

Categorizing Software Applications for Maintenance

Collin McMillan1, Mario Linares-Vásquez2, Denys Poshyvanyk1, Mark Grechanik3
1Department of Computer Science
The College of William and Mary

Williamsburg, Virginia, USA
{cmc, denys}@cs.wm.edu

2Department of Computer Science
Universidad Nacional de Colombia

Bogotá, Colombia
mlinaresv@unal.edu.co

3Accenture Technology Labs and
The University of Illinois at Chicago

Chicago, Illinois, USA
drmark@uic.edu

Abstract — Software repositories hold applications that
are often categorized to improve the effectiveness of various
maintenance tasks. Properly categorized applications allow
stakeholders to identify requirements related to their
applications and predict maintenance problems in software
projects. Unfortunately, for different legal and
organizational reasons the source code is often not
available, thus making it difficult to automatically
categorize binary executables of software applications.

In this paper, we propose a novel approach in which we
use Application Programming Interface (API) calls from
third-party libraries as attributes for automatic
categorization of software applications that use these API
calls. API calls can be extracted from source code and more
importantly, from the byte-code of applications, thus making
automatic categorization approaches applicable to closed
source repositories. We evaluate our approach along with
other machine learning algorithms for software
categorization on two large Java repositories: an open-
source repository containing 3,286 projects and a closed-
source one with 745 applications. Our contribution is
twofold: not only do we propose a new approach that makes
it possible to categorize software projects without any
source code using a small number of API calls as attributes,
but also we carried out the first comprehensive empirical
evaluation of automatic categorization approaches.

Index Terms — closed-source, open-source, software

categorization, machine learning.

I. INTRODUCTION
Different software repositories mushroomed in the past

decade with many of them containing massive amounts of
source code and different software artifacts. To facilitate
browsing and searching of these repositories, software
systems are placed into categories (e.g., text editors,
financial, or databases). Since many stakeholders are
engaged in maintaining software, these stakeholders benefit
from properly categorized software repositories for two
reasons. First, grouping applications with similar features
(i.e., units of functionality) allows stakeholders to decide
what features they should implement in their own
applications that belong to same groups or categories [7, 17]
Second, stakeholders can determine what problems or bugs
are common to many applications in the same category, and

in turn predict what problems or bugs other applications
from the same category are likely to encounter [27, 29].

Automatic categorization of software applications in
repositories is increasingly gaining acceptance since it
reduces the manual effort significantly [4, 6, 7, 16, 17, 21,
24, 25]. Currently, software applications are categorized by
applying text classification approaches; terms (i.e., words in
identifiers and comments) are extracted from the source code
of applications and these terms, also called attributes of the
applications, serve as the input to a machine learning
algorithm that eventually places applications into categories.
Even though automatic categorization approaches do not
achieve perfect precision, they still enable stakeholders to
quickly benefit from categorized applications when solving
software maintenance tasks.

A common key assumption for all existing automatic
software categorization approaches is that the source code of
open-source applications is always available. Unfortunately,
it is often not true in case of commercial software
development. Many organizations can release only the
executable forms of their applications for various legal and
organizational reasons. Furthermore, consulting companies
such as Accenture, IBM, and HP Global Services do not own
the source code that they produce – their clients do 1 .
Therefore many commercial organizations cannot use the
source code in software categorization approaches.

In reality, many consultants who build mission-critical
software for different industries, especially for financial and
biopharmaceutical companies, often work in “cleanrooms,”
where the source code is written and kept on company
premises in physically secured environments [9, 15].
External consultants from outsourcing companies such as
Accenture, IBM, and HP Global Services come to the
cleanroom of the client company to write client’s
applications. Actions of these consultants are tightly
monitored; electronic connections to outside of the
company’s network, phone calls, USB keys, and cameras are
strictly forbidden. Once the applications are built, their
executables are often released to consulting companies for
testing. Cleanroom development effectively negates the
opportunity for consulting companies to accumulate

1Accenture policy 69 says that source code constitutes confidential
information because it is information or material, not generally
available to the public, that is generated, collected or used by the
Company and that relates to its business, research and development
activities, clients, or employees.

knowledge about applications they build, and more
importantly to use this knowledge for different software
maintenance tasks.

Our idea is to use external Application Programming
Interface (API) calls from third-party libraries and packages
that are invoked in software applications (e.g., the Java
Development Kit (JDK)) as a set of attributes for
categorization. Doing so is based on the fact that
programmers typically build software using API calls from
well-defined and widely used libraries [11]. The intuition
behind our approach is that APIs are already grouped in
packages and libraries based on their functionalities, and this
grouping can be combined with machine-learning
approaches to categorize applications. For example, a music
player application is more likely than a text editor to use a
sound output library, and finding APIs from this library in
the music player application enables us to put it in a proper
category. Moreover, APIs are common to many software
programs and invocations of the API calls can be extracted
from the executable form of applications because the API
calls exist in external packages and libraries. A key question
is how selecting APIs for categorizing applications compares
with approaches that rely on selecting all words in the
source code of applications.

In this paper, we investigate this question by empirically
studying large sets of Java applications from different
repositories and applying different machine learning
algorithms to obtain the answer to this question with strong
statistical significance. To our knowledge, this is the first
time that different machine-learning approaches were
thoroughly evaluated for software categorization on large
application sets. All of our case study data is available at our
online appendix2. Our contributions are the following.

• A new approach to software categorization based on
the APIs used by the applications. We extracted the
API information in two forms: as the API packages
that contain calls used by applications and as the API
classes. We found that using API packages results, on
average, in 20% better predictions than using classes
in terms of rate of true positives. Our approach is the
first that is able to categorize applications in closed-
source software repositories.

• We have built our approach and tested it on two
software repositories: 745 Java closed-source
applications from Sharejar3, and 3,286 Java open-
source applications from SourceForge4. We contrasted
the results of three different machine learning
algorithms and three types of attribute, and show that
Support Vector Machines (SVM) is the best-
performing algorithm for categorization over these
repositories.

• To demonstrate how competitive our approach is, we
compared it with the closest baseline approach by

2 http://www.cs.wm.edu/semeru/catml/
3 http://sharejar.com/
4 http://sourceforge.net/

Ugurel et al. [25] that has previously been tested on
330 applications from SourceForge and 1,353 projects
from IBiblio5. Our results show that our approach is a
good alternative to this competitive approach in that it
reaches comparable rates of true and false positives
while using significantly fewer attributes as the names
of API packages whose calls are made in applications.

II. BACKGROUND
In general, categorization is the task of assigning a finite

set of categories to software applications. The automatic
categorization process can be outlined as follows. First, a set
of attributes is selected that characterize the software
applications. These attributes may contain all words in an
application (not including language keywords) or only the
names of API packages whose calls are made in the
application, as we have done in our approach. Second, a
machine learning algorithm uses the attributes, applications,
and categories to generate predictions, which are the
algorithm’s mapping of applications to a category. That is,
the job of an automatic categorization tool is to compute a
function that maps applications to categories.

The intuition behind the reason of why automatic
categorization works is that certain attributes occur more
often in applications belonging to one category than another
category. For example, applications in the category Email
contain terms such as “replyto” and “mailbox,” whereas
applications in the category Databases have terms such as
“sql.” Machine learning algorithms rely on the specificity
of these attributes to certain categories. The accuracy of
these algorithms worsens if the attributes are distributed
arbitrarily across applications that belong to different
categories. The intuition behind our idea is that the APIs
used by applications are less likely to be distributed
arbitrarily than the terms, because the terms (i.e., the names
of identifiers) are chosen by programmers of applications
often arbitrarily, whereas the set of APIs is predefined.
A. Machine Learning Algorithms

In this paper, we focus on supervised machine learning
algorithms, in which a training set of pre-categorized
applications is used to predict the categories to which
uncategorized applications belong. This paper deals with
multi-label supervised learning, where an application is
classified into m of n categories [23].

B. Attribute Selection
The attributes that are chosen to represent applications in

classification are critical to producing quality predictions.
Naturally, the attributes must be available and extractable
from the software applications. In selecting attributes, we
first choose which characteristics of the applications can be
used as attributes that best distinguish the applications in
each category. For example, words are a frequent choice of
attribute used for categorization of text documents [4, 13,

5 http://www.ibiblio.org/

17, 25]. Also, the attributes must distinguish the
applications in one category from the applications in a
different category [28]. This selection is done
automatically, during the training of the machine learning.

For example, selecting programming language keywords
as attribute is a poor choice since all applications written in
the same language are likely to share these keywords.
Different strategies have been proposed for selecting the
best subset of these attributes [12], though in general these
strategies rely on the principle that certain attributes occur
more often in applications that belong to certain categories.
We use this principle in our approach – for example, APIs
that come from a music library are likely to occur in
application that processes music than in other types of
applications.

III. OUR APPROACH
Since a plethora of automatic categorization approaches

use the same categorization process, this paper expands
upon the work by Ugurel et al. [25] that is a popular
baseline implementation of this process. Ugurel et al. used
only one type of attribute and one machine learning
algorithm to categorize a small number of applications (330
from Sourceforge and 1,353 from IBiblio). Our approach
builds on this work by testing multiple types of attributes
and algorithms. Another important different from previous
studies is that our approach can be applied to closed-source
repositories. To define the specifics of our approach that set
it apart from other competitive approaches, we must answer
the following four design questions.

Q1: What is an application and what is a category?
An application is a collection of software artifacts that

include source code files and/or executables, and this
collection is defined as the latest release of a project from a
software repository. A category is a grouping of
applications based on the functionality the applications
provide (e.g., Games or Email). For example, SourceForge
contains thousands of projects that are organized into many
categories, and we use these projects in our experiments in
this paper.

Q2: What is an attribute?
Different approaches to software categorization use

words from comments and identifiers as attributes that are
extracted from the source code of applications. We consider
only single words as attributes and not combinations of
single words such as bigrams, since previous empirical
results showed that single words outperform combinations
of words for software categorization [25].

Words from comments and identifiers cannot be used as
attributes if only executable applications are available (as in
closed repositories), since it is not possible to extract
descriptive names of identifiers and comments without
having the source code. This necessity motivates us to select
two more types of attributes from applications: API
packages and API classes, whose API calls are invoked in

applications. In this paper, we use these two types of
attributes with different classification algorithms.

These two API-based attributes are both based on the API
calls which applications use, but refer to different levels of
granularity. API packages are one level of granularity. For
example, an application that processes music files may use
the package javax.sound.midi. We refer to API
packages as simply packages. We use all packages
regardless of how they are decomposed (e.g., a package
containing another package). The API classes are the
classes used in these packages and more fine-grained details
about the utilized functionality. For example, a music
player may use the class MidiDevice from
javax.sound.midi. We refer to API classes as classes.
One important advantage to using packages and classes as
attributes is that both of these can be extracted from Java
byte code – it is not necessary to have the source code. The
API packages and classes we detect in applications are from
the Java SDK6. Given that the JDK is representative of the
other third-party APIs, we expect our results to be general.

Q3: Which attributes do we use for categorization?
Since we use the baseline classification approach as

Expected Entropy Loss (EEL) by Ugurel et al. [25], we
briefly describe this approach here for reproducibility of our
results. EEL is an almost decade old algorithm that is shown
to be highly-effective for selecting the most-relevant
attributes of systems in software repositories [25]. In EEL,
words are selected from source code, and we adapt EEL as
our attribute selector for API classes and packages in this
paper.

EEL works by ranking software system’s attributes
based on how well each attribute describes each category.
The likelihood that an attribute is in a given category is
referred to as that attribute’s entropy for that category. For
example, the package javax.sound.midi is likely to be
specific to applications in the category Music, whereas
javax.swing may be both in applications in Music and
Email. The entropy of javax.sound.midi would be high
for the category Music, relative to javax.swing. In this
paper, we adapt EEL’s definition and formulas for software
categorization using API call information.

We provide the following formulas for the
reproducibility of our approach. Entropy is a measure of the
uncertainty associated with an event and is expressed in
terms of a discrete set of probabilities Pr(X) over an event

Xxi ∈ , where X is the event space:

()∑ =
−=

n

i ii xxXe
1

)Pr(log)Pr()(

Let C be the event indicating whether an application is a
member of the specified category (e.g., if the application is
related to the category). Let a denote the event that the
software system contains the specified attribute.

6 http://www.oracle.com/technetwork/java/javase/downloads/

)Pr(1)Pr(

Re)Pr(

CC

plicationsnumberOfAp
cationslatedApplinumberOfC

−=

=

plicationsnumberOfAp
uteAWithAttribplicationsnumberOfApa =)Pr(

Pr(C) is the probability, for each category, that an
application will be in that category. Pr(a) is the probability,
for each attribute, that an application will contain that
attribute.

)|Pr(1)|Pr(

Re)|Pr(

)|Pr(1)|Pr(

Re)|Pr(

)Pr(1)Pr(

aCaC
ributeAWithoutAttplicationsnumberOfAp

uteAhoutAttribcationsWitlatedApplinumberOfaC

aCaC
uteAWithAttribplicationsnumberOfAp

AhAttributecationsWitlatedApplinumberOfaC

aa

−=

=

−=

=

−=

The prior entropy represents the overall distribution of
applications into a category, and is calculated as:

() ())Pr(log)Pr()Pr(log)Pr()(CCCCCe −−=

The posterior entropy represents probability of a given
attribute for a given category:

() ())|Pr(log)|Pr()|Pr(log)|Pr()(aCaCaCaCCea −−=
Likewise, the posterior entropy of the class when the
attribute is absent is ())|Pr(log)|Pr()|Pr(log)|Pr()(aCaCaCaCCea −−=
Thus the expected posterior entropy is

)Pr()()Pr()(),(aCeaCeaCEPE aa +=

And the expected entropy loss is

),()(),(aCEPECeaCEEL −=

Each attribute has a value for each category. Attributes with
higher values of EEL for a category are more discriminatory
and provide more information for the categorization. The
attributes with highest EEL for each category are used to
train categorization algorithms. In our case study, we select
attributes only from the portion of the dataset used for
training (see Section IV.B).

Q4: What machine learning algorithm do we use?
In this paper, we explore three popular machine learning

algorithms: Decision Trees, Naïve Bayes, and Support
Vector Machines. We chose to test these three algorithms
because they have been widely used in text categorization
[22].

Decision Trees (DT) uses a “divide and conquer”
strategy to split the problem space into subsets. A DT is
modeled like a tree where the root and the nodes are

questions, and the arcs between nodes are possible answers
to the questions. The leaves of the tree are the categories.
DTs are able to deal with categorical inputs and multi-class
problems. Thus, in a categorization problem, the inputs for
DT are the features and the output is a category. DTs were
used for software categorization by Kawaguchi et al. [16].

Naïve Bayes (NB) classifiers assume that all the
attributes are independent and that each contributes equally
to the categorization. A category is assigned to a project by
combining the contribution of each feature. This
combination is achieved by estimating the posterior
probabilities of each category by using Bayes’ Theorem.
Prior probabilities are estimated with training data. This
kind of classifier is able to deal with categorical inputs and
multi-label problems. Thus, in a categorization problem, the
inputs for NB are the attributes and the output is the
probability distribution of the project on the categories. NB
was used for software categorization by Sandhu et al. [21].

Support Vector Machines (SVM) split the problem space
into two possible sets by finding a hyper-plane which
maximizes the distance with the closest item of each subset.
The function that splits the hyper-plane is known as the
kernel function. In this paper, we arrange multiple SVM
classifiers in a one-against-one strategy to allow multi-label
classification. In the one-against-one approach, each
classifier is trained to recognize two classes [14]. We
generate the predictions by a vote of the predictions from the
classifiers following the technique of Ugurel et al. [25].

IV. CASE STUDY DESIGN
In Section V, we consider three types of attributes (terms,

classes, and packages) and uses EEL to select a subset of
those attributes for categorization. We also outlined three
different machine learning algorithms for generating
predictions. In this section, we discuss the design of a case
study to evaluate different configurations of our approach.

A. Settings of the Case Study
The settings of the case study include the applications we

want to categorize and the implementation details behind
the machine learning algorithms. While implementing our
approach, we used the same implementations of machine
learning algorithms as in [25] to allow direct comparison of
with our techniques.

1) Software Repositories
We downloaded 8,310 Java applications from

SourceForge (open source), and these applications are
spread across the 22 categories in Table 1. We also
downloaded 745 Java applications from Sharejar (closed
source), and these applications are created for mobile
phones and include only the compiled Java bytecode. The
13 Sharejar categories are listed in Table 2.

In general, projects may belong to one or more
categories in the same repository, but not in cross-
repositories. All categories from both repositories do not
include any sub-categories. Also, in Sourceforge, we

Table 1: SourceForge projects and categories

Table 2: Sharejar projects and categories

selected only categories with at least 100 applications in
order to limit the number of categories; we did not consider
applications that are not in these top categories in our case
study. In Sharejar, we considered all categories, and there
were no uncategorized applications. In total, we consider
3,286 of the applications from Sourceforge and all 745
applications from Sharejar.

2) Selection of Attributes
We extracted the package and class attribute sets from

the Sharejar applications using JClassInfo 7 , a byte-code
analysis tool for Java. For the SourceForge repository, we
built a tool based on PMD8 to extract the API packages and
classes directly from the applications’ source code. PMD
also allowed us to extract project terms from the source code.

Once we had the terms, packages, and classes from each
project, it was necessary to select the attributes to be used for
categorization. We use EEL to rank attributes for each
category from the training set (see Section III). In keeping
with the case study design from [25], we then select the
attributes which best distinguish each category with the
following procedure. First, we exclude attributes that occur
in only one project. Second, we exclude attributes that occur
in less than 7.5% of the projects in a category. Finally, we
choose the top 100 remaining attributes for each category
according to the attributes’ EEL for the category.

3) Machine Learning Algorithms
We used WEKA 9 to implement the three machine

7 http://jclassinfo.sourceforge.net/
8 http://pmd.sourceforge.net/
9 http://weka.sourceforge.net/

learning algorithms for our approach. For SVM, we used the
Weka Libsvm wrapper10. In all cases, we used WEKA’s
default parameters, which were the same as were used in
[25].

B. Research Questions
Our goal is to determine how we can best categorize

software based on the APIs used in each application.
Therefore, we address the following research questions
(RQ) in our case study:

RQ1: Which machine learning algorithm is most
effective for software categorization?

RQ2: Which level of granularity of API-based attribute,
API classes or API packages, is more effective for
software categorization?

RQ3: Are the API classes or API packages as effective
attributes as words (e.g., identifiers, comments) from
source code for software categorization?

The rationale behind RQ1 is that we want to compare
different machine learning approaches on large application
sets and obtain quantitative measurements of how well it
categorizes applications. We also want to know how
different types of attributes affect the accuracy of our
approach. Specifically, we extracted two types of data based
on the APIs used in applications, and in RQ2 we want to
study which of these types produces the best accuracy.
Similarly, the purpose of RQ3 is to compare our approach,
where attributes are API classes and packages, to
competitive approaches that use words extracted from source
code as attributes.

To respond to our research questions, we compare the
algorithms’ accuracy by using a 5-fold cross validation and
the metrics described in the next section. In 5-fold
validation, the dataset is randomly broken into five sections.
One section is used to test the machine learning algorithm
and trained against the other four fifths. There are five
iterations, and each section is used as the testing set once.
We chose 5-fold validation to reduce the computation time
of our results as compared to 10-fold validation; recent
studies have shown no statistical difference in the results
from reduced iterations in validation [8].

C. Metrics and Statistical Analyses
1) Accuracy Metrics
The output of the machine learning algorithms is a set of

predictions about the mapping of applications to categories.
We evaluate these predictions using two metrics: true
positive rate (TPR) and false positive rate (FPR). These
metrics have been widely used as accuracy measures for
machine learning [26], including the case study by Ugurel et
al. [25]. The formulas for these metrics are as follows:

;;
TNFP

FPFPR
FNTP

TPTPR
+

=
+

=

10 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Category Count Category Count
1. Bio-Informatics 323 12. Indexing 329
2. Chat 504 13. Internet 1061
3. Communication 699 14. Interpreters 303
4. Compilers 309 15. Mathematics 373
5. Database 988 16. Networking 360
6. Education 775 17. Office 522
7. Email 366 18. Scientific 326
8. Frameworks 1115 19. Security 349
9. Front-Ends 584 20. Testing 904
10. Games 607 21. Visualization 456
11. Graphics 313 22. Web 534

Category Count Category Count
1. 1. Chat & SMS 320 8. Music 50

2. Dictionaries 30 9. Science 20
3. Education 90 10. Utilities 190
4. Free Time 120 11. Emulators 30
5. Internet 180 12. Programming 10
6. Localization 20 13. Sports 40
7. Messengers 50

Where TP is the number of true positives (applications
correctly categorized), FP is the number of false positives
(applications incorrectly categorized), TN is the number of
true negatives (applications correctly identified as not
belonging to the category), and FN is the number of false
negatives (applications identified as not belonging to the
category, that should have been). TPR measures the
proportion of true positives over the total number of positive
instances. FPR measures the proportion of false positives
over the total number of negative instances.

2) Testing Statistical Significance
Our goal in our research questions is to compare the TPR

and FPR of different algorithms using different types of
attributes. Recent work in evaluating machine learning
algorithms has suggested the Friedman test with Nemenyi’s
post-hoc procedure to establish statistical significance [5].
The Friedman test is a non-parametric test for comparing the
accuracy of k classifiers over N datasets. If the null
hypothesis is rejected using the Friedman test for multiple
classifiers, we use Nemenyi’s test to compare pairs of
classifiers.

V. CASE STUDY RESULTS
We conducted a 5-fold cross validation study using

different configurations of type of attribute, repository, and
machine learning algorithm. For every category in a
repository, we calculate the TPR and FPR of the predictions
for that category for a given configuration. Table 3 shows
the configurations of our approach that we use to answer
each research question.
Table 3: Configurations for our experiments. The last three
columns are the machine-learning algorithms. The rows are
types of attribute from Sourceforge or Sharejar. The cells
indicate the research questions (RQ) that each configuration
helps to answer.

A. RQ1 – Machine Learning Algorithms
Our approach relies on a supervised machine learning

algorithm to interpret the attributes and assign each
application to one or more categories. Related work has
studied only one supervised algorithm for software
categorization, that is, SVM [25]. In this paper, we contrast
the results from three algorithms: SVM, DT, and NB.

Figure 2 shows a statistical summary of the TPR and
FPR for our run of each algorithm. Each boxplot represents
the TPR and FPR for one algorithm for each category in
both Sourceforge and Sharejar, on all sets of attributes. We
observe that the TPR for SVM is 54.53%, for DT is 14.11%,

and for NB is 15.84%. The FPR for SVM is 3.11%, for DT
is 4.76%, and for NB is 4.83%. We apply the Friedman test
to test the statistical significance of the difference in these
results. When testing TPR, the value of Qcritical is 5.991,
and at a 5% confidence level, Qobserved equals 136.5. The
value of p is less than 0.0001. When testing FPR, Qcritical
is 5.991, Qobserved equals 129.6, and p is less than 0.0001.
Therefore, we reject the null hypothesis that there is no
significant difference of the values of TPR and FPR.

We applied Nemenyi’s post-hoc test on the difference
between specific pairs of algorithms with the following null
hypotheses. We do not show any comparison of DT to NB
because those algorithms performed less well than SVM.

Repository Attribute SVM DT NB
Sharejar Classes 1, 2 1, 2 1, 2
Sharejar Packages 1, 2, 3 1, 2, 3 1, 2, 3

Sourceforge Classes 1, 2 1, 2 1, 2
Sourceforge Packages 1, 2, 3 1, 2, 3 1, 2, 3
Sourceforge Terms 1, 3 1, 3 1, 3

Figure 2. True and False positive rates for each algorithm
over all types of attributes in all categories of both
repositories. The red line is the median. The black box is
the lower quartile. The gray box is the upper quartile. The
thin line extends from the minimum to the maximum value.

(b) False Positive Rate (FPR)

(a) True Positive Rate (TPR)

H0: There is no statistically-significant difference
between the TPR of SVM and DT.

H1: There is no statistically-significant difference
between the TPR of SVM and NB.

H2: There is no statistically-significant difference
between the FPR of SVM and DT.

H3: There is no statistically-significant difference
between the FPR of SVM and NB.

Table 4. Nemenyi’s test results RQ1

The results for the tests are in Table 4. We reject all null
hypotheses, meaning that the mean TPR and FPR given by
SVM are statistically significantly higher than the results
from DT or NB. Therefore, we answer RQ1 by concluding
that SVM is the most-effective machine learning
algorithm for categorization of the applications in both
repositories we used as a dataset in our evaluation.

B. RQ2 – API-based Attributes of Applications
The quality of the results can be strongly affected by the

attributes, which are used as input to the machine learning
algorithm. In this paper we propose two types of attribute
that have never been tested before for software
categorization: API classes and packages. This section
compares the quality of categorization when using each of
these types of attribute. We did this comparison using
multiple machine learning algorithms to minimize a threat
to validity faced when using only one algorithm.

H qcritical qobserved Decision

H0 26.59
2

140.5 Reject
H1 26.59 132.5 Reject
H2 26.59 141.5 Reject
H3 26.59 118.0 Reject

Figure 3. True and False positive rates for classes and
packages over three algorithms in all categories of both
repositories.

(b) False Positive Rate (FPR)

(a) True Positive Rate (TPR)

Figure 4. True and False positive rates for packages and
terms over three algorithms in all categories of
Sourceforge.

(b) False Positive Rate (FPR)

(a) True Positive Rate (TPR)

We used API classes and packages as the input to each
of the machine learning algorithms, and computed the TPR
and FPR in each category of both repositories. A statistical
summary of the results is presented in Figure 3. Each
boxplot represents one type of attribute. The average TPR
for packages was 28.84% and the average FPR for packages
was 4.75%. These values mean that about 29% of the
predictions placed applications correctly into a category.

About 5% of predictions placed an application in wrong
categories. The average TPR for classes was 23.84%, and
average FPR for classes was 4.34%. The TPR for packages
presents a roughly 20% improvement over classes. Also,
the Friedman test shows that the difference in averages is
statistically-significant: For TPR, Qcritical is 3.841,
Qobserved equals 4.282, and p is 0.039. For FPR, Qcritical
is 3.841, Qobserved equals 9.000, and p is 0.003. These
values lead us to reject the null hypothesis stating that there
is no significant difference between TPR and FPR for
packages and classes. Therefore, we conclude that API
packages are more effective attributes than API classes
for categorization of the applications in both repositories
we used as a dataset.

This conclusion means that the API packages that an
application uses are specific to certain categories. Because
the categories are groups based on functionality, the API
packages relate to that functionality. Our finding reinforces
the intuition that programmers will use APIs that relate to
their tasks in that, in general, programmers cannot generate
new API packages arbitrarily, as they can terms such as
identifier names.

C. RQ3 – API-based and Text-based Attributes
Case studies by other researchers studied the use of

source code terms, and various combinations of these terms
(e.g., bigrams, phrases, etc.), as attributes [17, 25]. These
studies found that single words were the most-effective
terms to use as attributes. This paper builds on this previous
work by comparing the use of terms against the use of API-
based attributes. Specifically, we contrast packages to
single words from source code because we found packages
to be the best-performing attributes (see Section V.B).

Figure 4 shows the TPR and FPR for all three machine
learning algorithms using the packages and terms as
attributes. These attributes come only from the applications
in Sourceforge because it was only possible to extract the
terms from those applications – we had only byte-code for
applications from Sharejar, which is quite typical for large
development companies which do not own the source code
that they develop. The Friedman test for TPR produces a
Qcritical of 3.841 and Qobserved of 16.00. The value of p
is less than 0.0001. Therefore, we reject the null
hypothesis that there is no statistically significant
difference between the TPR when using packages or
terms.

The test results for FPR show that Qcritical is 3.841,
Qobserved is 4.267, and p is 0.039. We reject the null

hypothesis that there is no statistically significant difference
between the FPR when using packages or terms. The
average values in these cases are very similar, however:
Using packages, the average TPR is 30.07% and FPR is
3.34%. Using terms, the TPR is 33.97% and FPR is 3.24%.
Moreover, API packages are independent of applications
that use them, and the semantics of the API calls in these
packages is modular and precisely-defined. Therefore, even
though the difference is statistically significant, the
similarity of these values suggests that packages are a good
alternative to terms in the case when the terms are not
available.

VI. DISCUSSION AND FUTURE WORK

 In Section V, we found that using packages as attributes
outperformed classes, and that terms outperformed
packages. One explanation for this result is that the
packages are more specific to the categories than classes,
and that terms are more specific than packages. We
illustrate this explanation for this result in Table 5. The
term “replyto” was the top feature according to EEL for the
category Email in Sourceforge. Therefore, applications
that contain “replyto” were more-likely to be categorized
into the Email category. Similarly, the package
sun.net.www was the top package for that category. We
observe that 33 applications from Sourceforge contained the
word “replyto”, while 300 used the API package
sun.net.www. Eight applications in the category Email
used each of those attributes. In this case, the term is a
higher quality feature than the package because the term is
more specific to the category than the package.

One key advantage to using API packages and classes as
attributes is that these attributes are more stable than terms
across many programs. Recent work has found that APIs
are more likely to represent domain concepts in applications
than terms [19, 20]. Hence, APIs are likely to be high-
quality attributes for categorization, even if terms are not.

Our results shed additional light on how categorizing
software applications can be useful for software
maintenance. Di Lucca et al. use automatic classification of
software maintenance requests to route them to specialized
maintenance teams [6]. With our approach, these requests
can be mapped to application categories, and then similar
requests and solutions can be located in these categories
enabling stakeholders to address maintenance requests faster
and within budget [27].

Table 5. Top term, class, and package of Email category of
Sourceforge.

Type of
Attribute Attribute

Apps in
Category

with
Attribute

Total
Apps
with

Attribute
Term replyto 8 33
Package sun.net.www 8 300
Class com.sun.jlex.internal.CEmit 8 300

Extending the work of Anvik and Murphy [2], where
implementation expertise of developers is inferred from bug
reports, our approach can complement this work by
classifying expertise of developers by categories of
applications with which they deal.

VII. THREATS TO VALIDITY
Certain threats to validity affect the results of our case

study and our ability to generalize these results. Internal
threats include the attributes we use for categorization. The
terms that programmers write in source code may be
arbitrary, and the existence of a term in a project may be
coincidental. The API classes and packages are less likely
to occur coincidentally, because APIs provide functionality
that the programmer wanted to use. In this case, the TPR
and FPR we report from the terms could be too high or low
as compared to classes or packages. We minimize this
threat by using 5-fold cross validation.

Another internal threat to validity is the set of categories
we use. For Sourceforge, our approach considers only top-
level categories with more than 100 applications (see
Section IV.A.1). We do not explore why these categories
are the largest, and our results could be affected by certain
“popular” categories: applications may be more likely to
occur in these categories purely by chance. We minimized
this threat by including all the categories from Sharejar,
although we compute the TPR and FPR separately. That is,
an application from Sharejar cannot be placed into a
category from Sourceforge.

One external threat to validity is our choice of
repositories. Further work is needed to reproduce our case
study on other datasets, and we cannot guarantee that our
results will apply to all possible software repositories. We
minimized this threat in two ways: First, we used two
different repositories. Second, we duplicated the case study
design from previous work [25], and found comparable
results. The fact that both repositories are in Java also
introduces a threat to validity. We use API packages and
classes, but other programming languages may not have a
similar hierarchical organization of APIs.

Finally, there is a threat that applications are incorrectly
assigned to categories in subject repositories. It means that a
training set may be compromised, and it is very difficult to
determine it with any certainty. If this is the case, then all
approaches introduce a similar level of imprecision, and a
relative comparison of these approaches may still be valid.

VIII. RELATED WORK

Machine Learning has previously been used to
categorize software systems. The work by Ugurel et al. is
the most similar to ours in that we use supervised machine
learning [25]. We have replicated Ugurel’s study in this
paper and compared our approach to it on a large repository
of open-source projects. Ugurel et al uses a SVM
implementation for programming language and application

topic classification of open-source systems. Their model
includes feature selection with EEL and categorization with
SVM. We expanded this work by evaluating multiple
machine learning algorithms and types of attributes.

MUDABlue is an information retrieval technique for
software categorization [17]. MUDABlue uses Latent
Semantic Indexing (LSI) and clustering for automatic
software categorization of 41 programs selected from
SourceForge. MUDABlue uses identifiers as features.
Unlike our approach, MUDABlue automatically generates
categories based on these features instead of placing
projects into existing categories. Therefore, we could not
directly compare our approach to MUDABlue.

LACT is another system that relies on information
retrieval to categorize software [24]. LACT uses Latent
Dirichlet Allocation (LDA) over the same dataset as
Kawaguchi et al. in order to infer topics to which
applications belong Like MUDABlue, LACT automatically
generates categories for projects, meaning that we could not
compare our approach to LACT.

Bruno et al. [4] propose an approach for locating web
services. Their approach takes a natural language query and
uses SVM to match they query to related web services.
Also, Bruno et al. find relationships among web services via
automatic categorization. Their approach uses words as
attributes. These words come from any documentation of the
web service. In principle, our approach is similar in that we
test SVM and words for categorization, though we also
perform a case study with many machine learning algorithms
with APIs as attributes.

Categorization has previously been used with other
software artifacts in order to achieve some tasks related to
software maintenance and evolution. Menzies et al. [18]
present an automated method named SEVERIS, for
assigning severity levels to defect reports. SEVERIS extracts
words from issues reports and selects most relevant by using
a measure of information gain (InfoGain). SEVERIS build
rules set between the terms and the severity levels
(categories) in order to assign the severity of new reports,
which is different from our approach in that we aim to
categorize whole applications.

Antoniol et al [1] use machine learning classifiers in
order to categorize descriptions of “issues” posted in bug
tracking systems. The objective of categorization is to
classify issues into types of activities (e.g., bug fixing,
feature enhancement, etc.). Issues are modeled using words
as attributes. Antoniol et al. use three different machine
learning algorithms: logistic regression, Naïve Bayes and
Decision Trees. Unlike our approach, their technique
focuses on categorizing issues in applications.

Hindle et al. [13] propose to use machine learning for
categorizing commits (e.g., from CVS) into categories of
maintenance tasks (e.g., corrective, adaptive, etc.). The
words in the commit messages are used as sets of attributes.
Hindle et al. use seven classifiers for the categorization: J.48,
Naïve Bayes, SMO, KStar, IBk, JRip and ZeroR. They
performed an evaluation of these algorithms, but unlike this
paper, only used one type of attribute.

Our work is related to Exemplar, a search engine that
locates relevant applications [10] in that Exemplar matches
query keywords to words in the documentation of API calls.
However, Exemplar does not categorize software. Similarly,
SSI is a technique for computing the similarity between
source code based on API calls, but is used to locate source
code using queries, not to categorize software [3].

IX. CONCLUSION
We present an approach for categorizing software

applications in the context of maintenance tasks. We extract
the APIs used by applications as attributes for
categorization. Our technique differs from previous
approaches in that we do not rely on words extracted from
the source code of applications, meaning that we can
support software maintenance tasks over both open- and
closed-source repositories. We built and tested our ideas
with three different machine learning algorithms and two
software repositories, and compared our approach to the
closest competing technique. We found that using API
packages provided as good accuracy as using terms, even
though the number of API packages is much smaller than
the number of terms. Also, we found that our approach is
applicable to repositories where the terms are not available.
Ours is the first study that thoroughly evaluated different
machine learning algorithms and types of attributes for the
purposes of software categorization. Using our technique,
developers can categorize applications even when the source
code is not available, and use these categories to predict
problems, or extract related bugs or features.

X. ACKNOWLEDGEMENTS

We thank ICSM'11 reviewers whose comments helped
us to improve the quality of this paper. This work is
supported in part by NSF CCF-0916139, CCF-1017633,
CCF-1016868, CCF-0916260, and Accenture. Any
opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

REFERENCES
[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.

Guéhéneuc, "Is it a bug or an enhancement?: a text-based
approach to classify change requests," in CASCON'08.

[2] J. Anvik and G. Murphy, "Determining Implementation
Expertise from Bug Reports," in MSR'07.

[3] S. Bajracharya, J. Ossher, and C. V. Lopes, "Leveraging
Usage Similarity for Effective Retrieval of Examples in Code
Repositories," in FSE'10.

[4] M. Bruno, G. Canfora, M. Di Penta, and R. Scognamiglio,
"An Approach to support Web Service Classification and
Annotation," in EEE'05.

[5] J. Demsar, "Statistical Comparisons of Classifiers over
Multiple Data Sets," ML Research, vol. 7, pp. 1-30, 2006.

[6] G. A. Di Lucca, M. Di Penta, and S. Gradara, "An Approach
to Classify Software Maintenance Requests," in ICSM'02.

[7] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
Mobasher B., Castro-Herrera C., and M. M., "On-demand

Feature Recommendations derived from Mining Public
Product Descriptions," in ICSE'11.

[8] C. X. J. Feng, Z. G. S. Yu, J. T. Emanuel, P. G. Li, X. Y.
Shao, and Z. H. Wang, "Threefold versus fivefold cross-
validation and individual versus average data in predictive
regression modelling of machining experimental data," Int. J.
Comput. Integr. Manuf., vol. 21, pp. 702-714, 2008.

[9] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, "Is Data
Privacy Always Good For Software Testing?," in ISSRE'10.

[10] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,
and C. Cumby, "A Search Engine For Finding Highly
Relevant Applications," in ICSE'10.

[11] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S.
Crespi, D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi, "An
Empirical Investigation into a Large-Scale Java Open Source
Code Repository," in ESEM '10.

[12] I. Guyon and A. Elisseeff, "An introduction to variable and
feature selection," ML Research, vol. 3, pp. 1157-1182, 2003.

[13] A. Hindle, D. M. Germán, M. W. Godfrey, and R. C. Holt,
"Automatic classication of large changes into maintenance
categories," in ICPC'09.

[14] C. Hsu and C. Lin, "A comparison of methods for multiclass
suport vector machines," IEEE Transactions on Neural
Networks, vol. 13, pp. 425-425, 2002.

[15] C. Jones, Software Engineering Best Practices. New York,
NY: McGraw-Hill, 2010.

[16] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue,
"Automatic Categorization Algorithm for Evolvable Software
Archive," in IWPSE'03.

[17] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue,
"MUDABlue: An automatic categorization system for Open
Source repositories," JSS, vol. 79, pp. 939-953, 2006.

[18] T. Menzies and A. Marcus, "Automated severity assessment
of software defect reports," in ICSM'08.

[19] D. Ratiu and F. Deissenboeck, "From Reality to Programs and
(Not Quite) Back Again," in ICPC'07.

[20] D. Ratiu and F. Deissenboeck, "How Programs Represent
Reality (and How They Don’t)," in WCRE'06.

[21] P. S. Sandhu, J. Singh , and H. Singh, "Approaches for
Categorization of Reusable Software Components," Journal
of Computer Science, vol. 3, pp. 266-273, 2007.

[22] F. Sebastiani, "Machine Learning in Automated Text
Categorization," ACM CSUR, vol. 34, pp. 1-47, 2002.

[23] M. Sokolova and G. Lapalme, "A systematic analysis of
performance measures for classification tasks," Information
Processing and Management, vol. 45, pp. 427-437, 2009.

[24] K. Tian, M. Revelle, and D. Poshyvanyk, "Using Latent
Dirichlet Allocation for Automatic Categorization of
Software," in MSR'09.

[25] S. Ugurel, R. Krovetz, C. Lee Giles 'z, D. M. Pennock, E. J.
Glover, and H. Zha, "What’s the code? automatic
classification of source code archives," in SIGKDD'02.

[26] B. Újházi, R. Ferenc, D. Poshyvanyk, and T. Gyimóthy, "New
Conceptual Coupling and Cohesion Metrics for Object-
Oriented Systems," in SCAM'10.

[27] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller "How
Long Will It Take to Fix This Bug?," in MSR'07.

[28] Y. Yang and J. O. Pedersern, "A Comparative Study on
Feature Selection in Text Categorization," in ICML'97.

[29] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.
Murphy, " Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process," in FSE'09.

