
Using Stereotypes to Help Characterize Commits
Natalia Dragan

Computer Science
Kent State University

Kent, Ohio, USA
ndragan@cs.kent.edu

Michael L. Collard
Computer Science

The University of Akron
Akron, Ohio, USA

collard@uakron.edu

Maen Hammad
Software Engineering
Hashemite University

Zarqa, Jordan
mhammad@hu.edu.jo

Jonathan I. Maletic
Computer Science

Kent State University
Kent, Ohio, USA

jmaletic@kent.edu

Abstract—Individual commits to a version control system are
automatically characterized based on the stereotypes of added
and deleted methods. The stereotype of each method is
automatically reverse engineered using a previously defined
taxonomy. Method stereotypes reflect intrinsic atomic
behavior of a method and its role in the class. The stereotypes
of the added and deleted methods form a descriptor of the
change embodied by a given commit. These descriptors are
then used to categorize commits, into types, based on the
impact of the changes to a class (or classes). The goal is to gain
a better understanding of the design changes to a system over
its history and provide a means for documenting the commit.

Keywords-method stereotypes, commit types, reverse
engineering, redocumenation

I. INTRODUCTION
Version control systems, such as Subversion, CVS, Git,

MS Visual SourceSafe, and Mercurial, are standard tools to
help manage changes to artifacts during the development and
maintenance of software systems. As changes to the system
are made, a new version is saved as a commit and stored by
the version control system. This new version can be
compared to previous versions (using tools such as diff) to
determine what changed. These changes may be quite
simple, such as fixing a spelling error in a comment, or quite
complex, such as adding a new feature to the system.

Error correction (i.e., bug fixing) normally involves only
small changes, whereas adding new features or altering the
design of a system typically requires the addition and/or
removal of classes or methods. This latter class of changes
often has broader implications to developers, testing plans,
and project management. Here we focus on changes (more
specifically commits) that alter the design of a system.
Furthermore, we want to better understand the types of
different design changes taking place in a given commit and
across the evolution of a system. The work presented here
proposes a means to categorize commits that impact the
design of a software system.

Knowing and understanding what types of changes are
occurring in a given commit is very valuable to developers,
testers, and managers. For example, if we know a commit
changes the behavior of a given class, then that class would
need to be re-tested and additional test cases may need to be
developed or integrated into the test suite. This would also
give some notification to a developer that code using this
class may be impacted. A manager could use such
information to assess the cost of a given change and assess
the risks of different deployment options. That is, if a

particular change impacts a module or class that has
historically been error prone, the risk assessment may be too
great to deploy that change.

In an ideal environment, good development practice
would annotate a commit with an accurate description about
what is being changed. However, in reality this is rarely
done or is inaccurate and/or incomplete. Therefore, we feel
that an automated approach to augment commit messages
would be valuable. Additional knowledge and
understanding can be derived from the source code and
commit, and explicitly documented to help address this
problem. To accomplish this, we must first develop a set of
commit-categories (or types) that are meaningful to
developers and assist them in understanding what
maintenance activities are taking place in a commit.
Commits can be categorized with data present in the version
control system or directly measured from the commit, e.g.,
LOC, author, etc., and can also be categorized based on
analysis of commit messages via Natural Language
Processing [1], [2], or information retrieval techniques [3].

Our goal is to develop an efficient approach that provides
simple, yet fairly accurate, heuristics to the developers as to
the overall characteristics of a given commit in the context of
how it impacts the behavior or structure of classes. To
accomplish this, we build on our previous work, which
reverse-engineers method stereotypes from source code. The
stereotype information of methods added or deleted in a
commit is used to construct a categorization of commit
types. Then, we define an automated approach to derive the
commit type and label commits with this meta-data in a pilot
study.

The next section (II) contains an overview of previous
work [4, 5] on method stereotypes. We also define the idea
of a commit signature that forms the input for automatic
identification of commit types. In section III we present a
categorization of commits. Section IV describes our
approach to reverse engineering commit types from existing
C++ code. Section V describes a pilot study using the
approach. This is followed by related work and conclusions.

II. DEFINING COMMIT SIGNATURES
A commit details the changes to a software system and

may represent major design changes or may just be minor
edits or comment improvements. Here we provide a
mechanism to automatically identify the different types of
commits that impact the design of a system. Our approach
of defining commit types is based on method stereotypes [4]
and how the changes impact different types of methods.
Method stereotypes are generalizations that reflect some

intrinsic or atomic behavior of a method and indicate the
method’s role and responsibilities within a class. With
stereotype information of the methods in a commit, we can
enrich the context of existing versioning systems with
additional semantics of method and class level changes.

We start by defining terms that are used in this work. A
method is in a commit if the method is added or deleted as
part of the commit. A commit signature is the frequency
distribution of stereotypes of added/deleted methods
occurring in a commit and is used to identify a commit type.
The commit signature provides information about what types
of design changes are actually occurring in a commit. A
design change is defined as the addition or deletion of a
class, a method, or a relationship in the corresponding UML
class diagram [6].

The aggregates for commit signature identification,
method stereotypes, were first introduced in [4] and we refer
the reader there for complete details and examples. The
taxonomy of method stereotypes (Table 1) is organized by
the main role of a method, while simultaneously
emphasizing its creational, structural, behavioral, and
collaborational aspects with respect to a class’s design. We
now describe how the method stereotypes are used for
defining the commit signatures.

TABLE I. TAXONOMY OF METHOD STEREOTYPES.

Stereotype
Category Stereotype Description

Structural
Accessor

 get Returns a data member.

B
eh

av
io

ra
l predicate Returns Boolean value.

property Returns information about data
members.

void-accessor Returns information through a
parameter.

Structural
Mutator

 set Sets a data member.

B
eh

av
io

ra
l command

Performs a complex change to
the object’s state. non-void-

command

Creational factory Creates and/or destroys
objects.

Collaborational
collaborator Works with objects.

controller Changes an external object’s
state (not this).

Degenerate incidental Does not read/change an
object’s state.

empty Has no statements.

A. Commit Signature
The idea of a system signature was introduced in [5]

where the distribution of stereotypes for one open source
system was examined. That study demonstrated that
distributions of method stereotypes are potentially good
indicators of system design. Here we apply a similar concept
to commits to better understand design changes.

As a distribution of method stereotypes for the methods
that are added/deleted in a commit, a commit signature
provides us with a heuristic of the structural complexity of
the changes occurring in a commit. From the commit
signature we can infer information of system changes and

specifically whether the system gains more structural,
behavioral, collaborational, or control features.

A signature is formed by first determining which
methods are in each commit (i.e., those methods added or
deleted) and then automatically reverse engineering the
stereotype for each of these methods. The sum of the
stereotypes in the commit is calculated. The method
stereotype counts are shown as a bar chart (see examples in
Table II, numbers in the rectangles) ordered by method
stereotype categories: accessors, mutators, creational, and
collaborational. The color scheme is the following:
accessors and mutators are shown in different nuances of
green and blue respectively, factory – in tan, collaborational
– in rose and turquoise, degenerate – in grey. In the bar chart
the method stereotype is given a grey shadow effect if the
method is also a collaborator (e.g., get collaborator).

Note, we use a lightweight approach and ignore changes
to existing methods. We feel little additional information
will be added by its inclusion. Our main argument for this is
because we are particularly interested in changes that impact
the system’s design. Small changes to the body of existing
methods often reflect error corrections (bug fixes) and are
less likely to impact the design ([7], [6]). Clearly, additional
investigation is necessary to fully understand the impact of
such changes and to completely support our argument.

III. COMMIT CATEGORIZATION
The categorization of commits based on our empirical

examination of the evolution history of open source systems
is presented in this section. The process of commit
categorization is influenced by our previous work on
uncovering patterns of design from a single-version system
at the different levels of abstraction: method [4], class [5],
and system [8]. This foundation of identifying stereotypes at
the method, class, and system level allowed us to
hypothesize that those patterns of design, in the form of
method stereotype distributions for a single-version system,
also exist in multiple-version systems and could characterize
design changes over the evolution history. A software
system evolves through the changes in structural, behavioral,
creational, and collaborational characteristics that are
implemented in methods. Each method in a commit has
specific responsibilities within the class and we characterize
a commit by aggregating the responsibilities of the methods
added/deleted in the change. The commit types are defined
from the distributions of method stereotype. A given
commit may take on more than one of these types. The list
of commit types is shown visually in Table II with specific
examples from the open-source systems Kate, KSpread, and
QuantLib. We now individually explain each commit type.

A Structure Modifier commit is responsible for changes
related to data storage and only contains methods that
perform simple access and modification to the data. It
consists only of get and set methods.

A State Access Modifier commit consists of methods that
provide a client with information and does not change any
data members. It consists almost entirely of accessor
methods. For example, commit #582964 of Kate has 8

accessor methods out of the 9 methods changed in the
commit.

A State Update Modifier commit provides changes
related to updates of an object’s state and consists mainly of
mutator methods. These methods often implement complex
behavior and may involve objects of different classes.

A Behavior Modifier commit is a special case of the State
Update Modifier where the main characteristic is to execute
complex internal behavioral changes within an object. It
mainly consists of command and non-void-command
methods. The largest part of the logic for the class’s
behavior is implemented in these methods.

An Object Creation Modifier commit is responsible for
changes related to creation of objects and has mostly factory
methods. Commit #496123 of Kate is an example where
75% of the added/deleted methods are factory methods.

A Relationships Modifier commit adds or deletes
methods that implement generalization, dependency and
association relationships by performing calls on parameter or
local variable objects. These changes, performed by a
commit consisting of many collaborational methods,
represent modifications of relationships between classes.
Alternatively, this type of commit could be a State Access
Modifier when the main purpose of its methods is to get data
from a model (when it mainly consists of accessors) or
Behavior Modifier when the main purpose of its methods is
to update data (when it mainly consists of mutators).
Commit #496124 of Kate is an example of a Relationships
Modifier commit where more than 75% of added/deleted
methods have a stereotype collaborator.

A Control Modifier commit provides changes in the
external behavior of the participating class, i.e., processes
data of the class’s external objects. It consists mostly of
controller methods that implement external class’s behavior.

A Large Modifier commit contains a large number of
responsibilities. This is a commit with a high impact on
design. “Large number” can be characterized using metrics
such as number of methods, number of classes, LOC, etc.
However, those types of metrics do not directly reflect the
different semantics of changes. We consider a commit a
Large Modifier commit if it has both many methods and
combines multiple roles, such as State Access Modifier,
Behavior Modifier, Relationships Modifier, and Control
Modifier.

A Lazy Modifier commit is a very trivial commit that
does “too little”. The Lazy Modifier commit might occur in
the context of a new or planned feature that is not yet
completed. This is a commit with a minimal impact on
design. Similarly, “too little” can be interpreted using
different metrics. But we consider a commit as Lazy
Modifier if it has get/set methods and a low percentage of
other methods. The commit is also considered Lazy
Modifier if it has a large number of degenerate methods.

A Degenerate Modifier commit includes a degenerate,
incidental, or empty method. If a commit contains even one
degenerate method it means that adding a new feature is
planned. As a maintainer we would like to know when
exactly in the evolution history this will occur and how this
method is changed (if at all).

A Small Modifier commit has only one or two methods
and does not change the system significantly.

With a definition of commit types based on the commit
signature, we can automatically reverse engineer the commit
type. To do so we perform the following steps:

Recover design changes from the code changes of
commit by the srcTracer tool [6].

Extract added/deleted methods per commit from the
design changes.

Identify commit signature for the extracted methods with
the StereoCode tool [4].

Identify a commit type by applying rules on the commit
signature.

TABLE II. EXAMPLES OF COMMIT TYPES WITH THEIR ASSOCIATED
SIGNATURES IN SYSTEMS KATE, KSPREAD AND QUANTLIB.

Commit Type Signature

Structure Modifier
(#502478 Kate)

State Access Modifier
(#582964 Kate)

State Update Modifier
(#593810 Kate)

Behavior Modifier
(#493147 Kate)

Object Creation Modifier
(#496123 Kate)

Relationships Modifier
(#496124 Kate)

Control Modifier
(#6375 QuantLib)
Large Modifier

(#605471 KSpread)
Lazy Modifier
(#859282 Kate)

Degenerate Modifier
(#715531 Kate)
Small Modifier
(#525142 Kate)

A tool StereoCommit was developed to automatically
identify the commit types. The commit signatures are fed
into StereoCommit to assign types to a commit. The rules
for identification of commit types are influenced by the rules
on automatic identification of patterns of design at the class
level for a single-version system [8].

IV. PILOT STUDY
We now apply our approach of commit categorization by

introducing a commit label. Previously, a commit labeling
concept was described in [9], however it is limited to listing
the exact design changes of commits (i.e., names of methods
and classes added/deleted, and type of relationships
changed). Here, we label each commit with the commit
types and its signature (the method stereotypes distribution).

Three years of the evolutionary histories of four C++
open source projects (the editor Kate, the spreadsheet

3 2

2 2 2 2 1

1 1 2 3 2

1 1 3 2

31

1 4 1 3 2 2

61

12 14 2 9 34 14 2 1 22 16 10

1 1 1

1 1

1

KSpread, the finance library QuantLib, and the GUI library
wxWidgets) with 18120 commits were analyzed. We
examined the following questions. Do the commit types we
defined exist in the evolution histories of real systems?
How well do the commit categories cover actual commits?
What is the distribution of commit types?

The data showed that the majority of the commits (96.5%
to 99.5%) fit into at least one of the commit types and all
commit types occur in all of these systems. Based on the
distribution of the commit types we observed some
similarities and differences between the systems. The data
showed that the frequency and distribution of commit types
across a system reflected an implementation of particular
design decisions, underlying architecture, and good/bad
design changes. We also obtained an initial result
concerning the correlation between the commit type and
maintenance type (e.g., bug fix, feature addition,
refactoring). However, further investigation is required to
formulate any type of a broader conclusion. Demonstrating
that a mapping exists between a given commit type(s) and a
maintenance type(s) would be concrete evidence for the
usefulness of the approach.

V. RELATED WORK
Automatic classification of large changes in software

systems into various categories of maintenance tasks using
machine learning techniques is given in [2]. Hattori and
Lanza [10] propose commit classification with respect to the
size that is based on the number of files. Additionally, they
classify commits by the types of development and
maintenance activities based on the content of the comments.
D’Ambros et al. [11] present an approach to visualize
changes at different levels and allow a user to comment the
commit. Evolution of the object-oriented software system at
a coarse-grained level is analyzed in [12]. Design patterns at
the class-level are investigated in [13] to find common
patterns across projects or releases. Analysis of changes at
the method-level is performed in [14].

Our work is distinguished by identifying key
characteristics of commits such as changes to the class
structure, class behavior, changes related to the
communication, creation and control of other objects, and
type of access to class’s data members. We do not study the
internal evolutionary patterns of methods or classes; instead
we match the semantic information about a group of
added/deleted methods to a set of classes.

VI. CONCLUSIONS AND FUTURE WORK
A means to categorize the changes occurring in a commit

is proposed. The categorization is based on the stereotype of
the methods (in C++) that are added or deleted in the
commit. The category names help to characterize the type of
a change occurring in a given commit. The intent is to assist
the software developer in understanding the extent and
impact of the change on a system and to ease the
communication between developers.

The commit categories are derived from empirically
examining the distributions of method stereotype changes in

open source systems. That is, the categories were an
emergent artifact from the data of the systems examined and
reflect the variety of changes we observed in the context of
method stereotypes. In support of this particular commit
categorization, we demonstrated that it was complete enough
to label the majority of the commits in four systems (over
three years of history for each). While we do not claim this
validates the correctness or completeness of our commit
categorization scheme, it does give us a high level of
confidence that it would be useful to assist in better
understanding the types of changes occurring. We have yet
to demonstrate that labeling commits with this categorization
actually improves the understanding of the changes
occurring, and we are currently designing an experimental
study to test the hypothesis and usefulness of the approach.

REFERENCES
[1] L. P. Hattori and M. Lanza, "On the Nature of Commits," in 4th
International ERCIM Workshop on Software Evolution and Evolvabillity
(EVOL'08), 2008, pp. 63 - 71.
[2] A. J. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt,
"Automatic Classification of Large Changes into Maintenance Categories,"
in IEEE International Conference on Program Comprehension (ICPC'09),
Vancouver, Canada 2009.
[3] H. Kagdi and D. Poshyvanyk, "Who Can Help Me with this Change
Request?," in IEEE 17th International Conference on Program
Comprehension (ICPC '09) Vancouver, BC 2009, pp. 273-277.
[4] N. Dragan, M. L. Collard, and J. I. Maletic, "Reverse Engineering
Method Stereotypes," in 22nd IEEE International Conference on Software
Maintenance (ICSM'06), Philadelphia, Pennsylvania USA, 2006, pp. 24-34.
[5] N. Dragan, M. L. Collard, and J. I. Maletic, "Using Method
Stereotype Distribution as a Signature Descriptor for Software Systems," in
IEEE International Conference on Software Maintenance (ICSM'09),
Edmonton, Canada 2009, pp. 567-570.
[6] M. Hammad, M. L. Collard, and J. I. Maletic, "Automatically
Identifying Changes that Impact Code-to-Design Traceability," in 17th
IEEE International Conference on Program Comprehension (ICPC’09),
Vancouver, Canada, 2009, pp. 20-29.
[7] S. Raghavan, R. Rohana, A. Podgurski, and V. Augustine, "Dex: A
Semantic-Graph Differencing Tool for Studying Changes in Large Code
Bases," in 20th IEEE International Conference on Software Maintenance
(ICSM'04), Chicago, Illinois, 2004, pp. 188-197.
[8] N. Dragan, M. L. Collard, and J. I. Maletic, "Atomatic Identification
of Class Stereotypes," in 26th IEEE International Conference on Software
Maintenance (ICSM'10), Timisoara, Romania 2010, p. to appear.
[9] M. Hammad, M. L. Collard, and J. I. Maletic, "Automatically
Identifying Changes that Impact Code-to-Design Traceability During
Evolution " Journal of Software Quality vol. 18, to appear, accepted for
publication April, 2010 2010.
[10] M. Lanza and L. Hattori, "On the Nature of Commits," in 4th
International ERCIM Workshop on Software Evolution and Evolvabillity,
2008, pp. 63 - 71.
[11] M. D'Ambros, M. L. Lanza, and R. Robbes, "Commit 2.0," in 1-st
International Workshop on Web 2.0 for Software Engineering (Web2SE'
2010), 2010, pp. 14-19.
[12] X. Dong and M. W. Godfrey, "Identifying Architectural Change
Patterns in Object-Oriented Systems," in IEEE International Conference on
Program Comprehension Amsterdam, The Netherlands, 2008, pp. 33-42.
[13] S. Kim, K. Pan, and E. J. J. Whitehead, "Micro Pattern Evolution," in
International Workshop on Mining Software Repositories (MSR ’06)
Shanghai, China, 2006.
[14] S. Kim, E. J. J. Whitehead, and J. Bevan, "Properties of Signature
Change Patterns," in 22nd IEEE International Conference on Software
Maintenance (ICSM'06) Philadelphia, Pennsylvania USA, 2006, pp. 4-13.

