaches that rely on selecting all words in the 
source code of applications.  

In this paper, we investigate this question by empirically 
studying large sets of Java applications from different 
repositories and applying different machine learning 
algorithms to obtain the answer to this question with strong 
statistical significance. To our knowledge, this is the first 
time that different machine-learning approaches were 
thoroughly evaluated for software categorization on large 
application sets.  All of our case study data is available at our 
online appendix2.  Our contributions are the following. 

• A new approach to software categorization based on 
the APIs used by the applications.  We extracted the 
API information in two forms: as the API packages 
that contain calls used by applications and as the API 
classes.  We found that using API packages results, on 
average, in 20% better predictions than using classes 
in terms of rate of true positives.  Our approach is the 
first that is able to categorize applications in closed-
source software repositories. 

• We have built our approach and tested it on two 
software repositories: 745 Java closed-source 
applications from Sharejar3, and 3,286 Java open-
source applications from SourceForge4. We contrasted 
the results of three different machine learning 
algorithms and three types of attribute, and show that 
Support Vector Machines (SVM) is the best-
performing algorithm for categorization over these 
repositories. 

• To demonstrate how competitive our approach is, we 
compared it with the closest baseline approach by 

                                                             
2 http://www.cs.wm.edu/semeru/catml/ 
3 http://sharejar.com/ 
4 http://sourceforge.net/ 

Ugurel et al. [25] that has previously been tested on 
330 applications from SourceForge and 1,353 projects 
from IBiblio5. Our results show that our approach is a 
good alternative to this competitive approach in that it 
reaches comparable rates of true and false positives 
while using significantly fewer attributes as the names 
of API packages whose calls are made in applications. 

II. BACKGROUND 
In general, categorization is the task of assigning a finite 

set of categories to software applications. The automatic 
categorization process can be outlined as follows. First, a set 
of attributes is selected that characterize the software 
applications. These attributes may contain all words in an 
application (not including language keywords) or only the 
names of API packages whose calls are made in the 
application, as we have done in our approach. Second, a 
machine learning algorithm uses the attributes, applications, 
and categories to generate predictions, which are the 
algorithm’s mapping of applications to a category. That is, 
the job of an automatic categorization tool is to compute a 
function that maps applications to categories. 

The intuition behind the reason of why automatic 
categorization works is that certain attributes occur more 
often in applications belonging to one category than another 
category.  For example, applications in the category Email 
contain terms such as “replyto” and “mailbox,” whereas 
applications in the category Databases have terms such as 
“sql.”  Machine learning algorithms rely on the specificity 
of these attributes to certain categories.  The accuracy of 
these algorithms worsens if the attributes are distributed 
arbitrarily across applications that belong to different 
categories.  The intuition behind our idea is that the APIs 
used by applications are less likely to be distributed 
arbitrarily than the terms, because the terms (i.e., the names 
of identifiers) are chosen by programmers of applications 
often arbitrarily, whereas the set of APIs is predefined. 
A. Machine Learning Algorithms 

In this paper, we focus on supervised machine learning 
algorithms, in which a training set of pre-categorized 
applications is used to predict the categories to which 
uncategorized applications belong. This paper deals with 
multi-label supervised learning, where an application is 
classified into m of n categories [23]. 

B. Attribute Selection 
The attributes that are chosen to represent applications in 

classification are critical to producing quality predictions.  
Naturally, the attributes must be available and extractable 
from the software applications.  In selecting attributes, we 
first choose which characteristics of the applications can be 
used as attributes that best distinguish the applications in 
each category.  For example, words are a frequent choice of 
attribute used for categorization of text documents [4, 13, 
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17, 25].  Also, the attributes must distinguish the 
applications in one category from the applications in a 
different category [28].  This selection is done 
automatically, during the training of the machine learning. 

For example, selecting programming language keywords 
as attribute is a poor choice since all applications written in 
the same language are likely to share these keywords. 
Different strategies have been proposed for selecting the 
best subset of these attributes [12], though in general these 
strategies rely on the principle that certain attributes occur 
more often in applications that belong to certain categories. 
We use this principle in our approach – for example, APIs 
that come from a music library are likely to occur in 
application that processes music than in other types of 
applications. 

III. OUR APPROACH 
Since a plethora of automatic categorization approaches 

use the same categorization process, this paper expands 
upon the work by Ugurel et al. [25] that is a popular 
baseline implementation of this process.  Ugurel et al. used 
only one type of attribute and one machine learning 
algorithm to categorize a small number of applications (330 
from Sourceforge and 1,353 from IBiblio).  Our approach 
builds on this work by testing multiple types of attributes 
and algorithms.  Another important different from previous 
studies is that our approach can be applied to closed-source 
repositories. To define the specifics of our approach that set 
it apart from other competitive approaches, we must answer 
the following four design questions. 

Q1: What is an application and what is a category? 
An application is a collection of software artifacts that 

include source code files and/or executables, and this 
collection is defined as the latest release of a project from a 
software repository.  A category is a grouping of 
applications based on the functionality the applications 
provide (e.g., Games or Email). For example, SourceForge 
contains thousands of projects that are organized into many 
categories, and we use these projects in our experiments in 
this paper. 

Q2: What is an attribute? 
Different approaches to software categorization use 

words from comments and identifiers as attributes that are 
extracted from the source code of applications. We consider 
only single words as attributes and not combinations of 
single words such as bigrams, since previous empirical 
results showed that single words outperform combinations 
of words for software categorization [25]. 

Words from comments and identifiers cannot be used as 
attributes if only executable applications are available (as in 
closed repositories), since it is not possible to extract 
descriptive names of identifiers and comments without 
having the source code. This necessity motivates us to select 
two more types of attributes from applications: API 
packages and API classes, whose API calls are invoked in 

applications.  In this paper, we use these two types of 
attributes with different classification algorithms. 

These two API-based attributes are both based on the API 
calls which applications use, but refer to different levels of 
granularity.  API packages are one level of granularity.  For 
example, an application that processes music files may use 
the package javax.sound.midi. We refer to API 
packages as simply packages.  We use all packages 
regardless of how they are decomposed (e.g., a package 
containing another package).  The API classes are the 
classes used in these packages and more fine-grained details 
about the utilized functionality.  For example, a music 
player may use the class MidiDevice from 
javax.sound.midi.  We refer to API classes as classes.  
One important advantage to using packages and classes as 
attributes is that both of these can be extracted from Java 
byte code – it is not necessary to have the source code. The 
API packages and classes we detect in applications are from 
the Java SDK6. Given that the JDK is representative of the 
other third-party APIs, we expect our results to be general. 

Q3: Which attributes do we use for categorization? 
Since we use the baseline classification approach as 

Expected Entropy Loss (EEL) by Ugurel et al. [25], we 
briefly describe this approach here for reproducibility of our 
results. EEL is an almost decade old algorithm that is shown 
to be highly-effective for selecting the most-relevant 
attributes of systems in software repositories [25]. In EEL, 
words are selected from source code, and we adapt EEL as 
our attribute selector for API classes and packages in this 
paper. 

EEL works by ranking software system’s attributes 
based on how well each attribute describes each category. 
The likelihood that an attribute is in a given category is 
referred to as that attribute’s entropy for that category.  For 
example, the package javax.sound.midi is likely to be 
specific to applications in the category Music, whereas 
javax.swing may be both in applications in Music and 
Email.  The entropy of javax.sound.midi would be high 
for the category Music, relative to javax.swing. In this 
paper, we adapt EEL’s definition and formulas for software 
categorization using API call information. 

We provide the following formulas for the 
reproducibility of our approach. Entropy is a measure of the 
uncertainty associated with an event and is expressed in 
terms of a discrete set of probabilities Pr(X) over an event 

Xxi ∈ , where X is the event space: 

( )∑ =
−=

n

i ii xxXe
1

)Pr(log)Pr()(  

Let C be the event indicating whether an application is a 
member of the specified category (e.g., if the application is 
related to the category). Let a denote the event that the 
software system contains the specified attribute. 
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The prior entropy represents the overall distribution of 
applications into a category, and is calculated as: 

( ) ( ))Pr(log)Pr()Pr(log)Pr()( CCCCCe −−=  

The posterior entropy represents probability of a given 
attribute for a given category: 

( ) ( ))|Pr(log)|Pr()|Pr(log)|Pr()( aCaCaCaCCea −−=  
Likewise, the posterior entropy of the class when the 
attribute is absent is ( ) )|Pr(log)|Pr()|Pr(log)|Pr()( aCaCaCaCCea −−=  
Thus the expected posterior entropy is 

)Pr()()Pr()(),( aCeaCeaCEPE aa +=  

And the expected entropy loss is 

),()(),( aCEPECeaCEEL −=  

Each attribute has a value for each category.  Attributes with 
higher values of EEL for a category are more discriminatory 
and provide more information for the categorization.  The 
attributes with highest EEL for each category are used to 
train categorization algorithms.  In our case study, we select 
attributes only from the portion of the dataset used for 
training (see Section IV.B). 

Q4: What machine learning algorithm do we use? 
In this paper, we explore three popular machine learning 

algorithms: Decision Trees, Naïve Bayes, and Support 
Vector Machines. We chose to test these three algorithms 
because they have been widely used in text categorization 
[22]. 

Decision Trees (DT) uses a “divide and conquer” 
strategy to split the problem space into subsets. A DT is 
modeled like a tree where the root and the nodes are 

questions, and the arcs between nodes are possible answers 
to the questions. The leaves of the tree are the categories.  
DTs are able to deal with categorical inputs and multi-class 
problems. Thus, in a categorization problem, the inputs for 
DT are the features and the output is a category. DTs were 
used for software categorization by Kawaguchi et al.  [16]. 

Naïve Bayes (NB) classifiers assume that all the 
attributes are independent and that each contributes equally 
to the categorization. A category is assigned to a project by 
combining the contribution of each feature. This 
combination is achieved by estimating the posterior 
probabilities of each category by using Bayes’ Theorem. 
Prior probabilities are estimated with training data.  This 
kind of classifier is able to deal with categorical inputs and 
multi-label problems.  Thus, in a categorization problem, the 
inputs for NB are the attributes and the output is the 
probability distribution of the project on the categories. NB 
was used for software categorization by Sandhu et al. [21]. 

Support Vector Machines (SVM) split the problem space 
into two possible sets by finding a hyper-plane which 
maximizes the distance with the closest item of each subset. 
The function that splits the hyper-plane is known as the 
kernel function. In this paper, we arrange multiple SVM 
classifiers in a one-against-one strategy to allow multi-label 
classification. In the one-against-one approach, each 
classifier is trained to recognize two classes [14]. We 
generate the predictions by a vote of the predictions from the 
classifiers following the technique of Ugurel et al. [25]. 

IV. CASE STUDY DESIGN 
In Section V, we consider three types of attributes (terms, 

classes, and packages) and uses EEL to select a subset of 
those attributes for categorization.  We also outlined three 
different machine learning algorithms for generating 
predictions.  In this section, we discuss the design of a case 
study to evaluate different configurations of our approach. 

A. Settings of the Case Study 
The settings of the case study include the applications we 

want to categorize and the implementation details behind 
the machine learning algorithms.  While implementing our 
approach, we used the same implementations of machine 
learning algorithms as in [25] to allow direct comparison of 
with our techniques. 

1) Software Repositories 
We downloaded 8,310 Java applications from 

SourceForge (open source), and these applications are 
spread across the 22 categories in Table 1.  We also 
downloaded 745 Java applications from Sharejar (closed 
source), and these applications are created for mobile 
phones and include only the compiled Java bytecode.  The 
13 Sharejar categories are listed in Table 2. 

In general, projects may belong to one or more 
categories in the same repository, but not in cross-
repositories.  All categories from both repositories do not 
include   any    sub-categories.   Also,   in   Sourceforge,  we 



 

Table 1: SourceForge projects and categories 

Table 2: Sharejar projects and categories 

selected only categories with at least 100 applications in 
order to limit the number of categories; we did not consider 
applications that are not in these top categories in our case 
study.  In Sharejar, we considered all categories, and there 
were no uncategorized applications.  In total, we consider 
3,286 of the applications from Sourceforge and all 745 
applications from Sharejar. 

2) Selection of Attributes 
We extracted the package and class attribute sets from 

the Sharejar applications using JClassInfo 7 , a byte-code 
analysis tool for Java.  For the SourceForge repository, we 
built a tool based on PMD8 to extract the API packages and 
classes directly from the applications’ source code.  PMD 
also allowed us to extract project terms from the source code. 

Once we had the terms, packages, and classes from each 
project, it was necessary to select the attributes to be used for 
categorization.  We use EEL to rank attributes for each 
category from the training set (see Section III).  In keeping 
with the case study design from [25], we then select the 
attributes which best distinguish each category with the 
following procedure. First, we exclude attributes that occur 
in only one project.  Second, we exclude attributes that occur 
in less than 7.5% of the projects in a category.  Finally, we 
choose the top 100 remaining attributes for each category 
according to the attributes’ EEL for the category. 

3) Machine Learning Algorithms 
We used WEKA 9  to implement the three machine 
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learning algorithms for our approach.  For SVM, we used the 
Weka Libsvm wrapper10. In all cases, we used WEKA’s 
default parameters, which were the same as were used in 
[25]. 

B. Research Questions 
Our goal is to determine how we can best categorize 

software based on the APIs used in each application.  
Therefore, we address the following research questions 
(RQ) in our case study: 

RQ1:  Which machine learning algorithm is most 
effective for software categorization? 

RQ2: Which level of granularity of API-based attribute, 
API classes or API packages, is more effective for 
software categorization? 

RQ3: Are the API classes or API packages as effective 
attributes as words (e.g., identifiers, comments) from 
source code for software categorization? 

The rationale behind RQ1 is that we want to compare 
different machine learning approaches on large application 
sets and obtain quantitative measurements of how well it 
categorizes applications.  We also want to know how 
different types of attributes affect the accuracy of our 
approach.  Specifically, we extracted two types of data based 
on the APIs used in applications, and in RQ2 we want to 
study which of these types produces the best accuracy.  
Similarly, the purpose of RQ3 is to compare our approach, 
where attributes are API classes and packages, to 
competitive approaches that use words extracted from source 
code as attributes. 

To respond to our research questions, we compare the 
algorithms’ accuracy by using a 5-fold cross validation and 
the metrics described in the next section.  In 5-fold 
validation, the dataset is randomly broken into five sections.  
One section is used to test the machine learning algorithm 
and trained against the other four fifths. There are five 
iterations, and each section is used as the testing set once.  
We chose 5-fold validation to reduce the computation time 
of our results as compared to 10-fold validation; recent 
studies have shown no statistical difference in the results 
from reduced iterations in validation [8]. 

C. Metrics and Statistical Analyses 
1) Accuracy Metrics 
The output of the machine learning algorithms is a set of 

predictions about the mapping of applications to categories.  
We evaluate these predictions using two metrics: true 
positive rate (TPR) and false positive rate (FPR).  These 
metrics have been widely used as accuracy measures for 
machine learning [26], including the case study by Ugurel et 
al. [25].  The formulas for these metrics are as follows:  

;;
TNFP

FPFPR
FNTP

TPTPR
+

=
+

=
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Category Count Category Count 
1. Bio-Informatics  323 12. Indexing  329 
2. Chat  504 13. Internet  1061 
3. Communication 699 14. Interpreters  303 
4. Compilers  309 15. Mathematics 373 
5. Database  988 16. Networking  360 
6. Education  775 17. Office  522 
7. Email  366 18. Scientific  326 
8. Frameworks 1115 19. Security 349 
9. Front-Ends 584 20. Testing  904 
10. Games  607 21. Visualization 456 
11. Graphics  313 22. Web 534 

Category Count Category Count 
1. 1. Chat & SMS  320 8. Music  50 

2. Dictionaries 30 9. Science  20 
3. Education  90 10. Utilities  190 
4. Free Time  120 11. Emulators  30 
5. Internet  180 12. Programming  10 
6. Localization  20 13. Sports  40 
7. Messengers  50   



 

Where TP is the number of true positives (applications 
correctly categorized), FP is the number of false positives 
(applications incorrectly categorized), TN is the number of 
true negatives (applications correctly identified as not 
belonging to the category), and FN is the number of false 
negatives (applications identified as not belonging to the 
category, that should have been). TPR measures the 
proportion of true positives over the total number of positive 
instances. FPR measures the proportion of false positives 
over the total number of negative instances. 

2) Testing Statistical Significance 
Our goal in our research questions is to compare the TPR 

and FPR of different algorithms using different types of 
attributes.  Recent work in evaluating machine learning 
algorithms has suggested the Friedman test with Nemenyi’s 
post-hoc procedure to establish statistical significance [5]. 
The Friedman test is a non-parametric test for comparing the 
accuracy of k classifiers over N datasets.  If the null 
hypothesis is rejected using the Friedman test for multiple 
classifiers, we use Nemenyi’s test to compare pairs of 
classifiers. 

V. CASE STUDY RESULTS 
We conducted a 5-fold cross validation study using 

different configurations of type of attribute, repository, and 
machine learning algorithm.  For every category in a 
repository, we calculate the TPR and FPR of the predictions 
for that category for a given configuration.  Table 3 shows 
the configurations of our approach that we use to answer 
each research question. 
Table 3: Configurations for our experiments.  The last three 
columns are the machine-learning algorithms.  The rows are 
types of attribute from Sourceforge or Sharejar.  The cells 
indicate the research questions (RQ) that each configuration 
helps to answer. 

A. RQ1 – Machine Learning Algorithms 
Our approach relies on a supervised machine learning 

algorithm to interpret the attributes and assign each 
application to one or more categories. Related work has 
studied only one supervised algorithm for software 
categorization, that is, SVM [25].  In this paper, we contrast 
the results from three algorithms: SVM, DT, and NB. 

Figure 2 shows a statistical summary of the TPR and 
FPR for our run of each algorithm.  Each boxplot represents 
the TPR and FPR for one algorithm for each category in 
both Sourceforge and Sharejar, on all sets of attributes.  We 
observe that the TPR for SVM is 54.53%, for DT is 14.11%, 

and for NB is 15.84%.  The FPR for SVM is 3.11%, for DT 
is 4.76%, and for NB is 4.83%.  We apply the Friedman test 
to test the statistical significance of the difference in these 
results.  When testing TPR, the value of Qcritical is 5.991, 
and at a 5% confidence level, Qobserved equals 136.5.  The 
value of p is less than 0.0001.  When testing FPR, Qcritical 
is 5.991, Qobserved equals 129.6, and p is less than 0.0001.  
Therefore, we reject the null hypothesis that there is no 
significant difference of the values of TPR and FPR. 

We applied Nemenyi’s post-hoc test on the difference 
between specific pairs of algorithms with the following null 
hypotheses.  We do not show any comparison of DT to NB 
because those algorithms performed less well than SVM. 

 
 

Repository Attribute SVM DT NB 
Sharejar Classes 1, 2 1, 2 1, 2 
Sharejar Packages 1, 2, 3 1, 2, 3 1, 2, 3 

Sourceforge Classes 1, 2 1, 2 1, 2 
Sourceforge Packages 1, 2, 3 1, 2, 3 1, 2, 3 
Sourceforge Terms 1, 3 1, 3 1, 3 

Figure 2. True and False positive rates for each algorithm 
over all types of attributes in all categories of both 
repositories.  The red line is the median.  The black box is 
the lower quartile.  The gray box is the upper quartile.  The 
thin line extends from the minimum to the maximum value. 

(b) False Positive Rate (FPR) 

(a) True Positive Rate (TPR) 



 

H0: There is no statistically-significant difference 
between the TPR of SVM and DT. 

H1: There is no statistically-significant difference 
between the TPR of SVM and NB. 

H2: There is no statistically-significant difference 
between the FPR of SVM and DT. 

H3: There is no statistically-significant difference 
between the FPR of SVM and NB. 

Table 4. Nemenyi’s test results RQ1 

 

The results for the tests are in Table 4.  We reject all null 
hypotheses, meaning that the mean TPR and FPR given by 
SVM are statistically significantly higher than the results 
from DT or NB.  Therefore, we answer RQ1 by concluding 
that SVM is the most-effective machine learning 
algorithm for categorization of the applications in both 
repositories we used as a dataset in our evaluation. 

B. RQ2 – API-based Attributes of Applications 
The quality of the results can be strongly affected by the 

attributes, which are used as input to the machine learning 
algorithm.  In this paper we propose two types of attribute 
that have never been tested before for software 
categorization: API classes and packages.  This section 
compares the quality of categorization when using each of 
these types of attribute.  We did this comparison using 
multiple machine learning algorithms to minimize a threat 
to validity faced when using only one algorithm. 

H qcritical qobserved Decision 

H0 26.59 
2 
 
 

140.5 Reject 
H1 26.59 132.5 Reject 
H2 26.59 141.5 Reject 
H3 26.59 118.0 Reject 

Figure 3. True and False positive rates for classes and 
packages over three algorithms in all categories of both 
repositories. 
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(a) True Positive Rate (TPR) 

Figure 4. True and False positive rates for packages and 
terms over three algorithms in all categories of 
Sourceforge. 

(b) False Positive Rate (FPR) 

(a) True Positive Rate (TPR) 



 

We used API classes and packages as the input to each 
of the machine learning algorithms, and computed the TPR 
and FPR in each category of both repositories.  A statistical 
summary of the results is presented in Figure 3.  Each 
boxplot represents one type of attribute.  The average TPR 
for packages was 28.84% and the average FPR for packages 
was 4.75%.  These values mean that about 29% of the 
predictions placed applications correctly into a category.   

About 5% of predictions placed an application in wrong 
categories.  The average TPR for classes was 23.84%, and 
average FPR for classes was 4.34%. The TPR for packages 
presents a roughly 20% improvement over classes.  Also, 
the Friedman test shows that the difference in averages is 
statistically-significant: For TPR, Qcritical is 3.841, 
Qobserved equals 4.282, and p is 0.039.  For FPR, Qcritical 
is 3.841, Qobserved equals 9.000, and p is 0.003.  These 
values lead us to reject the null hypothesis stating that there 
is no significant difference between TPR and FPR for 
packages and classes.  Therefore, we conclude that API 
packages are more effective attributes than API classes 
for categorization of the applications in both repositories 
we used as a dataset. 

This conclusion means that the API packages that an 
application uses are specific to certain categories.  Because 
the categories are groups based on functionality, the API 
packages relate to that functionality.  Our finding reinforces 
the intuition that programmers will use APIs that relate to 
their tasks in that, in general, programmers cannot generate 
new API packages arbitrarily, as they can terms such as 
identifier names. 

C. RQ3 – API-based and Text-based Attributes 
Case studies by other researchers studied the use of 

source code terms, and various combinations of these terms 
(e.g., bigrams, phrases, etc.), as attributes [17, 25].  These 
studies found that single words were the most-effective 
terms to use as attributes.  This paper builds on this previous 
work by comparing the use of terms against the use of API-
based attributes.  Specifically, we contrast packages to 
single words from source code because we found packages 
to be the best-performing attributes (see Section V.B). 

Figure 4 shows the TPR and FPR for all three machine 
learning algorithms using the packages and terms as 
attributes.  These attributes come only from the applications 
in Sourceforge because it was only possible to extract the 
terms from those applications – we had only byte-code for 
applications from Sharejar, which is quite typical for large 
development companies which do not own the source code 
that they develop.  The Friedman test for TPR produces a 
Qcritical of 3.841 and Qobserved of 16.00.  The value of p 
is less than 0.0001.  Therefore, we reject the null 
hypothesis that there is no statistically significant 
difference between the TPR when using packages or 
terms.   

The test results for FPR show that Qcritical is 3.841, 
Qobserved is 4.267, and p is 0.039.  We reject the null 

hypothesis that there is no statistically significant difference 
between the FPR when using packages or terms.  The 
average values in these cases are very similar, however: 
Using packages, the average TPR is 30.07% and FPR is 
3.34%.  Using terms, the TPR is 33.97% and FPR is 3.24%.  
Moreover, API packages are independent of applications 
that use them, and the semantics of the API calls in these 
packages is modular and precisely-defined. Therefore, even 
though the difference is statistically significant, the 
similarity of these values suggests that packages are a good 
alternative to terms in the case when the terms are not 
available. 

VI. DISCUSSION AND FUTURE WORK 

 In Section V, we found that using packages as attributes 
outperformed classes, and that terms outperformed 
packages.  One explanation for this result is that the 
packages are more specific to the categories than classes, 
and that terms are more specific than packages.  We 
illustrate this explanation for this result in Table 5.  The 
term “replyto” was the top feature according to EEL for the 
category Email in Sourceforge.  Therefore, applications 
that contain “replyto” were more-likely to be categorized 
into the Email category.  Similarly, the package 
sun.net.www was the top package for that category.  We 
observe that 33 applications from Sourceforge contained the 
word “replyto”, while 300 used the API package 
sun.net.www.  Eight applications in the category Email 
used each of those attributes.  In this case, the term is a 
higher quality feature than the package because the term is 
more specific to the category than the package. 

One key advantage to using API packages and classes as 
attributes is that these attributes are more stable than terms 
across many programs.  Recent work has found that APIs 
are more likely to represent domain concepts in applications 
than terms [19, 20].  Hence, APIs are likely to be high-
quality attributes for categorization, even if terms are not. 

Our results shed additional light on how categorizing 
software applications can be useful for software 
maintenance. Di Lucca et al. use automatic classification of 
software maintenance requests to route them to specialized 
maintenance teams [6]. With our approach, these requests 
can be mapped to application categories, and then similar 
requests and solutions can be located in these categories 
enabling stakeholders to address maintenance requests faster 
and within budget [27]. 

Table 5. Top term, class, and package of Email category of 
Sourceforge. 

Type of 
Attribute Attribute 

Apps in 
Category 

with 
Attribute 

Total 
Apps 
with 

Attribute 
Term replyto 8 33 
Package sun.net.www 8 300 
Class com.sun.jlex.internal.CEmit 8 300 



 

Extending the work of Anvik and Murphy [2], where 
implementation expertise of developers is inferred from bug 
reports, our approach can complement this work by 
classifying expertise of developers by categories of 
applications with which they deal. 

VII. THREATS  TO VALIDITY 
Certain threats to validity affect the results of our case 

study and our ability to generalize these results.  Internal 
threats include the attributes we use for categorization.  The 
terms that programmers write in source code may be 
arbitrary, and the existence of a term in a project may be 
coincidental.  The API classes and packages are less likely 
to occur coincidentally, because APIs provide functionality 
that the programmer wanted to use.  In this case, the TPR 
and FPR we report from the terms could be too high or low 
as compared to classes or packages.  We minimize this 
threat by using 5-fold cross validation. 

Another internal threat to validity is the set of categories 
we use.  For Sourceforge, our approach considers only top-
level categories with more than 100 applications (see 
Section IV.A.1).  We do not explore why these categories 
are the largest, and our results could be affected by certain 
“popular” categories: applications may be more likely to 
occur in these categories purely by chance.  We minimized 
this threat by including all the categories from Sharejar, 
although we compute the TPR and FPR separately.  That is, 
an application from Sharejar cannot be placed into a 
category from Sourceforge. 

One external threat to validity is our choice of 
repositories.  Further work is needed to reproduce our case 
study on other datasets, and we cannot guarantee that our 
results will apply to all possible software repositories.  We 
minimized this threat in two ways: First, we used two 
different repositories.  Second, we duplicated the case study 
design from previous work [25], and found comparable 
results.  The fact that both repositories are in Java also 
introduces a threat to validity.  We use API packages and 
classes, but other programming languages may not have a 
similar hierarchical organization of APIs. 

Finally, there is a threat that applications are incorrectly 
assigned to categories in subject repositories. It means that a 
training set may be compromised, and it is very difficult to 
determine it with any certainty. If this is the case, then all 
approaches introduce a similar level of imprecision, and a 
relative comparison of these approaches may still be valid. 

VIII. RELATED WORK  

Machine Learning has previously been used to 
categorize software systems.  The work by Ugurel et al. is 
the most similar to ours in that we use supervised machine 
learning [25]. We have replicated Ugurel’s study in this 
paper and compared our approach to it on a large repository 
of open-source projects.  Ugurel et al uses a SVM 
implementation for programming language and application 

topic classification of open-source systems. Their model 
includes feature selection with EEL and categorization with 
SVM.  We expanded this work by evaluating multiple 
machine learning algorithms and types of attributes. 

MUDABlue is an information retrieval technique for 
software categorization [17]. MUDABlue uses Latent 
Semantic Indexing (LSI) and clustering for automatic 
software categorization of 41 programs selected from 
SourceForge. MUDABlue uses identifiers as features. 
Unlike our approach, MUDABlue automatically generates 
categories based on these features instead of placing 
projects into existing categories.  Therefore, we could not 
directly compare our approach to MUDABlue. 

LACT is another system that relies on information 
retrieval to categorize software [24].  LACT uses Latent 
Dirichlet Allocation (LDA) over the same dataset as 
Kawaguchi et al. in order to infer topics to which 
applications belong   Like MUDABlue, LACT automatically 
generates categories for projects, meaning that we could not 
compare our approach to LACT. 

Bruno et al. [4] propose an approach for locating web 
services.  Their approach takes a natural language query and 
uses SVM to match they query to related web services.  
Also, Bruno et al. find relationships among web services via 
automatic categorization.  Their approach uses words as 
attributes. These words come from any documentation of the 
web service.  In principle, our approach is similar in that we 
test SVM and words for categorization, though we also 
perform a case study with many machine learning algorithms 
with APIs as attributes. 

Categorization has previously been used with other 
software artifacts in order to achieve some tasks related to 
software maintenance and evolution. Menzies et al. [18] 
present an automated method named SEVERIS, for 
assigning severity levels to defect reports. SEVERIS extracts 
words from issues reports and selects most relevant by using 
a measure of information gain (InfoGain). SEVERIS build 
rules set between the terms and the severity levels 
(categories) in order to assign the severity of new reports, 
which is different from our approach in that we aim to 
categorize whole applications. 

Antoniol et al [1] use machine learning classifiers in 
order to categorize descriptions of “issues” posted in bug 
tracking systems. The objective of categorization is to 
classify issues into types of activities (e.g., bug fixing, 
feature enhancement, etc.). Issues are modeled using words 
as attributes. Antoniol et al. use three different machine 
learning algorithms: logistic regression, Naïve Bayes and 
Decision Trees.  Unlike our approach, their technique 
focuses on categorizing issues in applications. 

Hindle et al. [13] propose to use machine learning for 
categorizing commits (e.g., from CVS) into categories of 
maintenance tasks (e.g., corrective, adaptive, etc.). The 
words in the commit messages are used as sets of attributes. 
Hindle et al. use seven classifiers for the categorization: J.48, 
Naïve Bayes, SMO, KStar, IBk, JRip and ZeroR.  They 
performed an evaluation of these algorithms, but unlike this 
paper, only used one type of attribute. 



 

Our work is related to Exemplar, a search engine that 
locates relevant applications [10] in that Exemplar matches 
query keywords to words in the documentation of API calls.  
However, Exemplar does not categorize software.  Similarly, 
SSI is a technique for computing the similarity between 
source code based on API calls, but is used to locate source 
code using queries, not to categorize software [3]. 

IX. CONCLUSION 
We present an approach for categorizing software 

applications in the context of maintenance tasks.  We extract 
the APIs used by applications as attributes for 
categorization.  Our technique differs from previous 
approaches in that we do not rely on words extracted from 
the source code of applications, meaning that we can 
support software maintenance tasks over both open- and 
closed-source repositories. We built and tested our ideas 
with three different machine learning algorithms and two 
software repositories, and compared our approach to the 
closest competing technique.  We found that using API 
packages provided as good accuracy as using terms, even 
though the number of API packages is much smaller than 
the number of terms.  Also, we found that our approach is 
applicable to repositories where the terms are not available.  
Ours is the first study that thoroughly evaluated different 
machine learning algorithms and types of attributes for the 
purposes of software categorization.  Using our technique, 
developers can categorize applications even when the source 
code is not available, and use these categories to predict 
problems, or extract related bugs or features. 
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