

THE EMERGENT LAWS OF METHOD AND CLASS STEREOTYPES IN

OBJECT ORIENTED SOFTWARE

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Natalia Dragan

December 16, 2010

ii

Dissertation written by

Natalia Dragan

B.S., Moldovian State University, Moldova, 1983

M.S., Kent State University, USA, 2005

Ph.D., Kent State University, USA, 2010

Approved by

 Dr. Jonathan Maletic Chair, Doctoral Dissertation Committee

 Dr. Paul Wang Members, Doctoral Dissertation Committee

 Dr. Ruoming Jin

 Dr. Michael Collard

 Dr. Robin Selinger

Accepted by

 Dr. Jonathan Maletic Chair, Department of Computer Science

 Dr. Timothy Moerland Dean, College of Arts and Sciences

iii

TABLE OF CONTENTS

TABLE OF CONTENTS ...III

LIST OF FIGURES ..IX

LIST OF TABLES ...XIII

ACKNOWLEDGEMENTS ..XV

CHAPTER 1 INTRODUCTION... 1

1.1 Research Focus.. 4

1.2 Research Goal ... 6

1.3 Contributions... 6

1.4 Organization .. 7

1.5 Publication Notes .. 8

CHAPTER 2 METHOD STEREOTYPES – NANO PATTERNS OF SOFTWARE

DESIGN ... 9

2.1 Related Work... 10

2.1.1 Stereotype Definitions for Development... 12

2.1.2 Stereotype Definitions for Applications.. 13

2.2 Method Stereotype Taxonomy.. 14

2.3 Reverse Engineering Method Stereotypes .. 18

2.3.1 Identification Rules ... 18

2.3.2 XPath Queries to Automatically Identify Method Stereotypes..................... 21

2.4 Evaluation of the Approach... 33

iv

CHAPTER 3 CLASSIFYING SOFTWARE USING METHOD STEREOTYPES. 35

3.1 Overview and Motivation.. 36

3.2 The Method Stereotype Distribution of Systems .. 37

3.2.1 Stereotype Perspective .. 40

3.2.2 Stereotype Category Perspective... 43

3.3 System Classification Findings ... 46

3.3.1 Mutator & Mutator-Data Storage Patterns .. 48

3.3.2 Mutator-Collaborator Patterns... 48

3.3.3 Accessor, Mutator-Collaborator Patterns.. 49

3.3.4 Accessor-Collaborator Pattern .. 50

3.3.5 Accessor-Mutator-Controller Pattern.. 50

3.3.6 Controller-Collaborator Pattern... 51

3.4 Automatic Clustering .. 51

3.4.1 Hierarchical Clustering ... 52

3.4.2 Partitioning.. 54

3.5 Threats to Validity... 56

3.6 Related Work... 56

3.7 Discussion ... 58

CHAPTER 4 AUTOMATIC IDENTIFICATION OF CLASS STEREOTYPES.... 60

4.1 Overview and Motivation.. 61

4.2 Class Signature .. 63

4.2.1 Method Stereotypes... 63

v

4.2.2 Method Stereotype Distributions .. 64

4.3 Taxonomy of Class Stereotypes .. 67

4.4 Automatically Identifying Stereotypes.. 73

4.4.1 Rules for Class Stereotype Identification.. 73

4.4.2 Implementation.. 79

4.5 Evaluation.. 80

4.6 Empirical Study... 83

4.7 Threats to Validity... 86

4.8 Related work ... 87

4.9 Conclusions ... 91

CHAPTER 5 COMMIT CATEGORIZATION – HIGH-LEVEL PERSPECTIVE

OF THE SYSTEM CHANGES OVER THE HISTORY................................ 93

5.1 Overview and Motivation.. 94

5.2 Defining Commit Signatures... 96

5.2.1 Method Stereotypes... 97

5.2.2 Commit Signature ... 98

5.3 Commit Categorization ... 100

5.4 Reverse Engineering Commit Types... 107

5.4.1 Design Changes during Evolution... 108

5.4.2 Rules to Identify Commit Types ... 109

5.4.3 Implementation.. 111

5.5 The Case Study.. 112

vi

5.6 Applying the Approach – Commit Labeling... 116

5.7 Threats to Validity... 118

5.8 Related work ... 119

5.9 Conclusions ... 121

CHAPTER 6 EVOLUTION OF METHOD STEREOTYPES................................. 123

6.1 Motivation ... 123

6.2 Case Study... 124

6.3 Results and Observations .. 125

6.3.1 Evolution of Stereotype... 126

6.3.2 Stereotype Distribution Stability... 130

6.3.3 Stereotype Distribution vs. Release Types.. 133

6.4 Patterns discovered.. 134

6.4.1 HippoDraw.. 134

6.4.2 QuantLib.. 135

6.5 Discussion ... 137

CHAPTER 7 CONCLUSIONS.. 139

7.1 Contributions... 139

7.2 Future work ... 141

APPENDIX A METHOD STEREOTYPES DISTRIBUTIONS IN THE

CLASSIFIED SYSTEMS... 143

A.1 Distributions for systems in Mutator Pattern .. 143

A.1.1 Stereotype Category Perspective... 143

vii

A.1.2 Stereotype Perspective .. 144

A.2 Distributions for systems in Mutator-Data Storage Pattern 145

A.2.1 Stereotype Category Perspective... 145

A.2.2 Stereotype Perspective .. 146

A.3 Distributions for systems in Mutator-Collaborator Pattern................................... 147

A.3.1 Stereotype Category Perspective... 147

A.3.2 Stereotype Perspective .. 148

A.4 Distributions for systems in Non-void-Mutator-Collaborator Pattern 149

A.4.1 Stereotype Category Perspective... 149

A.4.2 Stereotype Perspective .. 150

A.5 Distributions for systems in Mutator-Accessor-Collaborator Pattern................... 151

A.5.1 Stereotype Category Perspective... 151

A.5.2 Stereotype Perspective .. 152

A.6 Distributions for systems in Accessor-Mutator-Collaborator Pattern................... 153

A.6.1 Stereotype Category Perspective... 153

A.6.2 Stereotype Perspective .. 154

A.7 Distributions for systems in Accessor-Collaborator Pattern 155

A.7.1 Stereotype Category Perspective... 155

A.7.2 Stereotype Perspective .. 156

A.8 Distributions for systems in Accessor-Mutator-Controller Pattern....................... 157

A.8.1 Stereotype Category Perspective... 157

A.8.2 Stereotype Perspective .. 158

viii

A.9 Distributions for systems in Controller-Collaborator Pattern 159

A.9.1 Stereotype Category Perspective... 159

A.9.2 Stereotype Perspective .. 160

APPENDIX B SOURCE CODE OF HIPPODRAW CLASSES REDOCUMENTED

BY THE STEREOCODE AND STEREOCLASS TOOLS............................. 161

B.1 Entity - class Range... 161

B.2 Minimal Entity - class Point.. 165

B.3 Data Provider (and Entity) - class BinnerAxis.. 166

B.4 Commander (and Boundary) - class DrawBorder... 169

B.5 Boundary (and Data Provider) - class DataView .. 171

B.6 Factory - class QtViewFactory.. 175

B.7 Controller - class DisplayController .. 176

B.8 Pure Controller (and Factory) - class BinnerAxisXML.. 176

B.9 Pure Controller (and Small) - class AxisTickXML... 177

B.10 Large Class (and Boundary) - class FunctionController 178

B.11 Lazy Class - class BinsBase .. 178

B.12 Degenerate Class – class AxisRep2D ... 180

B.13 Data Class - class AxisTick... 181

RERERENCES ... 182

ix

LIST OF FIGURES

Figure 1. Research focus.. 5

Figure 2. XPath query for the get method stereotype. ... 22

Figure 3. Rules to automatically identify the get method stereotype. 22

Figure 4. XPath query for the predicate method stereotype. ... 23

Figure 5. Rules to automatically identify the predicate method stereotype. 23

Figure 6. XPath query for the property method stereotype. .. 24

Figure 7. Rules to automatically identify the property method stereotype...................... 25

Figure 8. XPath query for the void-accessor method stereotype..................................... 25

Figure 9. Rules to automatically identify the void-accessor method stereotype. 26

Figure 10. XPath query for the set method stereotype... 26

Figure 11. XPath query for the set method stereotype... 27

Figure 12. XPath query for the command method stereotype. .. 27

Figure 13. Rules to automatically identify the command method stereotype.................. 28

Figure 14. XPath query for the non-void-command method stereotype. 29

Figure 15. XPath query for the factory method stereotype.. 29

Figure 16. Rules to automatically identify the factory method stereotype. 30

Figure 17. XPath query and the rules for the collaborator method stereotype. 30

Figure 18. XPath query for the controller method stereotype. 31

Figure 19. Rules to automatically identify the controller method stereotype. 31

x

Figure 20. XPath query for the incidental method stereotype. .. 32

Figure 21. Rules to automatically identify the incidental method stereotype. 32

Figure 22. XPath query and the rules to automatically identify the empty method

stereotype... 33

Figure 23. The stereotype distributions for the systems Qt, wxWidgets, ACE. Qt and

wxWidgets have a similar distribution with significant percentage of command,

property, and get methods while ACE has a very different distribution e.g., non-void-

command, command, and property are the most numerous methods........................ 42

Figure 24. Stereotype category distribution shows different patterns: Code::Blocks and

KDevelop are a Mutator-Collaborator driven IDE, while HippoDraw is an Accessor-

Mutator-Controller driven application... 45

Figure 25. Hierarchical clustering performed by COBWEB algorithm. Overall, the

clustering produced the same similarity between systems as the manual

classification. ... 53

Figure 26. Distribution of stereotypes for the classes DataSource and DisplayController

signatures (from HippoDraw).. 65

Figure 27. Distribution of categories for the DataSource and DisplayController

signatures (from HippoDraw).. 66

Figure 28. Class stereotypes and their signatures for 18 HippoDraw classes. Each row is

labeled with the class stereotype(s) and in parentheses the name of the example class

whose data is shown in the row. Each stereotype is automatically identified based on

the signatures using the detection rules. Accessors are shown in green colors,

xi

mutators – in blue, factory – in tan, collaborational - in rose and turquoise. The

method stereotype has a grey fill effect if ‘collaborator’ is a secondary stereotype for

this method .. 70

Figure 29. Commit signature, i.e., the distribution of method stereotypes, for commit

#496124 from Kate with 13 added/deleted methods. The numbers in the rectangles

show counts of methods stereotypes participating in the commit. 99

Figure 30. Commit signature for the large commit #669042 from KSpread with 118

added/deleted methods. ... 100

Figure 31. The Commit Label for commit #496124 of Kate presents both a high-level

and detailed view of the commit. The Commit Type and Commit Signature are

shown for the entire commit. The Participating Classes are the individual classes

that contributed to the Commit Signature. For each of these Participating Classes,

the individual Class-Change Signatures are given. ... 117

Figure 32. The evolution of the projects size in terms of the number of methods through

the releases analyzed. .. 126

Figure 33. Evolution of the predicate stereotype in the HippoDraw system................. 128

Figure 34. Evolution of of the property stereotype in the QuantLib system. 130

Figure 35. Method stereotypes distribution for the first-and-last releases of HippoDraw

(* stands for the stereotype collaborator). .. 132

Figure 36. Method stereotypes distribution for the first-and-last releases of QuantLib (*

stands for the stereotype collaborator).. 132

Figure 37. Method stereotypes distribution in two bug fixes releases of HippoDraw. .. 133

xii

Figure 38. Stereotype Category distribution for the first releases of QuantLib (0.1.1). 137

Figure 39. Stereotype Category distribution for the last releases of QuantLib (0.9.7).. 137

xiii

LIST OF TABLES

Table 1. A taxonomy of method stereotypes. .. 15

Table 2. Rules for method stereotype identification. ... 20

Table 3. An overview of the software systems examined ordered by the number of

methods.. 38

Table 4. Distribution of method stereotypes across the 21 systems. Values are

percentage of each method stereotype. Combinations of primary & secondary

stereotypes are separate (e.g., get and get-collaborator)... 39

Table 5. Classification of systems based on signatures derived from the stereotype

distribution. For each signature the classification includes the systems and the

architecture types/domain of those systems. ... 47

Table 6. Systems frequently clustered together as found by X-Means over all 24 runs.. 55

Table 7. Class stereotypes.. 68

Table 8. Summary of Assessment Study. 45 classes from HippoDraw were labeled with

class stereotypes by the tool and then assessed by 3 experienced subjects (S1-S3). 82

Table 9. An overview of the software systems evaluated in the empirical study. Ordered

by the number of classes.. 84

Table 10. Distribution of class stereotypes across 5 open-source systems...................... 85

Table 11. Commit types. Accessors are shown in green colors, mutators – in blue,

factory – in tan, collaborational - in rose and turquoise, degenerate – in grey. The

xiv

method stereotype has a grey shadow effect if ‘collaborator’ is a secondary

stereotype for this method. .. 103

Table 12. Identification rules for commit categorization... 110

Table 13. An overview of the software systems evaluated in the empirical studies.

Ordered by the number of commits. .. 113

Table 14. Distribution of commit types across 4 open-source systems......................... 114

Table 15. The overview of the projects, HippoDraw and QuantLib, in the case study.125

xv

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Dr. Jonathan Maletic, for his support and help,

always being a great mentor, and allowing me the time and independence in finding my

way of reaching the dissertation goal. He taught me how to develop and present ideas,

encouraged me when I was stuck, and was always there when I needed his advice and

assistance.

I would like to thank Dr. Michael Collard who I collaborated with in my research. I

have learnt a great deal from him in conducting research and writing papers. I would like

to thank all my colleagues from the <SDML> lab for discussing and sharing new ideas

and research thoughts.

I am indebted to my Dissertation Committee for the valuable feedback and everyone

in the Department of Computer Science at Kent State University who contributed towards

the completion of the dissertation and whose names I did not reveal.

This thesis would not have been possible without great support and patience from my

husband, Feodor, and my kids, Nick and Maria. I would like to express special gratitude

towards my parents, Nadejda and Nicolai, for teaching me how to be persistent, patient

and motivated in achieving important goals.

Natalia Dragan

December 2010, Kent, Ohio

1

CHAPTER 1

INTRODUCTION

A wealth of standard abstractions, in the form of generic solutions, idioms, and

patterns, predicates good Object-Oriented (OO) software design and modeling. This is

particularly apparent in the concept of design patterns [Gamma et al. 1995], which

articulate well-known good solutions to common OO design problems. Design patterns

give names to these standard solutions and help form a vocabulary of OO design. A

developer embolden with the knowledge of design patterns (along with other well-known

OO abstractions) can construct well-designed OO software much easier.

The work in this dissertation is focused on understanding an OO design abstraction

but at a much lower level (than design patterns). Specifically, the concept of method and

class stereotype is investigated. Stereotypes are generalizations that reflect some intrinsic

or atomic behavior of a method or class. The notion of stereotype for OO modeling was

first introduced by Wirfs-Brock [Wirfs-Brock 1993]. Initially, the main purpose was to

support the classification of objects with respect to their roles and responsibilities in a

software system. With the introduction of the Unified Modeling Language (UML) in the

late 1990’s, stereotypes became a powerful semantic extension mechanism, helping to

increase the comprehensibility of UML diagrams.

Class/object identification is the central component of object-oriented modeling. In

the conceptual object model, called the analysis model, three different standard class

stereotypes can be used: boundary, control, and entity [Booch, Jacobson, Rumbaugh

2

1999]. A boundary class is used to model interaction between the system and its actors

(i.e., users or external systems). An entity class represents the persistent information

tracked by a system. A control class is used to model the dynamics of the system, and

represent the tasks performed by a system: coordination, transactions, complex

calculations, and business logic. In theory, every class in a system can be labeled with

one of these three basic stereotypes.

However, in practice it is difficult to identify such clear-cut distinctions. A class

must reflect nonfunctional requirements along with aspects of the solution domain.

Moreover, they are completely specified and implemented using specific programming

language syntax. Several approaches of object and class identification have been defined

for requirements analysis and initial design phases. Examples that are particular to

forward engineering include heuristics for object identification [Bruegge, Dutoit 2000],

grammatical analysis [Abbott 1983], CRC methods [Beck, Cunningham 1989], and

robustness analysis [Rosenberg, Scott 1999]. However, here a mechanism for reverse

engineering that allows the identification of class’s stereotypes in an existing software

system is desired. The comprehension and understanding of classes (along with their

methods and attributes) is a significant activity during the maintenance and evolution of

software [Mayrhauser, Vans 1995], [Bennett, Rajlich, 73-87 2000] and is essential for

many reverse engineering and design recovery research avenues.

Method stereotypes widely recognized by the development and maintenance

communities and used in a number of well-known programming and data-structure

textbooks [Deitel, Deitel 2001], [Salvitch 1999], [Stroustrup 2000], [Weiss 1999] include

3

constructor, destructor, accessor, get, set, predicate, and mutator. These are decades old

terms that are commonly accepted. However, our empirical investigations of open-

source software systems have demonstrated that diverse additional patterns of design at

the method-level exist, i.e., many other method stereotypes are emergent. Additionally,

as in the case with class stereotypes, a mechanism for reverse engineering method

stereotypes from an implemented software system is wanted.

In practice, methods and classes are rarely documented with stereotypes, yet this

information can be used to help infer the context of a class and how classes interact in a

system. Having explicit knowledge of method and class stereotypes supports

sophisticated types of design recovery and forms a foundation for a range of approaches

based on stereotypes. For example, metrics based on class and method stereotype have a

much more fine-grained perspective than commonly-used metrics (such as the number of

methods in the class, the number of attributes in the class, the number of lines of code in

the method, weighted methods per class, number of children, etc. [Chidamber, Kemerer

1991], [Lorenz, Kidd 1994], [Lanza 1999]) and include additional structural and semantic

information at little cost. Changes to stereotypes (e.g., the method stereotype get in the

version 0.1 became predicate in the version 0.2), automatically identified during

evolution of a software project, may indicate major design changes to a class or system.

Additionally, knowledge of class stereotypes in an implemented software system allows

us to determine architectural importance for things such as automated layout of class

diagrams or architectural-level understanding.

4

The dissertation proposes a technique to generate the knowledge of method and class

stereotypes from an existing object-oriented software system. Initially, taxonomies of

method (section 2.2) and class stereotypes (section 4.3) derived from an empirical

investigation of a large number of open-source software systems are proposed. Based on

the taxonomies, an approach is presented that allows one to analyze the structure and

properties of each method and class in the system and automatically identify method and

class stereotypes of the entire system (sections 2.3, 4.4). This knowledge of stereotypes

permits the categorization of software at the system-level (Chapter 3). Additionally,

method stereotypes are used to describe structural and behavioral changes of an object-

oriented system during software evolution (Chapter 5, Chapter 6).

1.1 Research Focus

The dissertation focuses on automatically characterizing and classifying software at

different abstraction levels - method, class, and system - into method stereotypes, class

stereotypes, and system patterns. This understanding is monotonic, that is by knowing

stereotypes of methods, one can integrate and abstract this to characterize class

stereotypes, and likewise from the class to the system level. As can be seen in Figure 1,

the foundational layer of the research is method stereotypes. The ability to automatically,

and efficiently, reverse engineer method stereotypes from object oriented source code

(specifically C++) has been demonstrated [Dragan, Collard, Maletic 2006].

OO design from the perspective of the source code is being empirically investigated.

This bottom-up empirical investigation is focused on uncovering emergent patterns and

relationships between stereotypes and high-level design. A means to automatically

5

identify method stereotypes given a taxonomy was developed and validated empirically

[Dragan, Collard, Maletic 2006].

Figure 1. Research focus.

This work led to further exploration of stereotypes. The main questions of the

research are as follows. Are method stereotypes indicative of class, system design, or

design patterns? Are there emergent class stereotypes akin to the case of method

stereotypes? Are there evolutionary patterns related to stereotypes? To answer these

questions we have proposed methods and techniques which can be applied in

maintenance, design recovery, and program comprehension.

6

1.2 Research Goal

The goal is to examine and develop new reverse-engineering approaches to uncover

emergent laws of class and method stereotypes in object-oriented source code and their

relationships to design, and to classify software at three different levels of abstraction:

method, class, and system-level. This will bring benefits to re-documentation of source

code, increase the common vocabulary of developers, and finally, assist in program

comprehension and design recovery. Additionally, the information about stereotypes can

be used to improve automated layout of UML class diagrams, and to construct metrics for

the evaluation of design quality, testing efforts, design changes and their cost during

software evolution.

1.3 Contributions

The general research contribution of this work is uncovering emergent laws of

method and class stereotypes that were derived by analyzing data in existing object-

oriented systems. The laws are as follows:

1. Existence of stereotypes in practice. Method and class stereotypes proposed in the

literature exist not just in theory but in real life object-oriented applications.

2. Increasing diversity of stereotypes. The set of method and class stereotypes derived

from empirical investigations includes not only stereotypes previously identified in

the literature, but a much larger variety of stereotypes.

3. Indicators of software design. The stereotypes are indicative of particular software

design solutions and architectures, and can be used to characterize and classify

software at the method, class, and system-level.

7

4. Descriptors of software evolution. The stereotypes can describe design changes

during software development and give a higher-level perspective of a system’s

evolution.

The first contribution is the taxonomic description of object-oriented method

stereotypes [Dragan, Collard, Maletic 2006] and class stereotypes [Dragan, Collard,

Maletic 2010]. These are the first comprehensive investigations on the topic of method

and class stereotypes that reflect role, behavior, collaboration, and control features of

methods and classes with respect to reverse engineering and design recovery. The second

contribution is the extension of these approaches for method stereotype extraction and

implementation of techniques for source code redocumentation, identification of

descriptors for software systems and their classifications [Dragan, Collard, Maletic

2009], development of a tool for reverse engineering class stereotypes [Dragan, Collard,

Maletic 2010], and implementation of a tool for the semantic categorization of commits.

The final contribution is the evaluation of the approach by performing empirical studies

on historical data for a wide range of open source object-oriented C++ software systems

that can serve as a benchmark for further investigations and studies.

1.4 Organization

The dissertation is logically organized into three components: background

information on reverse engineering method stereotypes, classification of classes and

systems, and analysis of stereotypes evolution and semantic commit categorization. The

dissertation is organized in the following manner. Chapter 2 gives an overview of

reverse engineering method stereotypes. Chapter 3 presents classification of software at

8

the system level. Chapter 4 describes automatic identification of class stereotypes.

Following that is the commit categorization in Chapter 6. The stereotype evolution is

presented in Chapter 7. Conclusions are given in Chapter 8.

1.5 Publication Notes

Parts of this dissertation are extended versions of previously published papers.

 Chapter 2 is an extension of the Master Thesis [Dragan 2005] and portions of the chapter

were published at the 22
nd

International Conference on Software Maintenance (ICSM

2006) [Dragan, Collard, Maletic 2006]. Partial results presented in Chapter 3 have been

published at the 25th

International Conference on Software Maintenance (ICSM 2009)

[Dragan, Collard, Maletic 2009]. Chapter 4 is published at the 26th

International

Conference on Software Maintenance (ICSM 2010) [Dragan, Collard, Maletic 2010].

9

CHAPTER 2

METHOD STEREOTYPES – NANO PATTERNS OF SOFTWARE DESIGN

This chapter presents previous work dealing with method stereotypes [Dragan,

Collard, Maletic 2006]. Method stereotypes are patterns of software design at a low level

of abstraction - method level (i.e., nano patterns of design), and represent atomic blocks

to design software. Automatic identification of method stereotypes forms the basis for

much of the work in this dissertation, including reverse engineering class stereotypes,

classifying software, and semantic commit categorization. The identification process is

based on a proposed taxonomy of method stereotypes. This taxonomy is organized by

main purpose and role of an object-oriented method while simultaneously emphasizing

its creational, structural, behavioral and collaborational aspects with respect to a class’s

design.

Before the taxonomy is presented, the related work on method stereotypes is

described in section 2.1. Then the taxonomy of method stereotypes is given, followed by

section (2.3) on reverse engineering method stereotypes from C++ source code. The

rules for method stereotypes identification along with their realizations as XPath queries

are detailed in sections 2.3.1 and 2.3.2. Evaluations of the approach are presented in the

final section.

10

2.1 Related Work

The notion of stereotype in object oriented modeling was first introduced by Wirfs-

Brock to support the classification of objects in terms of assigning them certain features

and properties [Wirfs-Brock 1993], [Wirfs-Brock, B., Wiener 1994]. Later, with the

introduction of UML, stereotypes became a powerful extension mechanism in the UML

for introducing new semantics to an existing model [Gogolla, Henderson-Sellers 2002],

[Atkinson, Kuhne, Henderson-Sellers 2002], while increasing the comprehension of

UML diagrams.

Work on UML class diagrams based on class stereotypes [Andriyevska et al. 2005],

[Yusuf, Kagdi, Maletic 2007a], [Sharif, Maletic 2009] showed that layouts with

additional semantic information in regard to the design were most effective, and the use

of class stereotypes plays a significant role in comprehension of these diagrams. Here are

a few more works on using stereotypes in UML: in comprehension of sequence diagrams

[Genero et al. 2008]; in comprehension of class diagrams documented with Conallen’s

[Conallen 2002] stereotypes [Ricca et al. 2010].

While the concept of method stereotypes is widely discussed, there is surprisingly

little literature on the subject and no formal in-depth studies. This reflects the fuzzy

nature of the concept – a stereotype is a high-level description of the role of a method. A

stereotype designation gives a clear picture of what a method does and its responsibilities

within the class.

Stereotypes widely recognized by the development and maintenance communities

include constructor, destructor, accessor, predicate, and mutator. These are decades old

11

terms that are commonly used. A constructor is a method for initializing an object of a

class; destructor is a method for destroying an object (cleaning up the memory) when the

object goes out of scope. An accessor is a method used to read the members of a class; it

returns the current state of an object, but does not change it. A common use for accessors

is to test for truth or falsity of a condition, and such methods are called predicates. A

mutator is a method used to modify members of a class - to change the state of an object.

Most work concerning method classification, for stereotyping, has been with respect

to distinguishing the internal state of objects. The focus is the type of access a method

has to data members, rather than the primary purpose of the method. This is reflected in

the naming of accessor methods (a.k.a., query, inspector, get, getter, or getting method),

and mutator methods (a.k.a., modifier, command, set, setter, or setting method).

Typically get and set methods are considered atomic methods which respectively return a

value of a data member or store a value in a data member. We feel that a focus on the

internal state is important (although not sufficient) and include this focus in our

taxonomy of stereotypes. Accessors and mutators are known by a few different

variations, however these two terms along with get and set are the most widespread and

appropriate in our opinion. We will stick with these terms and note any variations when

appropriate.

Two directions of stereotype usage are described below (Sections 2.1.1 and 2.1.2).

The first group is mainly focused on defining stereotypes by classifying methods for

design and development purposes. A later group of literature defines stereotypes with

some particular application in mind.

12

2.1.1 Stereotype Definitions for Development

Fowler [Fowler 2000] classifies methods at the design level (i.e., UML class) by

concentrating on the object’s state, with categories such as getting, setting, query

(accessor), and modifier or command (mutator). However, details about the classification

within accessor and mutator groups are not provided.

Method stereotypes have been proposed to assist in program development.

Stroustrup [Stroustrup 2000] classifies methods (operations) with the goal of helping

developers design a class interface in C++. His classification includes the categories

described above, inspector (accessor) and modifier (mutator), and additionally conversion

(produces an object of a different type based on the applied object), iterator (traverses

container), and foundation operator (constructor, copy constructor, and destructor). A

number of well-known programming and data-structure textbooks (e.g., [Deitel, Deitel

2001], [Salvitch 1999], [Tremblay, Cheston 2001], and [Weiss 1999]) propose similar

categories. Deitel additionally presents the notion of predicate and utility (or helper)

methods. Predicates test the truth or falsity of conditions, and utility methods serve

class’s public methods and are not part of the class’s interface.

Also to assist in program development, Riehle [Riehle, Berczuk 2001] classifies

methods in C++ programs based mainly on the read/write type of access to data

members. The proposed categories are query, mutation, and helper with fine-grained

subcategories. However, their classification does not consider any types of

collaborations between classes, identification is not explicitly mentioned, and only a

naming convention for the categories is given.

13

In order to describe the behavior of methods within the class hierarchy, the

stereotypes template and hook [Gamma et al. 1995] have been proposed and used.

Template methods perform self-calls to abstract methods, while hook methods are

designed to be overridden in subclasses.

2.1.2 Stereotype Definitions for Applications

In general, the previously discussed work assumes a forward-engineering approach.

The developer manually inserts the classification into the source code or defines it at the

design level. The stereotype information must then be manually maintained.

However, other work uses stereotypes as a basis for problem solving. In the

investigations by Workman [Workman 2002], a method taxonomy for Java is considered

as a base for class categorization to detect plagiarism. The eventual goal is to use the

taxonomy for the program-identification problem in comparison analysis. Some use of

the collaboration between methods is considered, however no means for identification is

given. Visualization approach to support method understanding is proposed in [Robbes,

Ducasse, Lanza 2005]. Robbes et al. present microprints, pixel-based representations of

methods enriched with semantic information such as state access, control flow, and

invocation relationship. This approach provides fine-grained information about the

method’s internals by introducing three types of microprints, but the general

characterization of a method with respect to its main role is not provided.

All of the stereotype definitions given in the referenced works are primarily based on

the access type to the data members. Collaborations between classes (if they are used at

all) are limited to inheritance relationships, while association and aggregation

14

relationships are not taken into consideration. Our previous work on the method

stereotypes filled this gap in the method-stereotype classification, presented the

taxonomy and an approach to automatically extract, and re-document, this information

from the source code. We applied stereotypes to support the method’s classification at

the implementation level, i.e., annotating source code with precise method descriptors.

Now, we investigate the emergent laws of class stereotypes and their benefits for reverse

engineering, design recovery and program comprehension, as well as classifying software

systems and categorizing commits based on nano patterns of software design, i.e., method

stereotypes.

2.2 Method Stereotype Taxonomy

We unified the literature on method stereotypes by integrating the different

perspectives given in the related work section while simultaneously addressing a number

of deficiencies. The taxonomy (Table 1) is based on a method’s main role and duties

while emphasizing the creational, structural, behavioral and collaborative aspects with

respect to a class’s design. We categorized methods by the data access type (i.e., a

method changes the objects state or leaves it constant) and their functionality, that is,

their creational, structural, behavioral and collaborational characteristics.

Structural methods provide and support the structure of the class. For example,

accessors read an object’s state while mutators change it. Note that simple accessor and

mutator methods get and set are only structural methods but other accessors/mutators

additionally implement behavior of the class and are also characterized as Behavioral.

Creational methods create or destroy objects of the class. Collaborational methods

15

characterize the communication between objects and how objects are controlled in the

system. Degenerate methods are where the behavioral or collaborational stereotypes

occur in a minimal form. The name is based on the mathematical term for a case for

which a stereotype cannot be any simpler, and indicate methods that are incomplete. For

additional details and examples we point the reader to [Dragan, Collard, Maletic 2006].

Table 1. A taxonomy of method stereotypes.

Stereotype

Category
Stereotype Description

 get Returns a data member.

predicate
Returns Boolean value which is not a data

member.

property Returns information about data members.

Structural

Accessor

B
eh

a
v

io
ra

l

void-accessor Returns information through a parameter.

 set Sets a data member.

command Structural

Mutator

B
eh

a
v

io
ra

l

non-void-command

Performs a complex change to the object’s

state.

Creational

constructor, copy-

constructor,

destructor,

factory

Creates and/or destroys objects.

collaborator
Works with objects (parameter, local

variable and return object).
Collaborational

controller
Changes only an external object’s state

(not this).

incidental Does not read/change the object’s state.
Degenerate

empty Has no statements.

16

The stereotypes in the categories Accessor, Mutator, and Creational are termed

primary stereotypes. A method can have only one single primary stereotype.

Accessors are methods that do not change an object state (e.g., the const specifier in

C++). The different stereotypes in the accessor category include:

• Accessor::get returns a data member.

• Accessor::predicate returns a Boolean value that is not a data member.

• Accessor::property returns some information about data members, and the method’s

return type is not Boolean.

• Accessor::void-accessor returns some information about data members through a

parameter (method’s return type is void).

Mutators are methods that change the object state. The differences between

stereotypes in this category reflect how and by how much the state is changed. The

different mutators stereotypes include:

• Mutator::set changes one data member and has a return type of void or Boolean

• Mutator::command performs a complex change to the object’s state, e.g., more than

one data member is changed and has a return type of void or Boolean. In the code we

check the return type, and look for multiple assignments to data members.

• Mutator::non-void-command performs a complex change to the object’s state and

returns a value (i.e., is not void) of a non-boolean type. In the code we check the

return type, and look for assignments to data members.

Creational methods include the stereotypes Constructor, Copy-Constructor, and

Destructor that match the standard C++ language features. We restrict the consideration

17

of creational methods to the factory method because constructor, copy constructor, and

destructor methods are well-known and are fairly easy and straightforward to identify. In

fact most languages have specific syntax for these special-purpose methods and C++ is

no exception. The remaining stereotype Creational::factory returns an object created in

the method’s body.

A method may also have a secondary stereotype in the category Collaborational or

Degenerate. This allows multiple stereotypes to be assigned to a single method, e.g.,

property collaborator or predicate incidental. However, both Collaborational and

Degenerate can also be just the single primary stereotype of a method.

Collaborational methods work on an external object (of a different type) that is either

a parameter or a local variable. Collaborational stereotypes include:

• Collaborational::collaborator is a method which works with an object that is a

parameter, a local-variable, or a return-type. This is a secondary or primary

stereotype.

For example, a two stereotype method get collaborator returns a data member that is

an object or uses an object as a parameter or a local variable.

• Collaborational::controller is a method which does not read/write to the object’s state,

i.e., works only on objects different from itself. This is a primary stereotype only.

Degenerate are methods where the primary stereotypes are limited. The name is

based on the mathematical term for a limiting case for which a stereotype cannot be any

simpler. These include the following stereotypes:

18

• Degenerate::incidental does not read or change an object’s state, neither directly nor

indirectly: it is a utility, an exception handler, or a candidate for overriding. This is a

secondary or a primary stereotype.

• Degenerate::empty has no statements at all and perhaps is created with the eventual

goal of overriding. This is a secondary or primary stereotype.

We now briefly discuss the tool developed to automatically extract method

stereotypes. Note, in what follows we will omit the category name in the method

stereotype name.

2.3 Reverse Engineering Method Stereotypes

Our tool, StereoCode, reverse engineers method stereotypes using lightweight static

analysis and an infrastructure based on srcML (SouRce Code Markup Language)

[Collard, Maletic, Marcus 2002], an XML representation supporting document and data

views of source code. The automatic detection of method stereotypes is based on static

analysis of the source code using srcML. For each stereotype, an XPath expression is

used to detect that particular pattern. StereoCode then re-documents the original source

code with the stereotypes with a special @stereotype tag in the comments.

2.3.1 Identification Rules

Based on the taxonomy that was derived from the literature we now identify the

main features to support reverse engineering method stereotypes from source code

written in C++. These features include: access type to data members, a method’s return

type, and the type and multiplicity of parameters. However, in the context of C++ these

19

main features are not sufficient to classify a method’s stereotype. We identified

additional features to support the automatic identification, including an indicator if the

method changes the object state (i.e., a method can be const or non-const) and local

variable types.

The rules were further refined by an examination of a number of C++ systems (for

idioms). Specifically, among others, we examined LAN simulation system (an open

source small simulation of a LAN network to illustrate good object-oriented design, Java,

20 classes), HotDraw [HotDraw 1999] (an open source two-dimensional graphics

framework for structured drawing editors, Java, about 150 classes), and HippoDraw

[HippoDraw] (an open source data analysis environment, C++, over 200 classes).

We now provide (Table 2) detailed rules for automatic identification of method

stereotypes (in C++).

20

Table 2. Rules for method stereotype identification.

Accessors

Structural

get

• method is const

• returns a data member

• return type is primitive or container of a primitives

Behavioral

predicate
• method is const

• returns a Boolean value that is not a data member

property

• method is const

• does not return a data member

• return type is primitive or container of primitives

• return type is not Boolean

void-accessor

• method is const

• does not return a data member

• return type is void

Mutators

Structural

set

• method is not const

• return type is void or Boolean

• only one data member is changed

Behavioral

command

• method is not const

• return type is void or Boolean

• complex change to the object’s state is performed e.g., more than

one data member was changed

non-void-command

• method is not const

• return type is not void nor Boolean

• complex change to the object’s state is performed e.g., more than

one data member was changed

Creational

factory • returns an object created in the method’s body

Collaborational

collaborator

• returns void and at least one of the method’s parameters or local

variables is an object

• returns a parameter or local variable that is an object

controller

• no data members are written

• no calls on data members

• no calls foo(), self::foo()

Degenerate

incidental

• no data members used

• no calls (except for std)

• includes at least one non-comment statement

empty • no statements except for comments

21

2.3.2 XPath Queries to Automatically Identify Method Stereotypes

The rules for the method stereotypes were converted into XPath predicates using the

terminology of srcML. If all the predicates for a stereotype are true, then the function

matches that stereotype. Some of the rules can be directly extracted from srcML, while

others take a bit more processing. For example, because the keyword const is marked

with an element specifier in srcML it is directly extractable using the XPath expression

specifier='const'. Likewise, the return type of a function is in the element type. The

type can be directly compared and easily determine if it is of type bool with

type='bool'. For matching specific parts of a type the individual names can be used,

e.g., matching "NTuple" in the type const Ntuple& can be matched with the

expression type/name='NTuple'. This is true if at least one element name is equal to

NTuple. All of the rules are applied to each function definition. The inserted stereotype

is the concatenation of all matches. This determines whether the predicates given are

unique. The re-documentation is applied to an entire project by repeating this process on

each pair of declaration/definition files. Examples of the XPath queries that match

function’s definitions for all the method stereotypes are given below.

Get

The figure below gives the XPath realization of the detection rules for the method

stereotype get.

22

src:function

[

 src:specifier='const' and

 not(src:type[src:name='void']) and

 src:return()

 [

 (

 count(*)=1 and src:name or count(*)=2 and

 [1][self::op:operator=''] and *[2][self::src:name]

) and

 src:primary_variable_name(src:name)[src:is_data_member()]

][1]

]

Figure 2. XPath query for the get method stereotype.

The XPath query above checks for the following conditions to be met in source code:

 <!-- stereotype get

 (1) method is const

 (2)return type is not void

 (3) contains at least one return statement which is:

 a single variable

 pointer to a variable

 has no calls

 variable is a data member

-->

Figure 3. Rules to automatically identify the get method stereotype.

The third condition in Figure 3 checks whether the return statement is of the form

‘return dm’ or ‘return *dm’, where dm is a data member.

Predicate

The figure below gives the XPath realization of the detection rules for the method

stereotype predicate.

23

src:function

[

 src:specifier='const' and

 src:type/src:name='bool' and

 (

 src:data_members() or

 (

 src:real_call()

 [

 src:is_pure_call() and

 (

 not(src:name/op:operator='::') or

 src:name/src:name[1]=src:class_name()

) or

 src:calling_object()[src:is_data_member()]

]

)

) and

 src:return()[1] and not

 (

 src:return()

 [

 not((

 *[2][self::op:operator] or src:call[1] or

 count(src:name)!=1 or

 src:primary_variable_name(src:name)

 [

 src:is_declared()

]

)

][1]

)

]

Figure 4. XPath query for the predicate method stereotype.

The XPath query above checks for the following conditions to be met in source code:

<!-- stereotype predicate

 (1) method is const and

 (2) return type includes bool and

 (3) data members are used or there is a pure call or

 call on data members

 (4) at least one return expression contains:

 false or

 true or

 call to another method or

 no variable, or more than one variable or

 there is variable plus an operator or

 one of the variables is not a data member

-->

Figure 5. Rules to automatically identify the predicate method stereotype.

24

The third condition checks if data members are used or calls on the class’s methods

are performed (the pure call in a form of foo() or the call on a data member in a form

of dm.foo()). The forth condition checks different situations to verify that the returned

variable is not a data member, i.e., the method is not a get method.

Property

The figure below gives the XPath query for the method stereotype property.

src:function

[

 src:specifier='const' and

 not(src:type[src:name='void' or src:name='bool']) and

 (

 src:data_members() or

 (

 src:real_call()

 [

 src:is_pure_call() and

 (

 not(src:name/op:operator='::') or

 src:name/src:name[1]=src:class_name()

) or

 src:calling_object()[src:is_data_member()]

]

)

) and

 src:return()[1] and not

 (

 src:return()

 [

 not((

 *[2][self::op:operator] or src:call[1] or

 count(src:name)!=1 or

 src:primary_variable_name(src:name)

 [

 src:is_declared()

]

)

][1]

)

]

Figure 6. XPath query for the property method stereotype.

25

The XPath query above checks for the following conditions to be met in source code:

<!-- stereotype property

 (1) method is const

 (2) return type is not void or bool

 (3) data members are used or there is a pure call or

 call on data members

 (4) return expression contains one of the following:

 more then one variable, or no variables

 a call

 single variable with an operator

 single variable that is not a data member

-->

Figure 7. Rules to automatically identify the property method stereotype.

The third and fourth conditions in Figure 7 check different situations to verify that

data members are read and the returned variable is not a data member, i.e., the method is

not a get method.

Void-accessor

The figure below gives the XPath realization of the detection rules for the method

stereotype void-accessor.

src:function

[

 src:specifier='const' and

 (

 src:data_members() or

 (

 src:real_call()[src:is_pure_call() and

 (

 not(src:name/op:operator='::') or

 src:name/src:name[1]=src:class_name()

) or

 src:calling_object()[src:is_data_member()]]

)

) and

 src:type/src:name='void'

]

Figure 8. XPath query for the void-accessor method stereotype.

26

The XPath query above checks for the following conditions to be met in source code:

<!-- stereotype void-accessor

 specifier is const

 data members are used or there is a pure call or

 call on data members

 return is void

-->

Figure 9. Rules to automatically identify the void-accessor method stereotype.

The conditions are similar to the property method stereotype, except for the return

type that is required to be void.

Set

The figure below gives the XPath realization of the detection rules for the method

stereotypes set.

src:function

[

 not(src:specifier='const') and

 (

 src:type[src:name='void' or src:name='bool'] or

 count(src:return())=count

 (

 src:return()

 [

 count(*)=2 and *[1][self::op:operator='*'] and

 *[2][self::src:name='this']

]

)

) and

 not(src:real_call()[2]) and

 count(src:data_members_write()) = 1

]

Figure 10. XPath query for the set method stereotype.

The XPath query above checks for the following conditions to be met in source code:

27

<!-- stereotype set

 (1) method is not const

 (2) return type is void or bool, or return the object (for

chaining), i.e., 'return *this'

 (3) number of real calls in expression statements is at most 1

 (4) number of data members written to in expression

 statements is 1

-->

Figure 11. XPath query for the set method stereotype.

For this method stereotype we allow only one call (otherwise it is the command

method) and the third condition checks this requirement.

Command

The figure below gives the XPath realization of the detection rules for the method

stereotype command.

src:function

[

 not(src:specifier='const') and

 src:type[src:name='void' or src:name='bool'] and

 src:union(src:data_members_write(), src:type)

 [

 last()>2 or last()=2 and src:real_call()[2] or

 last()=1 and src:real_call()

 [

 src:is_pure_call() and not(src:is_static()) or

 src:calling_object()[src:is_data_member()][1]

][1]

][1]

]

Figure 12. XPath query for the command method stereotype.

The XPath query above checks for the following conditions to be met in source code:

28

<!-- stereotype command

 (1)method is not const

 (2)return type contains void or bool

 (3)for expression statements at least one of the following holds:

 -more then one data member is written to

 -exactly one data member is written to and the number of

 calls in expression statements or returns is at least 2

 -no data members are written to and there is a call

 -not in a throw statement that is a simple real call

 (not a constructor call)

 -or a complex call for a data member

-->

Figure 13. Rules to automatically identify the command method stereotype.

The third condition checks if less or more than one data member is written (if one -

then it is the set method stereotype) and if real calls in the form of foo()or dm.foo()

exist (where dm is a data member, i.e., no calls like throw(), assert(), new(),

static_cast(), dynamic_cast(), or const_cast()). Note, a set is formed by

src:union with the written data members and the src:type. This way the predicate is

always evaluated, even if there are no data members written. The actual number of data

members written is one less than last(). So, "last()=1 and ..." is evaluated when

there are no data members written.

Non-void-command

The figure below gives the XPath realization of the detection rules for the method

stereotype non-void-command.

29

src:function

[

 not(src:specifier='const') and

 not(src:type[src:name='void' or src:name='bool']) and

 src:union(src:data_members_write(), src:type)

 [

 last()>2 or

 last()=2 and src:real_call()[2] or

 last()=1 and src:real_call()

 [

 src:is_pure_call() and not(src:is_static()) or

 src:calling_object()[src:is_data_member()][1]

][1]][1]

]

Figure 14. XPath query for the non-void-command method stereotype.

The XPath query above checks the same conditions as for the command method

stereotype except that the return value is not bool or void (could be a flag of the type

integer).

Factory

The figure below gives the XPath realization of the detection rules for the method

stereotype factory.

src:function

[

 src:type

 [

 type:modifier='*' and

 src:name[src:is_object()]

] and

 src:return()

 [

 op:operator='new' or

 src:primary_variable_name(src:name)[src:is_declared()]

][1]

]

Figure 15. XPath query for the factory method stereotype.

The XPath query above checks for the following conditions to be met in source code:

30

<!-- stereotype factory

 return type includes a pointer to the object

 a return statement includes

 the ‘new’ operator or

 a variable which is a parameter or

 a local variable

-->

Figure 16. Rules to automatically identify the factory method stereotype.

The XPath query in Figure 15 checks if an object created is returned.

Collaborator

The figure below gives the XPath realization of the detection rules for the method

stereotype collaborator.

<!-- stereotype collaborator

 A type name is an object, but not of this class

-->

src:function

[

 src:all_type_names_nonclass_object(.//src:type/src:name,

 src:class_name())[1]

]

Figure 17. XPath query and the rules for the collaborator method stereotype.

This XPath query checks if an object, but not of this class’s type, is used as a

parameter, local variable or return type.

Controller

The figure below gives the XPath realization of the detection rules for the method

stereotype controller.

31

src:function

[

 not(src:one_data_members_write()) and not

 (

 src:real_call()

 [

 src:is_pure_call() and

 (

 not(src:name/op:operator='::') or

 src:name/src:name[1]=src:class_name()

) or

 src:calling_object()[src:is_data_member()]

]

) and

 (

 src:one_real_call() or

 src:expr_name()

 [

 src:is_written() and

 src:primary_variable_name(.)

 [

 not(src:is_data_member())

]

] or

 src:block//src:decl

 [

 src:type/src:name[src:is_object()]

][src:init]

)

]

Figure 18. XPath query for the controller method stereotype.

The XPath query above checks for the following conditions to be met in source code:

<!-- stereotype controller

 (1) method is not const

 (2) no data members are written

 (3) (

 (one or more calls:

 -no pure calls, a() a::b()

 -no calls on data members)

 or parameter or local variable is written

)

-->

Figure 19. Rules to automatically identify the controller method stereotype.

32

The third condition checks that the calls performed are not class’s method calls (pure

calls) or calls on data members. Calls allowed are in form f->g(), where f is not a

data member, or new f() (which is not a real call).

Incidental

The figure below gives the XPath realization of the detection rules for the method

stereotype incidental.

src:function

[

 src:block/*[not(self::src:comment)][1] and

 (

 count(src:block/src:return) +

 count(src:block/src:throw) + count

 (

 src:block/src:expr_stmt

 [.//src:expr/src:call/src:name='assert']

)

) =

 count(src:block/*[not(self::src:comment)]) and

 not(src:block/src:return//src:name) and

 not(src:data_members())

]

Figure 20. XPath query for the incidental method stereotype.

The XPath query above checks for the following conditions to be met in source code:

<!-- stereotype incidental

 (1) includes at least one non-comment statement

 (2) no real calls (including new calls)

 (3) no data members used

-->

Figure 21. Rules to automatically identify the incidental method stereotype.

The second condition does not allow any calls except for assert() or throw().

33

Empty

The figure below gives the XPath realization of the detection rules for the method

stereotype empty.

<!-- stereotype empty

 no statements, except for comments

-->

src:function

[

 not(

 src:block/*[not(self::src:comment)][1]

)

]

Figure 22. XPath query and the rules to automatically identify the empty method stereotype.

This XPath query checks if the method has only comments in its body.

2.4 Evaluation of the Approach

The initial evaluation of the taxonomy and the StereoCode tool was performed for

one system and reported in [Dragan 2005]. Later, more systems were added, and the

taxonomy and the tool was validated [Dragan, Collard, Maletic 2006]. The developer

assessment demonstrated that our stereotype classification along with our tool for

automatically identifying and re-documenting method stereotypes was both sound and

efficient. Our results were very good as an experienced developer agreed 90% of the

time with our classification. StereoCode, which is based on a lightweight static program

analysis approach, was very efficient and usable – while still giving very good results.

While our system incorrectly labeled 10% of the methods for HippoDraw, only a very

small number of methods (less than 1.5% of those assessed) were not correctly classified

34

in the lightweight approach. Even if this number proved to be larger for different

systems, the cost trade-off is hard to compete with.

Overall, the assessment of this work was performed on 28 open-source systems (in

all the case studies performed for the dissertation work). The initial taxonomy and the

identification rules [Dragan 2005] for reverse engineering method stereotypes were

refined and expanded. The validations performed have demonstrated two things. First,

that the given method stereotype classification covered a very large percentage of the

methods studied. That is, almost all methods could be labeled by the classification

scheme. Second, the tool redocumented systems correctly.

We now leverage this work to support a number of more complex design recovery.

In the following chapter software at the system level is analyzed. The frequency and

distribution of method stereotypes in an object-oriented system are used to classify

software systems into architectural categories. The hypothesis that the relative frequency

of particular method stereotypes within a system is any indication of a system’s

design/architecture is investigated by examining 21 open source systems along their

method stereotype profile.

35

CHAPTER 3

CLASSIFYING SOFTWARE USING METHOD STEREOTYPES

In this chapter, we present an approach to classify software systems into architectural

categories based on the frequency and distribution of method stereotypes in an object-

oriented system. Having the stereotype for each method in a system, we now seek to

understand how these design nano patterns are used to build software systems and how

we can characterize software at the system level.

First the stereotype for each method is determined using the taxonomy defined in

 Chapter 2. The counts of the different stereotypes form a signature of the system and

these signatures are used as input for a clustering algorithm. Determining method

stereotypes is done automatically and is based on language (C++) features, idioms, and

the main role (purpose) of a method. An empirical study of 21 open source systems is

used for the evaluation of the approach. The results show that the distribution of method

stereotype is an indicator of system architecture.

In the next section reasons and objectives of software classification are presented. In

section 3.2 we present the distributions of method stereotypes for the 21 systems. Section

 3.3 presents analysis of this data and a manual classification of the systems based on all

the knowledge we had on hand. Following that are the results of applying two clustering

algorithms to the data with threats to validity given in 3.4. Related work and conclusions

follow.

36

3.1 Overview and Motivation

We demonstrated the ability to automatically, and efficiently, reverse engineer

method stereotypes [Dragan, Collard, Maletic 2006] from object oriented source code

(specifically C++). In practice, methods are rarely documented with stereotypes (e.g.,

get, set, predicate, etc), yet we feel this information can be used to help infer the context

of a class and how classes interact. That is, good method abstraction is typically a

requirement for good class abstraction. Our hypothesis is that we need to understand the

methods before we can infer the role and design of a class.

Knowing the method stereotypes will support sophisticated types of design recovery

and form a foundation for a range of approaches based on method stereotypes. For

example, metrics based on method stereotype have a much more fine-grained perspective

and include structural information with little cost. Also changes to method stereotypes

may indicate major design changes to a class or system.

In order to verify our hypothesis, we investigate if the relative frequency of

particular method stereotypes within a system is any indication of a system’s

design/architecture. The work presented here examines 21 open source systems along

their method stereotype profile. We developed a tool to automatically label each method

with its corresponding stereotype and then calculate the total number of each for the

entire system. The distribution of this data forms a method stereotype signature for the

system. These signatures are used as input into clustering algorithms, and the results are

compared against a manual classification.

37

Our findings indicate that method stereotypes and how they are distributed within a

system is a good indicator of the type of design/architecture being used by the software.

The empirically derived result supports, to a large degree, our hypothesis and the

importance of method stereotypes.

3.2 The Method Stereotype Distribution of Systems

We now examine the frequency of each different stereotype that occurs within a

system. We will then use this distribution to compare and classify systems.

Twenty-one C++ open-source software systems are used in the study and listed in

Table 3, ordered by the number of methods for each system. The systems were chosen to

represent a wide range of a sizes, problem domains, and architectures. Half of the

systems occur in Bjarne Stroustrup's list of interesting C++ applications
1
, while others

were taken from sourceforge.net. The main categories of the systems are: GUI library

(wxWidgets, Qt, SmartWin++); Game Programming library and SDK (FlightGear,

PPTactical, CEL, CrystalSpace, ClanLib); Graphics library, 2D & 3D Engines, Image

Drawing (Ivf++); Mathematical and Finance libraries (CGAL, QuantLib, C++Fuzzy);

Development and Communication Environments (KDevelop, Code::Blocks, ACE, Ice);

Testing, Management and Unicode frameworks (CppUnit, ICU, OpenWBEM); and

1
 www.research.att.com/~bs/applications.html

38

complete applications (Doxygen, HippoDraw). For the most part, these systems can be

considered good examples of object oriented design.

Table 3. An overview of the software systems examined ordered by the number of methods.

System Domain Methods

C++Fuzzy 0.61 fuzzy logic library 313

CppUnit 1.12.1 framework for unit testing 1335

CEL 1.2.1 game engine 2798

SmartWin++ 2.0.0 GUI and SOAP library 2882

Ivf++ 1.0.0 visualization framework 3032

HippoDraw 1.21.3 data analysis environment 3315

QuantLib 0.9.7 finance library 4235

ClanLib 0.8.1 game SDK 4427

PPTactical 0.9.6 game engine 4887

OpenWBEM 3.2.2 management of systems 4963

ICU 4.0.1 components for Unicode 5984

FlightGear 1.9.1 flight stimulator 6036

Ice 3.3.0 internet communications engine 6952

ACE 5.6.8 communication environment 7867

CGAL 3.4 library of geometric algorithms 11365

Code::Blocks 8.02 IDE 11586

KDevelop 3.5.4 IDE 11799

CrystalSpace 1.2.1 SDK for real-time 3D graphics 12839

Doxygen 1.5.8 documentation system 13445

wxWidgets 2.8.9 GUI framework 34907

Qt 4.4.3 GUI framework 59535

For each system we automatically determined labeled the stereotype of each method

using the StereoCode tool. The time to extract the stereotypes from a system ranged from

a few seconds for C++Fuzzy to a bit less than five minutes for Qt. The resulting

39

distribution of method stereotypes for each system is given in Table 4. The degenerate

secondary stereotypes for all the primary stereotypes are combined with the

accessor/mutators due to the very small percentages they represent.

Table 4. Distribution of method stereotypes across the 21 systems. Values are percentage of each

method stereotype. Combinations of primary & secondary stereotypes are separate (e.g., get and get-

collaborator).

This distribution represents the signature of a system. It describes the degree of

prevalence of static structures such as collaboration and state change. To better interpret

40

the data visually, we organize it at two different levels to highlight the logical structure of

the code, i.e., the method and class levels. At the method level, stereotype perspective,

we grouped by primary stereotype. This reflects the role of a method as it ignores, to a

large degree, interaction with other classes. The alternative class level perspective,

stereotype category perspective, highlights the degree of coupling and collaboration

among classes in a system, along with some internal coupling (cohesion) of a class

through accessors/mutators. Additionally, parts of the system not yet implemented

(degenerate) are reflected. These two different perspectives complement each other and

highlight different aspects of a system’s design/architecture. That is, it presents a view of

the method alone and a view of how the methods collaborate inter- and intra-class. These

two perspectives (or slices of the data) will be discussed in more details now.

3.2.1 Stereotype Perspective

First we examine the distribution according to primary stereotypes: get, predicate,

property, void-accessor, set, command, non-void-command, factory, collaborator,

controller, incidental, and empty. The methods with secondary stereotypes are not

counted separately but included in the count of the primary stereotype (e.g., get-

collaborator is counted only once under get).

As an example, the distributions of three systems, Qt, wxWidgets, and ACE, are

given in Figure 23. As can be seen, Qt and wxWidgets have a very similar stereotype

distribution in this method level perspective, while ACE exhibits a very different

distribution. We generated pie charts for all the 21 systems and observed a number of

trends. All 21 charts are presented in Appendix A and are constructed from Table 4. The

41

main observations are discussed here while an analysis of the trends is given in section

 3.3.

As can be calculated from Table 4 get-methods are prevalent in all 21 systems with

distribution varying from 2.8% to 20.9%. The systems FlightGear and QuantLib have

the highest percentage of get methods (~20%). The majority of the systems have a larger

percentage of the get-methods than set-methods (2.6% to 15%). Few systems contain

many predicates.

Command methods occur in of all studied systems, and the systems KDevelop,

Code::Blocks, CppUnit, CEL, PPtactical, and Ivf++ contain a very large percentage

(around 50%). ACE is the only system with a significant percentage of non-void-

command methods. Collaborators occur infrequently in all systems except for Doxygen.

42

wxWidgets

get 11.1

predicate 6.8

property 10.8

void-accessor

1.8

set 6.2

command 42.9

non-void-

command 8.4

factory 3.0

collaborator

2.9

controller 3.0

incidental 0.9

empty 1.6
unclassified

0.6

Qt

get 7.6

predicate 6.8

property 20.4

void-accessor

1.6

set 4.8

command 38.2

non-void-

command 8.1

factory 3.0

collaborator

4.2

controller 3.6

incidental 0.5

empty 0.7

unclassified

0.5

ACE
get 2.8

predicate 0.6

property 11.0

void-accessor

3.0

set 3.5

command 15.2

non-void-

command 45.9

factory 4.0

collaborator

4.7

controller 5.3

incidental 1.2

empty 0.2

unclassified

2.6

Figure 23. The stereotype distributions for the systems Qt, wxWidgets, ACE. Qt and wxWidgets have

a similar distribution with significant percentage of command, property, and get methods while ACE

has a very different distribution e.g., non-void- command, command, and property are the most

numerous methods.

43

Approximately 40% of the system is actually collaborator degenerate methods (i.e.,

do not read or change an object’s state).

Controller and factory are also prevalent stereotypes with maximum values 13.2%

and 9.5%, respectively. HippoDraw has a high percentage of both. A few systems

(mostly game frameworks) have a large percentage of controller methods, namely

C++Fuzzy, Ivf++, CEL, ClanLib, CrysrtalSpace, FlightGear, Doxygen. We now

examine the stereotype category perspective in similar fashion.

3.2.2 Stereotype Category Perspective

The stereotype category perspective involves organizing the data by main stereotype

categories combined with secondary stereotype. This list includes the categories

accessor, mutator, creational, and collaborational, along with secondary stereotype

categories such as accessor collaborator, accessor degenerate, etc. This perspective

reveals the prevalence of reads and writes to an object state. It also highlights interaction

with other classes by inspecting collaborational versus non-collaborational methods

within a system.

An example of the stereotype category perspective for Code::Blocks, KDevelop, and

HippoDraw is given in Figure 24. We see that Code::Blocks and KDevelop have very

similar distributions, while HippoDraw is very different. Again we generated pie charts

for all the 21 systems and present the observations here while an analysis of the trends is

given in section 3.3.

We observed that most of the 21 systems have more mutators then accessors,

sometimes as much as three times more. Only two systems, QuantLib and CGAL, have

44

more accessors then mutators. In most of the cases the systems with mutators as the most

prevalent, have more collaborators than non-collaborators. However, there are

exceptions, such as ICU with 91.8% collaborators and HippoDraw with 59.3%. Four

systems have nearly equal non-collaborational methods.

HippoDraw has a very different distribution compared to the other systems.

Accessors, mutators, controller, and factory are evenly distributed. There is also an

almost equal distribution of collaborational subcategories compared to non-

collaborational.

Given these two abstract perspectives we now analyze the trends and describe a set

of patterns that seem to correlate with architecture and/or domain.

45

Code::Blocks

accessor 6.4

accessor

collaborator

12.4

accessor

degenerate 0.5

mutator 17.1

mutator

collaborator

51.7

mutator

degenerate 1.5

creational 2.9

collaborational

5.0

collaborational

degenerate 1.6
unclassified

0.8

KDevelop

accessor 5.0

accessor

collaborator

13.4

accessor

degenerate 0.7

mutator 16.0mutator

collaborator

55.6

mutator

degenerate 1.0

creational 1.8

collaborational

4.5

collaborational

degenerate 1.5 unclassified

0.5

HippoDraw

accessor 15.5

accessor

collaborator

15.3

accessor

degenerate 5.9

mutator 16.3

mutator

collaborator

25.9

mutator

degenerate 2.1

creational 9.5

collaborational

7.3

collaborational

degenerate 1.5 unclassified

0.5

Figure 24. Stereotype category distribution shows different patterns: Code::Blocks and KDevelop are

a Mutator-Collaborator driven IDE, while HippoDraw is an Accessor-Mutator-Controller driven

application.

46

3.3 System Classification Findings

Given the trends we observed in the previous section we now classify systems based

on these two views of the method stereotype distribution. We use knowledge of the

domain and architecture/design of the 21 systems (see Table 3) and correlate this

manually with common trends and patterns observed in the method and class level

perspectives of the distributions. This manual categorization will be used to evaluate the

results of automatic clustering techniques in the following section.

Through manual inspection of the distributions we uncovered common trends within

groups of similar (with respect to domain and/or architecture) systems. We describe

these trends as common patterns of stereotype distribution. The results are presented in

Table 5. The pattern name relates to the most dominant attributes of the method

stereotype distribution. For each pattern the systems are listed that exhibit the pattern

along with the prevailing architecture and problem domain.

The architecture for each system is derived from the description provided at the

project site and the purpose/role of the system. They are classified into the categories of

application, framework, SDK, and library.

We now discuss each distribution pattern in the context of the distribution and the

systems that exhibited the pattern.

47

Table 5. Classification of systems based on signatures derived from the stereotype distribution. For

each signature the classification includes the systems and the architecture types/domain of those

systems.

Classification
Pattern

Systems Architectures Domain

Mutator
CppUnit,

ClanLib
SDK/framework

game and unit-

testing

Mutator-

DataStorage

Ivf++,

FlightGear
framework/application

visualization and

game

Mutator-

Collaborator

KDevelop,

Code::Blocks,

PPTactical

framework/application IDE, game

Non-void-Mutator-

Collaborator
ACE framework

communication

environment

Mutator-Accessor-

Collaborator

Ice,

OpenWBEM,

CEL,

CrystalSpace

SDK/framework

internet

communications

engine, management

of systems, game

and 3D graphics

Accessor-Mutator-

Collaborator

wxWidgets,

Qt,

SmartWin++,

ICU

library/framework
GUI, Unicode

component

Accessor-

Collaborator

CGAL,

QuantLib,

C++Fuzzy

library math and finance

Accessor-Mutator-

Controller
HippoDraw application

data analysis

environment

Controller-

Collaborator
Doxygen application

documentation

system

48

3.3.1 Mutator & Mutator-Data Storage Patterns

For these patterns mutators form a large part of the distribution. While collaborator

subcategories exist, they do not dominate over the non-collaborator categories, i.e., the

stereotype set-collaborator occurs less than half as often as the stereotype set. The

accessors do exist, but in much smaller numbers. The systems that fall into this category

are CppUnit, ClanLib, FlightGear and Ivf++. External collaborators, i.e., stereotypes

factory, collaborator and controller, which work only on external objects, are typically

insignificant, except for Ivf++.

However there are significant features which make the systems Ivf++ and

FlightGear different from CppUnit and ClanLib, the stereotypes get and set play a more

significant role, so we denote systems Ivf++ and FlightGear with the more specific

Mutator-DataStorage pattern. The domain of these systems includes unit-testing,

visualization and game frameworks (SDK).

3.3.2 Mutator-Collaborator Patterns

Similar to the mutator pattern previously described, this pattern has a substantial

portion (65 to 75%) of mutators. However, unlike the mutator pattern, the percentage of

the secondary stereotype collaborator is also very high. The percentage of predicate,

property, controller, collaborator (primary), and factory is quite low in this pattern.

The systems that contain this distribution pattern are KDevelop, Code::Blocks,

PPTactical, and ACE. The domains of these systems are IDEs (KDevelop and

Code::Blocks), a game (PPTactical), and a communication environment (ACE). All have

quite similar distributions. The only one that stands out is ACE, which has stereotype

49

non-void command in significant (about 45%) numbers, and property plays a more

significant role. We put this system in the separate pattern termed Non-void-Mutator-

Collaborator.

3.3.3 Accessor, Mutator-Collaborator Patterns

In this pattern, accessors and mutators are nearly equal in distribution, but mutators

are still the dominant stereotype. Collaborators are more prevalent than the equivalent

non-collaborators. Additionally, the external collaborators, controller and factory, are

significant.

The systems that contain this pattern include Ice, OpenWBEM, CEL, CrystalSpace,

wxWidgets, Qt, SmartWin++, and ICU. This covers a wide variety of different domains

including GUI libraries/framework, Unicode-component library, a game SDK, 3D

graphics SDK, a communication environment, and an information system framework.

One difference among them is the degree of collaboration. Most of these systems

have 2-4 times larger percentages of collaborators compared to non-collaborators.

However, for ICU and SmartWin++ the number of collaborators is 10-20 times larger

than the number of non-collaborators.

The distribution of accessors and mutators is also not the same for all systems. Qt,

SmartWin++, and ICU have close percentages of both, while Ice, OpenWBEM, CEL,

CrystalSpace, and wxWidgets have a lower percentage of accessors. However the last

five systems belong to this group because accessors still play a more significant role than

in the Mutator-Collaborator group of systems.

50

Overall this large group can be divided into two subgroups. In the subgroup

containing Ice, OpenWBEM, CEL, and CrystalSpace, collaborators play a more essential

role as well as mutators with respect to accessors. Because of a significantly larger

number of mutators, we call such systems Mutator-Accessor-Collaborator. The other

subgroup contains wxWidgets, Qt, SmartWin++, and ICU, where accessors and mutators

are more evenly distributed, and we call this pattern Accessor-Mutator-Collaborator.

3.3.4 Accessor-Collaborator Pattern

For this pattern accessors form a significant part of the distribution. Of all the

accessors, the stereotypes get and property are the most prevalent and have the largest

percentage in the distribution. The systems that fall into this category are CGAL,

QuantLib, and C++Fuzzy. They are all math and finance libraries. Note that in these

systems the stereotype collaborator is also quite prevalent.

3.3.5 Accessor-Mutator-Controller Pattern

In this pattern, accessors, mutators, and external collaborators are evenly distributed.

The term controller is used in the name of this pattern because external collaborators

control the behavior of external classes. In addition, a comparison of collaborator and

non-collaborator shows an equal distribution. The number of controller and factory

stereotypes is large.

The only system that falls into this group is HippoDraw, which is a data analysis

application. However, if we take into account the method-level view, this system is

51

closest to GUI systems wxWidgets and Qt, and based on the overall distribution it is

similar to ClanLib.

3.3.6 Controller-Collaborator Pattern

For this pattern the collaborators are the dominant stereotypes and the percentage of

controllers is high. Of the collaborators, a large number are collaborator-degenerate.

There is a low percentage of accessors (around 11%), and mutators form about 1/3 of the

system. The only system that fits this pattern is Doxygen, which is a documentation

application.

We now apply clustering algorithms to the method stereotype distribution data and

compare the results with our manual classification.

3.4 Automatic Clustering

The manual classification done in the previous section took advantage of domain and

architectural knowledge of the systems. Here we investigate if the method stereotype

distribution (signature) alone can be used to classify systems into meaningful groups. To

verify this we apply an automatic clustering technique to the raw distribution data of the

21 systems. The results of the clustering algorithms are compared to the manual

classification done in the previous section.

Clustering is an unsupervised learning technique that allows grouping of similar

entities or the discovery of common patterns. Degree of similarity can be calculated

using a variety of distance measures. Here we use Euclidean distance because our data is

already normalized as percentages. There are a number of well-studied clustering

52

algorithms and they are typically divided into two main groups, hierarchical and

partitioning. Hierarchical clustering algorithms distribute input instances into a hierarchy

of clusters while partitioning distributes into distinct clusters.

Hierarchical clustering is used to determine the similarity of systems based on their

signatures, however, it does not always classify systems into distinct groups. Partitioning

is used to identify the distinct groups but does not indicate the degree of similarity of

systems. The combination of both types of clustering is validated against the manual

classification.

3.4.1 Hierarchical Clustering

First we perform hierarchical clustering using the COBWEB [Fisher 1987] algorithm

to determine the similarity between systems without having to set a predefined number of

clusters. The input to the clustering algorithm is the signature of systems contained in the

data from Table 4, i.e., method stereotypes distribution in percentages. The result of the

clustering is shown on Figure 25.

53

Figure 25. Hierarchical clustering performed by COBWEB algorithm. Overall, the clustering

produced the same similarity between systems as the manual classification.

The hierarchical clustering produced three large clusters. The first cluster consists of

the systems Doxygen, ACE, Ivf++, FlightGear, KDevelop, Code::Blocks, and

PPTactical. The systems KDevelop, Code::Blocks, and PPTactical are in one sub-

cluster, which implies that they have a more similar distribution than the others (e.g.,

Ivf++, Doxygen). This cluster consists of IDEs, games, and other systems close to an

IDE in their distribution. This clustering is in agreement with the manual classification

given in Section 3.3.

The second large cluster consists of the systems Ice, OpenWBEM, CrystalSpace,

CEL, ClanLib, CppUnit, HippoDraw, wxWidgets, Qt, SmartWin++, and ICU. In this

large cluster there are five sub-clusters.

54

All these systems fall into the same groups as the manual classification, except for

HippoDraw. From our observations this system should stand by itself; however it has

similarity to wxWidgets, Qt and, to a lesser degree, ClanLib. This second cluster consists

of GUI libraries, a GUI framework, games, and other systems closest to GUI in their

distribution. The third small cluster consists of C++Fuzzy, CGAL, and QuantLib. Math

and finance libraries are instances of this cluster.

Overall, the automatic clustering produced very similar results to the manual

classification given in Section 3.3, indicating that classification based on stereotype

signature patterns is indicative of the important aspects of the distribution.

3.4.2 Partitioning

To validate the specific groups in our manual classification, we performed X-Means

partitional clustering [Pelleg, Moore 2000], which is an extension of K-Means clustering.

In addition to the distribution data, X-Means clustering requires as input a range for the

expected number of clusters. The normal practice is to run the algorithm multiple times

with different ranges and seeds, and then assess the multiple runs. We ran it 24 times

with ranges of six to eight clusters and used different seeds.

55

Table 6. Systems frequently clustered together as found by X-Means over all 24 runs.

Systems Clustered Together

KDevelop, Code::Blocks 100%

wxWidgets, Qt 100%

CGAL, QuantLib 83%

ClanLib, CppUnit 83%

Ice, OpenWBEM 83%

Crystal Space, CEL 67%

Ivf++, FlightGear 67%

Ice, OpenWBEM, CrystalSpace 67%

CEL, Crystal Space, KDevelop, Code::Blocks 67%

Crystal Space, Ice, OpenWBEM, KDevelop, Code::Blocks 67%

Each run produces a set of clusters. The number of times systems are clustered

together is calculated across all runs. From the 24 runs 39 different clusters (more

accurately item-sets) had optimal evaluation parameters (i.e., minimal distortion and

maximal BIC-values). Of the 39, ten occurred in at least two-thirds of the runs with

different input seeds. The percentage of times particular systems were clustered together

is given in Table 6. For example, the systems wxWidgets and Qt were clustered together

in every run. This is a strong indication that these two systems are very similar in their

distribution, but distinct from the other systems. Other systems clustered together

infrequently - less than a third of the time - e.g., wxWidgets, Qt, and HippoDraw,

indicating that these three systems should not be classified together.

Ice, OpenWBEM, CEL, and CrystalSpace clustered together in two-thirds of runs

with Code::Blocks and KDevelop. While their distributions are similar, the manual

classification and hierarchical clustering seem to be in more agreement.

56

3.5 Threats to Validity

The assessment of classification using method stereotypes is subject to a number of

threats to validity in both the collection of the stereotypes and the classification analysis.

For the collection of the stereotype data, our tool uses lightweight source code

analysis. The conversion to the srcML format may produce incorrect markup that may

cause the misidentification of a stereotype. However, the srcML format has been

successfully used for querying and fact extraction of C++ source code and transformation

(refactoring). The XPath expressions used to find stereotypes may misidentify a

stereotype, and leave some methods unclassified. However, our previous evaluation of

the tool showed high correlation to manual assignment of stereotypes.

For each system, the architecture/domain had to be determined based on a written

description of the project. For automatic clustering, the choice of clustering algorithm

and the chosen similarity measure can affect the results. However, the results from

applying both hierarchical clustering and partitioning are complementary.

3.6 Related Work

Analysis of software with respect to architectural/design patterns on the coarse- and

fine-grained levels (such as method-, class-, package- and system-level) and the evolution

of these patterns have been investigated by many researchers [Gamma et al. 1995], [Gil,

Maman 2005], [Lanza, Ducasse 2001b], [Arevalo, Ducasse, Nierstrasz 2003a], [Robbes,

Ducasse, Lanza 2005], [Workman 2002], [Kim, Pan, Whitehead 2006], [Dong, Godfrey

2007], [Dong, Godfrey 2008].

57

Analysis of design patterns at more fine-grained levels, such as method- and class-

level, is performed by many researchers. Method-level patterns are given in [Arevalo,

Ducasse, Nierstrasz 2003a], [Robbes, Ducasse, Lanza 2005] and [Workman 2002]; class-

level design patterns are presented in [Gil, Maman 2005], [Lanza, Ducasse 2001b], and

[Clarke, Malloy, Gibson 2003]. The work presented by Dong et al is the closest to our

work in terms of the granularity level. They present a hybrid model reverse engineered at

a coarse-grained level, such as package diagrams, and identify architectural change

patterns during software evolution [Dong, Godfrey 2007], [Dong, Godfrey 2008].

The main directions of applying clustering techniques in software engineering are the

following: software architecture recovery [Maqbool, Babri 2007]; identification of

subsystem structures by clustering procedures or methods into modules [Hutchens, Basili

1985], [Montes de Oca, Carver 1998], and modules or classes into subsystems [Anquetil,

Fourrier, Lethbridge 1999], [Mancoridis et al. 1999], [Mitchell, Mancoridis 2006],

measuring differences between clustered objects and comparing clustering algorithms

[Tzerpos, Holt 1999], [Koschke, Eisenbarth 2000].

Other reverse-engineering approaches for program comprehension have been

identified in [Lanza 2003]: dynamic execution traces can be inspected, though it may take

too much time, and the large volume of information about thousands of methods calls

hide important facts, making it easy to get lost. The version history can be analyzed.

However, this is more useful for understanding the past history of software or prediction

of evolution. The source code and documentation can be examined. This is an

58

extensively used non-automated practice, but very often the documentation analyzed is

not up to date, is inaccurate, or is not present at all, and it may take too much time.

The approach proposed in our work is to use lightweight static analysis of the source

code and clustering techniques to solve the problem of classifying software, and then

utilize this approach for system re-documentation. Clustering algorithms are used to

group systems based on method stereotypes distribution.

To the best of our knowledge, analysis of design patterns on the system-level and

system categorization/classification according to architectural categories has not yet been

performed and investigated extensively. Additionally, we examine systems from the

perspective of behavioral and control characteristics and their functionality.

3.7 Discussion

The results show that the frequency and distribution, across a system, of the method

stereotypes described by our taxonomy is a good indicator of system architecture/design.

That is, the method stereotype signature for a system can be used to automatically cluster

systems with similar architectures together. Manual classification of the system using

visual inspection of the signatures along with knowledge from the system documentation

further supported this result.

For example, the two IDEs we studied, Code::Blocks and KDevelop, are grouped

together. To explain this we surmise that there is underlying reference architecture for

IDEs that both systems follow. We also saw this strong grouping with the two GUI

frameworks we studied, Qt and wxWidgets. While these examples are not terribly

59

surprising, the result of having the methods stereotype signature reflect this so clearly is

of particular interest.

We plan to extend this work by studying the change of signatures over the evolution

of a system. This will investigate whether the signature of a system changes during the

development of a project, and at what point the signature become stable.

This chapter presents an application of the method stereotypes to characterize and

classify software at the system level. In the next chapter, we again leverage the work on

method stereotypes; this time they are used to recover design information at the class

level. Class stereotypes are automatically identified from source code based on the

frequency and distribution of the method stereotypes in the class.

60

CHAPTER 4

AUTOMATIC IDENTIFICATION OF CLASS STEREOTYPES

In this chapter, we describe an approach to automatically determine a class’s

stereotype. Having the stereotype for each method in a system and observing patterns of

design at a system level, we now try to find how the nano patterns of design are used to

build object-oriented classes and how we can characterize software at the class level.

Class stereotypes represent micro patterns [Gil, Maman 2005], i.e., design patterns at the

class level. They are similar to design patterns [Gamma et al. 1995], but micro patterns

are found at a lower level of abstraction.

The class’s stereotype is based on the frequency and distribution of the method

stereotypes in the class. The method stereotypes are automatically determined using the

defined taxonomy. The stereotypes, boundary, control and entity are used as a basis but

refined based on an empirical investigation of 21 systems. A number of heuristics,

derived from empirical evidence, are used to determine a class’s stereotype. For

example, the prominence of certain types of methods can indicate a class’s main role.

The approach is applied to five open source systems and evaluated. The results show that

95% of the classes are stereotyped by the approach. Additionally, developers (via

manual inspection) agreed with the approach’s results.

The chapter is organized as follows. The next section motivates automatic

identification of class stereotypes. Section 4.2 contains a description of a class signature

61

[Dragan, Collard, Maletic 2009] which is based on method stereotypes distributions.

Additionally, how we compute the method stereotype distributions is described. The

class signature forms the input for our automatic classification scheme. In Section 4.3 we

present a taxonomy of class stereotypes. Section 4.4 describes our approach to

automatically identify class stereotypes from existing C++ code. Section 4.5 is an

evaluation of the approach as compared to experts, followed by an empirical study in

Section 4.6. This is followed by a discussion of threats to the validity of our approach,

related work, and conclusions.

4.1 Overview and Motivation

The work presented here investigates how to automatically identify a class’s

stereotype in an existing object oriented software system. Stereotypes are a simple

abstraction of a class’s role and responsibility in a system’s design. Very few software

systems have this sort of documentation explicit in the source code. Manually

documenting this type of abstraction is relatively simple for a small number of classes but

doing so for entire systems would be costly.

Accurate information about a class’s stereotype is useful for a number of software

maintenance and evolution tasks. Knowing a class’s stereotype implies the role of the

class in the design. It gives clues to how a class collaborates with other classes in design

patterns. A class’s stereotype maybe an indicator of bad smells and gives clues for

refactoring. It can be an indicator of a class’s comprehensibility.

A number of studies [Andriyevska et al. 2005; Genero et al. 2008; Kuzniarz, Staron,

Wohlin 2004; Ricca et al. 2010; Sharif, Maletic 2009; Staron, Kuzniarz, Wohlin 2006;

62

Yusuf, Kagdi, Maletic 2007b] demonstrate the benefits of using class stereotypes, which

reflect semantics, in program comprehension, design, and software maintenance tasks.

Using stereotype information [Andriyevska et al. 2005; Sharif, Maletic 2009; Yusuf,

Kagdi, Maletic 2007b], as a factor in laying out UML class diagrams, has shown to

improve the comprehensibility of the diagram. Staron et al. [Staron, Kuzniarz, Wohlin

2006] show the effectiveness of class stereotypes based on domain model in program

comprehension.

Hence, we feel this is a very important, yet unexamined area of object oriented

design recovery. This work directly leverages our work on recovery of method

stereotypes. However, automatic identification of class stereotypes proved to be a much

more difficult problem, requiring a more in depth empirical study and understanding of

how method stereotypes are used across systems and classes.

This work has the following contributions. First, a taxonomy of class stereotypes is

proposed. This taxonomy is derived from an empirical examination of 21 open source

software systems. The second contribution involves an approach to automatically label a

given class with its corresponding stereotype. Here we limit our study to one

programming language, namely C++.

Our approach starts by automatically identifying and labeling all methods in a

system with their stereotype. This information is then collected and a distribution of

method stereotypes for each class is calculated. Class stereotypes are derived from this

distribution via a set of rules that map method stereotype distribution characteristics to

63

the class stereotype taxonomy. The approach is evaluated against human experts and

through an empirical study.

4.2 Class Signature

Here we define a class signature as a frequency distribution of method stereotypes

for a class. We use the class signature to infer a class’s stereotype. In this section, we

summarize how we defined and automatically identified method stereotypes as this forms

the basis for the signature. Specifics of the class signature are then presented.

4.2.1 Method Stereotypes

The aggregates for class signature identification are method stereotypes (see Table

1). Method stereotypes are reverse engineered using the tool, StereoCode, which re-

documents source code with the stereotype information for each method and calculates

totals per class.

The method stereotypes are logically organized by categories: creational, structural,

behavioral and collaborational. Structural methods provide and support the structure of

the class and include accessor and mutator subcategories. Most of the methods from the

structural category are also behavioral – they define behavior of the class (predicate,

property, void-accessor, command, and non-void-command). Creational methods (only

factory is considered here) create or destroy objects of the class. Collaborational

methods (collaborator and controller) characterize the communication between objects

and how objects are controlled in the system. Degenerate are methods where the

structural or collaborational stereotypes are limited (incidental and empty).

64

The individual stereotypes and the above categories of stereotypes are used for

defining the class signatures.

4.2.2 Method Stereotype Distributions

In Chapter 3 we presented the idea of a system signature and examined the frequency

of method distributions for twenty-one open source system. From this study we learned

that these distributions of method stereotypes seemed to be indicators of system

architecture. Here we extend this concept to a class signature.

We found it useful to present the distribution data in both a detailed and summarized

manner. In the detailed view we give the distribution counts for each individual

stereotype (e.g., get, set, command, factory, etc). In the summarized view we present

counts of whole stereotype categories (e.g., all the accessors, all the collaborational, etc).

The stereotype distribution highlights the role of a method in the class. It

deemphasizes, to a large degree, interaction with other classes. An example of a detailed

view for two classes from the open source system HippoDraw is given in Figure 26. The

class DataSource is largely composed of different types of accessors and mutators

while class DisplayController primarily constitutes factory and controller

methods, i.e., performs most of its work on other classes.

65

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

get predicate property voidaccessor

set command non-void-command factory

collaborator controller incidental empty

Figure 26. Distribution of stereotypes for the classes DataSource and DisplayController signatures

(from HippoDraw).

The stereotype category distribution aggregates the data and highlights the degree of

coupling and collaboration among classes in a system. It also includes some internal

coupling (cohesion) of a class through the main categories of method stereotypes.

Additionally, parts of the system not yet implemented (degenerate) are reflected. As can

be seen in Figure 27, the class DataSource collaborates (structurally) very little with

other classes and has a small percentage of degenerate accessors and mutators. In

contrast all methods of class DisplayController are collaborational and there are

no degenerate methods.

66

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

accessor accessor collaborator accessor degenerate

mutator mutator collaborator mutator_degenerate

creational collaborational

Figure 27. Distribution of categories for the DataSource and DisplayController signatures (from

HippoDraw).

The methods in the taxonomy are categorized by the data access type (i.e., read or

write to the object’s state) and by functionality, which is given in the creational,

structural, behavioral and collaborational characteristics. These two perspectives are

reflected in the two distributions, stereotype and stereotype category, which complement

each other and highlight different aspects of a class’s design. The detailed view presents

the class’s internal structure and responsibilities in terms of types of methods, i.e., we can

identify what part of the class is responsible for its creational, structural, behavioral, and

control tasks. The summarized view contrasts readers of object’s state (accessors) versus

writers (mutators) as well as simple readers or writers versus readers or writers that use

external objects (e.g., accessor versus accessor collaborator). Additionally, it highlights

the accessors and mutators that are not yet implemented (degenerate). Most likely, there

is some plan to complete these in the future. Note that in Figure 26 and Figure 27 the

67

class DataSource presents two very different distributions. This difference between

the stereotype and category view is true for a majority of classes. The charts for the class

DisplayController are more similar because it has no degenerate methods and all

accessors and mutators are collaborational.

These two distributions make up the class signature and provide us with a basis for

the automatic identification of class stereotypes.

4.3 Taxonomy of Class Stereotypes

The process of creating the taxonomy of class stereotypes involved multiple steps.

The first step was creating the taxonomy of method stereotypes. We manually examined

150 of the HippoDraw classes in detail and found many patterns of design at the method

and class level. The validation of the method’s taxonomy on further systems gave us

additional evidence of the existence of these patterns of design abstractions.

The next step was to classify software at the system level based on the method

stereotypes. Automatic hierarchical (COBWEB) and partitional (X-Means) clustering

was used to classify 21 open-source C++ systems listed in Table 3. The clusters found

are characterized by the frequency and distribution of method stereotypes. The results

showed that these distributions are a good indicator of system architecture/design.

Additionally, we observed more patterns of the method stereotype distributions at the

class level by examining about 250 classes of the systems that were clustered together (Qt

and WxWidgets) and separately (HippoDraw, QuantLib, ACE, and Doxygen).

That led to a more thorough investigation of the patterns of design at the class level.

We continued the exploration of these patterns by considering the diverse types of

68

features that a class may have with respect to the method’s taxonomy and method

stereotype distribution. The detection rules were implemented and then we meticulously

checked the HippoDraw system and a random set of classes (about 100) in the systems

listed in Table 3. Some of the rules were refined and improved after this manual

verification.

To summarize, the creation of the taxonomy of class stereotypes started with an

empirical investigation that led to formulation of the rules for the identification of class

stereotypes. The rules were validated on open source systems that led to the rules

refinement and further validations of the class’s taxonomy.

The list of class stereotypes is presented in Table 7. The actual class names are not

Table 7. Class stereotypes.

Class

Stereotype

Description Candidate for a bad-smell

class

Entity Encapsulates data model

Minimal Entity Encapsulates trivial data model

Data Provider Encapsulates data

Commander Encapsulates behavior

Boundary Communicator in a system

Factory Objects ‘ creator

Controller Manager in a system

Pure Controller External data manager X

Large Class “Too much” responsibilities X

Lazy Class “Too little” responsibilities X

Degenerate Degenerate state and behavior X

Data Class Degenerate behavior X

Small Class Small number of methods X

69

used in the categorization. While the name can be a good source of information it

can also be misleading and we leave this aspect of the investigation for future work.

Our initial taxonomy included the standard set of overarching stereotypes of entity,

boundary and control class stereotypes [Booch, Jacobson, Rumbaugh 1999]. We

expanded this simple taxonomy as necessary to cover recurring stereotypes that emerged

from our empirical investigation. We tried to adopt naming conventions from literature

on such things as method stereotypes [Dragan, Collard, Maletic 2006] and bad smells

[Fowler 1999]. The list of class stereotypes uncovered is given in Table 7. A given class

may take on one or more of these stereotypes. That is, a class may have the

characteristics of more than one of these stereotypes in certain cases.

For the remainder of the section, each of the class stereotypes is presented along with

an explanation of the role and responsibilities of such a class. Additionally, examples of

each class stereotype are presented visually along with a specific class and its signature

from the HippoDraw system. Due to the space limits these class signatures are shown in

a combined view from which the detailed and summarized views can be inferred.

An Entity is a class that encapsulates data and behavior. It is the keeper of the data

model and/or business logic (e.g., the Subject in the Observer pattern). Examples of

entity classes are the classes Range, DataSource, Rect, and BinnerAxis (see

Figure 28). As can be seen by their signatures, they typically contain accessors and

mutators in various proportions and might have a variable percentage of collaborational

methods (up to 2/3). They do not have controller methods.

70

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DataClass (AxisTick)

DegenerateClass (AxisRep2D)

LazyClass (BinsBase)

LargeClass, Boundary (FunctionController)

Controller (DisplayController)

PureController, SmallClass (AxisTickXML)

Factory, PureController (BinnerAxisXML)

Factory (QtViewFacory)

Boundary (QtView)

Boundary,Commander (EpsView)

Boundary, Commander (DrawBorder)

Boundary, DataProvider (DataView)

Entity,DataProvider (BinnerAxis)

Entity,DataProvider (Rect)

Entity (DataSource)

Entity (Range)

Minimal Entity (Point)

get get collaborator predicate predicate collaborator property

property collaborator voidaccessor voidaccessor collaborator set set collaborator

command command collaborator non-void-command non-void-command collaborator controller collaborator

collaborator factory degenerate

Figure 28. Class stereotypes and their signatures for 18 HippoDraw classes. Each row is labeled

with the class stereotype(s) and in parentheses the name of the example class whose data is shown in

the row. Each stereotype is automatically identified based on the signatures using the detection rules.

Accessors are shown in green colors, mutators – in blue, factory – in tan, collaborational - in rose and

turquoise. The method stereotype has a grey fill effect if ‘collaborator’ is a secondary stereotype for

this method.

A Minimal Entity is a special case of Entity that has only get/set and command

methods. It encapsulates very trivial entities (e.g., Point). It is considered separately

because it is a very simple class that does not require much effort to comprehend. It can

also be considered as a Lazy Class (described below).

A Data Provider is a class that encapsulates data and consists mainly of accessors.

For example, classes Rect and BinnerAxis have two stereotypes: Entity and

DataProvider - more than 75% of their methods are accessors.

A Commander is a class that encapsulates behavior and mainly consists of mutators.

A large part of the logic for the class’s behavior is implemented in command and non-

71

void-command methods. These methods execute complex changes of an object’s state.

The changes may also involve objects of different classes. The DrawBorder and

EpsView classes are examples of the Commander class. More than 70% of their

methods are mutators.

A Boundary is a communicator in a system and has a large percentage of

collaborational methods but a low percentage of controller and not many factory

methods. Alternatively this type of class could be a Data Provider when its main purpose

is to get data from a model (when it has mainly accessors) or Commander when its main

purpose is to send data and provides updates/output to a model (when it has mainly

mutators). For Example, the DataView class has both stereotypes Boundary and Data

Provider because all of its methods are collaborational, there are no controller methods,

and additionally more than 80% of the methods are accessors. The EpsView class has

both stereotypes Boundary and Commander – most of its methods are collaborational,

there are no controller methods, and additionally, 70% of the methods are mutators.

A Factory is a creator of objects and has mostly factory methods. The classes

QtViewFactory and BinnerAxisXML are examples of the Factory class stereotype

with 100% and 67% of factory methods respectively.

A Controller is a class that provides functionality and processes data of external

objects. It updates an entity/model working mainly outside of itself, i.e., it has almost all

controller and factory methods. The DisplayController class is an example of this

stereotype. It has about 70% Controller and Factory methods.

72

A Pure Controller is a special case of the Controller. It has 100% Controller and

Factory methods and works only outside of itself. We consider this stereotype separately

because it is a candidate for the bad-smell God class [Riel 1996]. A God class is a large

controller class that monopolizes most of the system functionality and depends on

external data. Methods of the controller class work on data stored in surrounding classes.

The Pure Controller class could be a God class if it is a standalone class and consists of

many methods.

A Large Class is a class which contains too many responsibilities and “is trying to do

too much” [Fowler 1999] . “Too much” can be interpreted in different ways using

metrics such as LOC, number of attributes, number of methods, complexity metrics, etc.

However, those types of metrics do not directly reflect the different roles of a class. We

consider a class a Large Class not only if it has many methods, but also if it combines

multiple roles, such as Data Provider, Commander, Controller, and Factory. It also could

be highly collaborative. The FunctionController class is an example of a Large

Class. It has a small percentage of accessors, about 50% mutators, 20% controller, and

25% factory. The class is also 100% collaborational.

A Lazy Class is a very trivial class which does “too little” [Fowler 1999]. The Lazy

Class might occur in the context of a new or planned feature that is not yet completed.

Similarly, “too little” can be interpreted using different metrics. But we consider a class

as Lazy if it has get/set methods and a low percentage of other methods. The class is also

considered Lazy if it has a significant number of degenerates, e.g., BinsBase has 40%

degenerate methods besides get/set methods.

73

A Degenerate Class is when the state and behavior are degenerate. It has mainly

methods that do not read/write to the object’s state - half or more methods are incidental

or empty. If the Degenerate class is a leaf in the hierarchy, then most likely it needs to be

examined for a possible refactoring. An example of the Degenerate class is

AxisRep2D.

A Data Class is a class with degenerate behavior. That is, it has only get and set

methods. This type of class passively stores data and does not contain methods that

operate on the data. An example of the Data Class is the AxisTick class with only

get/set methods.

A Small Class is a class that only has one or two methods. If it is a standalone class

then it is a bad-smell because degenerates the state and/or behavior.

4.4 Automatically Identifying Stereotypes

We developed a tool to automatically identify the class stereotypes presented in the

previous section. The tool uses the class signature to assign stereotypes to a class. The

rules for identification are based on an empirical investigation of the 21 open-source

system in Table 3. We present the identification rules to reverse engineer class

stereotypes from (C++) source code and give details of a tool that automatically labels a

class with its stereotype(s).

4.4.1 Rules for Class Stereotype Identification

The rules are based on both the stereotype and category distributions of the class

signature. Both distributions are required to determine the stereotype except for the cases

74

of Factory, Data, Degenerate, and Small Class, which require only stereotype or category

distribution. To calculate the stereotype we use semantic fractional thresholds of method

stereotype frequencies and statistical, average and standard deviation, thresholds that are

proposed in [Lanza, Marinescu 2006] as a means to characterize and evaluate the design

of object-oriented systems.

We use a fractional threshold of ⅔ for representing situations were a class consists

mostly of stereotype A. The thresholds for the Large, Lazy, Degenerate and Small Class

were determined empirically by running the rules on the systems HippoDraw and Qt.

We now introduce notations used in the rules for class stereotype identification. The

set of the stereotype is formed as follows.

Let {stereotype} be a set of method stereotypes of the type stereotype, e.g.,

[Fuggetta] is a set consisting of get and get collaborator methods. {methods} is a set of

all the methods in a class.

The set of the stereotype category is formed as follows.

 The set {accessors} consists of all the accessors (get, predicate, etc), accessors

collaborators (get collaborator, predicate collaborator, etc) and accessors degenerate

(predicate incidental, void-accessor empty, etc). The set {mutators} is constructed in a

similar way.

The set {collaborators} consists of all the collaborational methods, e.g., get

collaborator, set collaborator, factory collaborator, etc. Thus, the set

{non-collaborators} = {methods} - {collaborators}.

75

The set {degenerate} consists of accessors degenerate (predicate incidental, void-

accessor empty, etc), mutators degenerate (command incidental, non-void command

incidental), and collaborator degenerate (collaborator incidental, collaborator empty).

We denote by |stereotype| the cardinality of the set {stereotype}.

To identify the class stereotype Entity the following conditions need to be satisfied:

• They contain an accessor besides get and a mutator besides set

{accessors} –{get} ≠ ∅ & {mutators} - {set} ≠ ∅

• The ratio of collaborational to non-collaborational methods is 2:1

|collaborators| / |non-collaborators| = 2

• They can have factory methods but no controller methods

|controller| ≠ 0

To identify the class stereotype Minimal Entity the following conditions need to be

satisfied:

• The only method stereotypes are get, set, and command/non-void-command

{methods} - ({get} ∪ {set} ∪ {command} ∪ {non-void-command}) = ∅ & |get| ≠ 0 &

|set| ≠ 0 & ({command} ∪ {non-void-command}) ≠ ∅

• The ratio of collaborational to non-collaborational methods is 2:1

|collaborators| / |non-collaborators| = 2

To identify the class stereotype Data Provider the following conditions need to be

satisfied:

76

• It consists mostly of accessors

|accessors| > 2 · |mutators|

• Low control of other classes

|accessors| > 2 · (|controller| + |factory|)

To identify the class stereotype Commander the following conditions need to be

satisfied:

• It consists mostly of mutators

|mutators| > 2 · |accessors|

• Low control of other classes

|mutators| > 2 · (|controller| + |factory|)

To identify the class stereotype Boundary the following conditions need to be

satisfied:

• More collaborators then non-collaborators

|collaborators| > |non-collaborators|

• Not all the methods are factory methods

|factory| < ½ · |methods|

• Low number of controller methods

|controller| < ⅓ · |methods|

To identify the class stereotype Factory the following conditions need to be

satisfied:

• It consists mostly of factory methods

|factory| > ⅔ · |methods|

77

To identify the class stereotype Controller the following conditions need to be

satisfied:

• High control of other classes

|controller| + |factory| > ⅔ · |methods|

• Accessor or mutator are present (not only methods that work on external objects

exist)

|accessors| ≠ 0 ∨ |mutators|≠ 0

To identify the class stereotype Pure Controller the following conditions need to be

satisfied:

• Only controller and factory methods with no mutator, accessor, or collaborator

methods

|controller| + |factory| ≠ 0 & |accessors| + | mutators| + |collaborator| = 0

• There must be at least one controller method

|controller| ≠ 0

To identify the class stereotype Large Class the following conditions need to be

satisfied:

• Categories of stereotypes (accessor with mutator) and stereotypes, factory and

controller, are approximately in equal proportions

1
/5 · |methods| < |accessors| + |mutators|< ⅔ · |methods| &

1
/5 · |methods| < |factory| + |controller| < ⅔ · |methods|

• Controller and factory have to be present

|factory| ≠ 0 & |controller|≠ 0

78

• Accessor and mutator have to be present

|accessors| ≠ 0 & |mutators|≠ 0

• Number of methods in a class is high

|methods| > average + stdev

Note, average and stdev of number of methods are calculated per system.

To identify the class stereotype Lazy Class the following conditions need to be

satisfied:

• It has to contain get/set methods

|get| + |set| ≠ 0

• It might have a large number of degenerate methods

|degenerate| / |methods| > ⅓

• Occurrence of other stereotypes is low

|methods| – (|get| + |set| - |degenerate|) <=
1
/5 · |methods|

To identify the class stereotype Degenerate Class the following conditions need to

be satisfied:

• It consists of many degenerate methods

|degenerate| / |methods| > ½

To identify the class stereotype Data Class the following conditions need to be

satisfied:

• Only the simple accessor/mutators get and set are present

|get| + |set| ≠ 0 & |methods| – (|get| + |set|) = 0

79

To identify the class stereotype Small Class the following conditions need to be

satisfied:

• Number of methods in a class is less than 3

|methods| < 3

4.4.2 Implementation

We extended our tool, StereoCode, to obtain class signatures and automatically

identify the stereotypes. StereoCode automatically identifies method stereotypes using

lightweight static analysis and an infrastructure based on srcML [Collard, Maletic,

Marcus 2002], an XML representation of source code. StereoCode re-documents the

original source code with the stereotypes with a special @stereotype tag in the comments.

Next, for class-wide totals, these stereotype comment tags are collected and totaled to

obtain the signature (both the stereotype and category distributions) for each class in a

software system.

Once the class signatures are generated, they are fed into the tool StereoClass that

determines the stereotype for a given class using the rules described previously. The

stereotype is assigned to a class if all conditions of the rule are satisfied. Classes may

satisfy more than one rule and the assigned stereotypes are the concatenation of all

matches. The part of StereoClass for the automatic identification of class stereotypes is

implemented in C++. The tool currently works only for C++ source code as input.

80

4.5 Evaluation

To evaluate the approach and taxonomy we compare the results of our automatic

classification of a class’s stereotype with that of human experts. In this section we will

present the details and results of this evaluation.

The system we chose is HippoDraw [HippoDraw], an open-source application that

provides a data-analysis environment. It is a wide-ranging application with parts for

data-analysis processing and visualization with an application GUI interface. The source

code is well written and follows a pretty consistent object-oriented style. Additionally,

the application follows the Model-View-Controller (MVC) architecture that is to a great

extent reflected in our class stereotypes.

Three experienced developers (subjects) manually evaluated and stereotyped classes

of the HippoDraw system. The subjects are doctoral students in computer science with

multiple years of academia and industry experience (OO development). The students are

members of our laboratory but were not involved in the implementation and development

of this research. In addition, these students were familiar with the design of HippoDraw.

Each subject was given the description of the taxonomy of class stereotypes,

examples of the method stereotypes, and the class signatures for 45 classes from

HippoDraw. The subjects were not given the detection rules. The 45 classes were

randomly picked and comprise about 15% of the system. This random sample was

inspected and found to contain a wide diversity of class stereotypes.

Each subject spent approximately 90 minutes to complete the study. First they read

the descriptions of the method and class stereotypes, and then labeled the classes. The

81

subjects were not asked to check the code and made their decisions based on the class

signatures.

StereoCode was run on the entire system to generate the class signatures and then

StereoClass was run on the class signatures to automatically generate the class

stereotypes. Running both tools took less than 2 minutes for the entire system. The

results of the subjects’ evaluation were compared against the tool results and are given in

Table 8.

The results obtained by the tool are shown in the first column. The tool labeled the

45 classes with 67 stereotypes. Almost half of the classes (22) were labeled with one

stereotype and 23 classes with two stereotypes. For Example, pairs of class stereotypes

included Boundary and Data Provider, Boundary and Degenerate, Entity and

Commander, Factory and Small Class.

The columns S1, S2, and S3 show the numbers of class stereotypes obtained by each

subject. Two of the subjects identified the number of stereotypes close to that of the tool,

while one found more: 72, 86, and 68 vs. 70 (tool). The intersection columns show how

the subject’s results compare to the results of the tool. Those numbers (52, 47 and 50)

show that, each subject did not label some stereotypes that the tool found. However, the

union of all the subjects with the tool, shown in the last column, indicates that those

missed stereotypes were different for each subject in almost all cases. That is, the tool

and at least one of the subjects agreed in those cases.

The cases where the tool disagreed with the subjects as a whole are of particular

interest because they may indicate a problem with the approach or taxonomy. The

82

stereotype Pure Controller was missed (not labeled) by all three subjects in one case.

However, the subjects labeled the other occurrence of this same stereotype. The

stereotype Minimal Entity was missed twice by all the subjects but was identified in a

third instance. In the missing cases it was labeled Entity (both times) and Data Class

(one time). The third class labeled correctly has very similar distribution to the missed

one. The Entity stereotype was missed 3 times out of 13 cases that the tool labeled. The

10 cases where the subjects labeled the classes were very similar to the missed cases. In

Table 8. Summary of Assessment Study. 45 classes from HippoDraw were labeled with class

stereotypes by the tool and then assessed by 3 experienced subjects (S1-S3).

T
o

o
l

S
1

S
1
 ∩∩ ∩∩

 T
o

o
l

S
2

S
2
 ∩∩ ∩∩

T
o

o
l

S
3

S
3
 ∩∩ ∩∩

 T
o

o
l

(S
1
∪∪ ∪∪

S
2
∪∪ ∪∪

S
3

)
∩∩ ∩∩

 T
o

o
l

Entity 13 13 8 4 3 9 7 10

Minimal Entity 3 1 1 0 0 2 0 1

Data Provider 8 10 7 13 8 8 6 8

Commander 7 8 6 16 6 8 6 7

Boundary 15 21 13 28 13 18 13 15

Factory 5 5 5 8 4 6 5 5

Controller 6 5 5 4 3 7 6 6

Pure Controller 2 1 1 1 1 0 0 1

Large Class 3 4 3 5 3 3 3 3

Lazy Class 2 0 0 3 2 0 0 2

Degenerate 2 1 1 1 1 1 1 2

Data Class 2 1 1 2 2 2 2 2

Small Class 2 2 1 1 1 4 1 2

Total 70 72 52 86 47 68 50 64

83

all three cases the class had the second stereotype Data Provider which maybe the reason

for missing the Entity stereotype. In short, all the missed cases have no patterns and can

be viewed as just missing a stereotype. Additionally, the stereotypes identified by the

subjects but not the tool (false positives) are different for each subject and there is no case

when all three subjects have the same false positive.

Through an analysis of the data (missing stereotypes and false positives) we can

conclude that the tool performs better than each subject individually or combined. In

91% of the cases (64 out of 70) the subjects were in agreement with the tool. We found

after careful examination that it was easy to miss aspects and make mistakes in stereotype

identification during manual inspection. Thus, tool support in this case will improve

comprehension of class’s design and role in the system.

4.6 Empirical Study

To further assess our approach we applied our tools to the five open source systems

listed in Table 9. The research questions we address here are: Do these stereotypes

identified by the tool exist in nontrivial quantities in real systems? And, do most classes

fit into at least one class stereotype?

The systems were chosen to represent a range of sizes, problem domains, and

architectures. Some of the systems are mentioned in Bjarne Stroustrup's list of

84

interesting C++ applications
2
, while others are taken from sourceforge.net. The

categories of the chosen systems are: Game Programming library and SDK (FlightGear);

Mathematical and Finance library (QuantLib); Development and Communication

Environments (KDevelop, Code::Blocks); and complete application (HippoDraw). For

the most part, these systems can be considered good examples of object oriented design.

Table 9. An overview of the software systems evaluated in the empirical study. Ordered by the

number of classes.

System Domain Classes Methods

HippoDraw 1.21.3 data analysis environment 308 3315

QuantLib 0.9.7 finance library 808 4235

FlightGear 1.9.1 flight stimulator 361 6036

Code::Blocks 8.02 IDE 753 11586

KDevelop 3.5.4 IDE 1023 11799

Total 3253 36971

For each system we automatically determined the stereotypes of each class using the

StereoClass tool. The tool took less than 2 minutes for each system. The resulting

distribution of class stereotypes for each system is given in Table 10.

The results show that all class stereotypes occur in all of these systems. Most classes

(94% to 99%) of the system fit into at least one of the class stereotypes. The Commander

stereotype occurs in large number of times in some systems, but less than 20% in others.

Boundary occurs at least about 40% of the time. Controller and Pure Controller

2
 www.research.att.com/~bs/applications.html

85

stereotypes do not occur in a significant percentage for the majority of systems, except

for the HippoDraw, which exploits the MVC architecture. Data Provider stereotype

shows a wide distribution – it varies from 1.9% in the FlightGear to 62.8% in QuantLib.

The stereotypes, which are candidates for bad-smell classes, i.e., Controller and Pure

Controller, Lazy, Data, Small, and Large Classes, do not occur in significant numbers.

Table 10. Distribution of class stereotypes across 5 open-source systems.

KDevelop Code::Blocks FlightGear HippoDraw QuantLib

Stereotype
% # % # % # % # %

M
in

 (
%

)

M
a

x
 (

%
)

A
v

er
 (

%
)

S
td

ev
 (

%
)

Entity 42 4.1 23 3.1 31 8.6 46 14.9 20 2.5 2.5 14.9 6.6 5.2

Minimal Entity 10 1.0 6 0.8 7 1.9 5 1.6 0 0.0 0.0 1.9 1.1 0.8

Data Provider 57 5.6 25 3.3 7 1.9 46 14.9 511 62.8 1.9 62.8 17.7 25.7

Commander 748 73.1 608 80.7 304 84.2 57 18.5 154 18.9 18.5 84.2 55.1 33.5

Boundary 743 72.6 573 76.1 139 38.5 120 39.0 700 86.0 38.5 86.0 62.4 22.2

Factory 10 1.0 9 1.2 5 1.4 38 12.3 1 0.1 0.1 12.3 3.2 5.1

Controller 8 0.8 3 0.4 6 1.7 19 6.2 2 0.2 0.2 6.2 1.9 2.5

Pure Controller 18 1.8 6 0.8 0 0.0 18 5.8 14 1.7 0.0 5.8 2.0 2.3

Large Class 2 0.2 2 0.3 0 0.0 5 1.6 4 0.5 0.0 1.6 0.5 1.9

Lazy Class 4 0.4 0 0.0 2 0.6 8 2.6 0 0.0 0.0 2.6 0.7 2.6

Degenerate Class 11 1.1 12 1.6 5 1.4 5 1.6 1 0.1 0.1 1.6 1.2 0.6

Data Class 12 1.2 6 0.8 2 0.6 8 2.6 6 0.7 0.6 2.6 1.2 0.8

Small Class 365 35.7 166 22.0 75 20.8 96 31.2 339 41.6 20.8 41.6 30.3 8.9

Coverage 98% 99% 95% 94% 99% 94 99 97 2.3

Based on the distribution of the class stereotypes we observe some similarities and

differences between the systems. The two IDE systems KDevelop and Code::Blocks

show very similar distribution of class stereotypes. HippoDraw and Quantlib have a

close distribution of the Commander stereotype - it forms a small part of their distribution

(18.5% and 18.9% respectively). However, in FlightGear this stereotype has a

86

significant portion (84.2%). HippoDraw and FlightGear are not as much collaborative as

KDevelop, Code::Blocks and QuantLib.

The results also show that the frequency and distribution of the class stereotypes

across a system reflect an implementation of particular design decisions and good/bad

programming practices, and might be an indicator of system architecture/design. For

example, the two IDEs we studied, Code::Blocks and KDevelop, showed very similar

distribution of class stereotypes. To explain this we surmise that there is underlying

reference architecture for IDEs that both systems follow. While these examples are not

terribly surprising, the result clearly is of particular interest.

The chi-square test was performed to investigate the link of class stereotypes in

different software systems. The null hypothesis is that the distribution of class

stereotypes in different software is a random phenomenon and the alternative hypothesis

is that there is a link between class stereotypes and software systems. Chi-square reports

a p-value <0.0001 with 95% confidence and 48 degrees of freedom that lets us reject the

null hypothesis. The critical and observed values are 65.171 and 2143.018 respectively.

4.7 Threats to Validity

The assessment of class stereotypes identification and the StereoClass tool is subject

to a number of threats to validity. The rules for stereotype identification are subjective

and thresholds might vary depending on differences in subject’s interpretations. The

manual inspection of the results includes one software system and additional examples

may be warranted. We attempted to construct the study in an unbiased fashion however

the selection of the subset of the system is a potential problem. Also, the size of the

87

subset inspected (nearly 15% of the system) could be increased however the assessment

is very time consuming for the subjects.

The approach was only applied to C++ systems. However, the srcML format

supports Java and rules for method stereotype identification could be adapted for Java.

The class stereotype rules are valid for other object-oriented languages and we believe

that our approach is extensible to other languages.

4.8 Related work

The main objective of our work is to understand the role and main responsibilities of

an object-oriented class and method in the system design. There are many dynamic,

static or combined techniques used in reverse engineering which help to generate high-

level views of the source code with the eventual goal of increasing comprehension. The

following approaches to reverse engineer software entities have been widely used:

metrics, visualization, concept analysis, clustering, information retrieval and webmining.

The number of methods in the class, the number of attributes in the class, the number

lines of code in the method, the number of parameters in the method, etc. is counted

using a metrics approach. A detailed a list of object-oriented class and method metrics

and metrics approaches for program comprehension and design quality are considered in

details in [Chidamber, Kemerer 1994], [Lorenz, Kidd 1994], [Lanza 1999].

A metrics approach is generally used to assess software quality and performance, as

“guidelines” for a good design or refactoring, and to predict maintainability [Fenton

1991], [Chidamber, Kemerer 1994], [Hitz, Montazeri 1995], [Henderson-Sellers 1996],

[Briand, Daly, Wüst 1997], [Briand, Daly, Wüst 1999], [Demeyer, Ducasse, Nierstrasz

88

2000], [Demeyer, Ducasse, Lanza 1999], [Li, Henry 1993], [Basili, Briand, Melo 1996].

Antoniol et.al use metrics to automatically identify design patterns [Antoniol, Fiutem,

Cristoforetti 1998a]. However, we are not able to grab the functionality and behavioral

aspects of the class using this approach, i.e. taking into consideration only quantitative

parameters of entities. The metrics approach is very straightforward, but alone does not

work well for classification tasks or identification of method and class stereotypes in the

source code.

The visualization approach helps to understand a software entity (method, class,

package, system, etc) by representing entities and relationships between them

graphically. Visualization tools as Rigi [Muller 1986], SeeSoft [Eick, Steffen, Summer

1992], ShrimpViews [Storey, Muller 1995], CodeCrawler [Lanza, Ducasse 2001a] are

widely used in the research community.

The Concept Analysis mathematical technique is broadly used for program

understanding. Concept lattice (or Gallois Lattice) is constructed to represent source-

code entities and their relationships. Applying concept analysis in reverse engineering

and reengineering includes such research directions as: identification of modules in

legacy systems [Siff, Reps 1999] and module restructuring [Tonella 2001], [Tonella

2003]; representation of the internal relationships between group of methods and

attributes of a class [Arevalo, Ducasse, Nierstrasz 2003b]; location of features and

concepts in the source code [Eisenbarth, Koschke, Simon 2003], [Poshyvanyk, Marcus

2007]; identification of changes in object-oriented software [Clarke, Malloy, Gibson

2003].

89

Understanding and reverse engineering design patterns [Gamma et al. 1995] has

attracted a lot of attention from many researchers [Brown 1996], [Antoniol, Fiutem,

Cristoforetti 1998b], [Antoniol, Fiutem, Cristoforetti 1998a], [Albin-Amiot et al. 2001],

[Bieman et al. 2003], [Guéhéneuc, Sahraoui, Zaidi 2004], [Ng, Guéhéneuc 2007], [De

Lucia et al. 2009], [Guéhéneuc, Guyomarc’h, Sahraoui 2010].

A lot of efforts have been spent to understand and detect bad-smell code at the

method-, class-, and system-levels [Riel 1996], [Fowler 1999], [Brown et al. 1998],

[Martin 2002], [Mäntylä 2003]. Riel defines 61 heuristics characterizing good object-

oriented programming that allow engineers to assess the quality of their systems

manually and provide a basis for improving design and implementation. 22 code smells

at the method- and class-level are defined in [Fowler 1999] suggesting to engineers

applying refactorings. Brown et al. describe 40 antipatterns, i.e. general design smells.

Mäntylä proposes a taxonomy for code smells. Automatic identification of problems in

software design in general and particularly at the class level are presented in [Marinescu

2004], [Munro 2005], [Moha et al. 2008]. Note, in our work we do not detect bad-smell

classes but take into consideration features of those classes for possible further

refactoring.

The following work is closest to our work by the level of abstraction, i.e.

understanding and reverse engineering patterns of design at the class level. A few

approaches identify key or most important classes in a software system [Zaidman,

Demeyer 2008], [Richner, Ducasse 2002], [Greevy, Ducasse 2005]. Zaidman et al.

[Zaidman, Demeyer 2008] provide a mechanism based on dynamic coupling and

90

webmining to find classes with a lot of “control” within the application. Richner et al.

[Richner, Ducasse 2002] present a tool based on dynamic information to support the

recovery and understanding of collaborations between classes. Greevy et al. [Greevy,

Ducasse 2005] identify the key classes and methods which provide functionality for

individual features. However, importance of a class is defined by the specific tasks or

activities during software maintenance. Our approach provides a detailed description of

roles/responsibilities for all the classes in a system and not only for “control” classes.

Gil et al. [Gil, Maman 2005] introduce class-level traceable patterns for Java code

(called micro patterns) with the eventual goal of design assessment. The approach

slightly touches upon association and dependency relationships by considering classes

that do not propagate calls. A taxonomy of classes to identify changes in object-oriented

software based on generalization relationships and the types of data associated with the

class is presented by Clarke et al. [Clarke, Malloy, Gibson 2003]. Their approach does

not reflect role and class responsibilities. A visualization approach to support quick class

understanding is proposed by Lanza et al. [Lanza, Ducasse 2001b]. The internal structure

of a class is presented as a set of a few method layers and an attribute layer. This

approach provides semantic information at the class level, but collaborations between

different classes are limited to generalization relationships. Concept Analysis is used by

Dekel to visualize the structure of the class in Java [Dekel, Gil 2003]. This approach

describes the “context of a class“ showing relationships between methods based only on

the state access.

91

All of the class categorizations given in the referenced work are primarily based on

an access type to the data members. Collaborations between classes (if they are used at

all) are limited to inheritance relationships, while association and aggregation

relationships are not taken into consideration. Our work fills this gap in class

categorizations and identifies stereotypes with respect to a class’s architectural

importance in the entire system.

4.9 Conclusions

We present a taxonomy of class stereotypes that was derived from an empirical

investigation of 21 open source systems written in C++. Additionally, a tool was

implemented that automatically reverse engineers a class’s stereotype and redocuments

the class. The tool can analyze an entire system and redocument it efficiently (in

approximately two minutes). A developers’ assessment showed that our stereotype

classification and the tool accurately describe a class’s stereotype.

We feel automatic identification of class stereotypes can support better program

comprehension and design recovery. Using both class and method stereotype

information a developer should be able to quickly grasp the high level role of the class

without reading the source code in detail. Our approach forms a foundation for a number

of applications based on class stereotypes. For example, the class stereotypes allow us to

determine architectural importance for automated layout of class diagrams or

architectural level understanding. It introduces new measures of class’s control and can

be used to improve existing coupling metrics. Additionally, the stereotypes can be used

92

for mapping to class stereotypes in analysis models, to design pattern roles, and to detect

bad-smell classes for refactoring.

The proposed stereotypes could be used not only to characterize design and

implementation solutions, they may be used to evaluate and improve design or used as

indicators of bad design in need of refactoring. Controller and Pure Controller, Lazy,

Data, Small, and Large Classes are candidates for refactoring in particular situations and

represent bad smell [Fowler 1999; Riel 1996] and we leave this for future work. Our

plans are to extend the empirical study to more systems. We also plan to extend the

detection rules to Java classes.

The next chapter represents an extension of the approach of method stereotypes

identification which characterizes commits into types based on the impact of the changes

to a class (or classes). The stereotypes of the added and deleted methods form a

descriptor of the change embodied by the given commit. These descriptors are then used

to categorize commits. The objective is to gain a higher-level perspective of the changes

to a system over its evolution history.

93

CHAPTER 5

COMMIT CATEGORIZATION – HIGH-LEVEL PERSPECTIVE OF THE

SYSTEM CHANGES OVER THE HISTORY

In this chapter, we apply method stereotypes information to the evolution data of a

software project. Individual commits to a version control system are automatically

categorized based on the stereotypes of altered methods. The stereotype of each method

is reverse engineered using the taxonomy and the StereoCode tool. The stereotypes of

the added and deleted methods in a commit form a descriptor of the change embodied by

the commit. These descriptors are then used to categorize commits, into types, based on

the impact of the changes to a class or classes. The goal is to gain a higher-level

perspective of the changes to a system over its history. A case study of four open-source

project histories is presented to illustrate the potential benefits of this method. The case

study also empirically investigates the distribution of the different commit types,

common types, and the correlation with changes over the project’s history.

The next section describes the benefits of commit categorization for development

and maintenance activities. Section 5.2 contains a description of a commit signature that

forms the input for automatic identification of commit types. In Section 5.3 we present

the categorization of commits. Section 5.4 describes our approach to reverse engineer

commit types from existing C++ code. Section 5.5 contains a case study of the approach.

94

An application of the approach in the form of commit labels is presented in Section 5.6.

This is followed by a discussion of the threats to validity, related work, and conclusions.

5.1 Overview and Motivation

Version control systems, such as Subversion, CVS, Git, MS Visual SourceSafe, or

Mercurial, are standard tools to help manage changes in documents during the

development and maintenance of software systems. As changes to the system are made a

new version is saved as a commit and stored by the version control system. This new

version can be compared to previous versions (using tools such as diff) to determine what

changed. These changes may be quite simple, such as fixing a spelling error in a

comment, or quite complex, such as adding a new feature to the system.

Error correction (i.e., bug fixing) is most often typified by small and infrequent

modifications to source code [Raghavan et al. 2004], [Kim, Whitehead Jr. 2008],

[Hattori, Lanza 2008], [Hammad, Collard, Maletic 2009] as these types of changes rarely

require major reworking of the design. Adding new features or altering the design of a

system typically requires the addition and/or removal of classes or methods in an object

oriented system. This latter class of changes often has broader implications to

developers, testing plans, and project management. Here we focus on change (more

specifically commits) that alters the design of a system. Furthermore, we would like to

understand more about the types of different design changes taking place in a given

commit and across the evolution of a system. This work proposes a means to categorize

commits that impact the design of a software system.

95

Knowing what types of changes are occurring in a given commit would be very

valuable to developers, testers, and managers. For example, if we know a commit

changes the behavior of a given class, then that class would need to be re-tested and

additional test cases may need to be developed or integrated into the testsuite. This

would also give some notification to a developer that code using this class may be

impacted. A manager could use such information to assess the cost of a given change

and assess the risks of different deployment options. That is, if a particular change

impacts a module or class that has historically been error prone, the risk assessment may

be too great to deploy that change.

In an ideal environment, good development practice would annotate a commit with

an accurate description about what is being changed. However, in reality this is often not

done, or done inaccurately or incompletely.

Therefore, we feel that automated methods to augment the commit messages would

be valuable. Additional knowledge can be derived from the source code and the commit,

and explicitly documented to help address this problem. To accomplish this we must first

develop a set of commit-categories (or types) that are meaningful to developers in

assisting their understanding of what maintenance activities are taking place in a commit.

Commits can be categorized with data present in the version control system or directly

measured from the commit, e.g., LOC, author, etc. Commits can also be categorized

based on analysis of messages via Natural Language Processing [Hattori, Lanza 2008] or

information retrieval techniques [Kagdi, Poshyvanyk 2009]. Additionally, techniques

have been used to categorize commits based on simple static analysis of the code

96

changes; our previous work on identifying design commits [Hammad, Collard, Maletic

2009] is one such approach.

However, these techniques do not provide deep insight into how these changes alter

the actual code. Of course, the alternative approach is to conduct a full impact analysis of

the change; however this is typically quite costly, time consuming, or impractical. Our

goal is to develop an efficient approach that provides simple, yet fairly accurate,

heuristics to the developers as to the overall characteristics of a given commit in the

context of how it impacts the behavior or structure of classes. Other changes of interest

here are those that impact the communication between classes, the access to a class, or

the attributes of a class.

To accomplish this we build on our previous work that reverse engineers method

stereotypes from source code. The stereotype information of methods added or deleted in

a commit is used to construct a categorization of commit types. Then we define an

automated approach to derive the commit type and label the commit with this meta-data.

The final contribution is the evaluation of the approach on four open source systems that

can serve for further studies and investigations.

5.2 Defining Commit Signatures

A commit details the changes to a software system and may represent major design

changes as well as just minor edits or comment improvements. Here we provide a

mechanism to automatically identify the different types of commits that impact the design

of a system. Our approach of defining commit types is based on method stereotypes and

how the changes impact different types of methods. Method stereotypes are

97

generalizations that reflect some intrinsic or atomic behavior of a method and indicate a

method’s role and responsibilities within a class. With stereotype information of the

methods in a commit we can enrich the context of existing versioning systems with more

semantics of method and class level changes.

Here, we will say a method is in a commit if the method is added or deleted as part of

the commit. We now define the idea of a commit signature, which is used to identify a

commit’s type. The commit signature is the frequency distribution of stereotypes of

methods occurring in a commit. We previously used a similar notion of signatures for the

description of patterns of design at a system- and class-level. The commit signature

provides information about what types of design changes are actually occurring in a

commit. Here, a design change is defined as the addition or deletion of a class, a method,

or a relationship (i.e., generalization, association, dependency) in the corresponding UML

class diagram [Hammad, Collard, Maletic 2009].

5.2.1 Method Stereotypes

The aggregates for commit signature identification are method stereotypes (see Table

1). The stereotype of each method is reverse engineered using the taxonomy and the

StereoCode tool. The stereotypes of the added and deleted methods in a commit form a

descriptor of the change embodied by the commit. Let us recall that the taxonomy of

method stereotypes is organized by the main role of a method, while simultaneously

emphasizing its creational, structural, behavioral and collaborational aspects with respect

to a class’s design. Hence, the commit descriptor reflects creational, structural,

behavioral and collaborational features of the design changes performed.

98

5.2.2 Commit Signature

The idea of a signature was exploited at a class- and system-level to characterize

software (Chapter 3, Chapter 4). Here we apply a similar concept to commits to better

understand design changes to a system.

A commit signature is the distribution of method stereotypes for the methods that are

added or deleted in the change. They provide us with a heuristic of the structural

complexity of the changes occurring in a commit. From the commit signature we can

infer information of how the system was changed and whether the system gains more

structural, behavioral, collaborational, or control features.

A signature is formed by determining which methods are in each commit (i.e., those

methods that are added or deleted) and then reverse engineering the stereotype for each of

these methods. The sum of the stereotypes in the commit is calculated. The method

stereotypes counts can be shown as a bar chart ordered by method stereotype categories:

accessors, mutators, creational, and collaborational. In the chart the method stereotype is

given a grey shadow effect if collaborator is a secondary stereotype for the method.

An example commit signature from the open source system Kate is given in Figure

29. The commit #496124 consists of added/deleted accessors and mutators in almost

equal proportions – five and four, respectively. Only the simplest accessor get, which

just

99

Signature of Commit #496124

(Kate)

1 4 1 3 2 2

0% 20% 40% 60% 80% 100%

get get collaborator

command collaborator non-void-command collaborator

collaborator degenerate

Figure 29. Commit signature, i.e., the distribution of method stereotypes, for commit #496124 from

Kate with 13 added/deleted methods. The numbers in the rectangles show counts of methods

stereotypes participating in the commit.

reads an object’s state, participates in this design change. Methods changing object state

are represented by command and non-void-command stereotypes. Degenerate, i.e., not

yet implemented, methods also participate in the commit. The commit is highly

collaborational, i.e., changes made included many objects. We can characterize these

changes as a commit that added collaborational features along with structural and

behavioral features (in equal proportions) to the existing system’s functionality.

Another example signature for a larger commit is shown in Figure 30. This change

includes 118 methods added/deleted and a large diversity of stereotypes is represented.

Property, complex mutator, command, as well as a few control functions performed by

controller methods add many of the behavioral features. Controller methods implement

the class’s external behavior, as they work only outside the class on objects of different

type. Additionally, this commit is highly collaborational – approximately 60% of

100

methods added/deleted are coupled with other objects. Overall, we can characterize this

commit as adding/deleting mainly behavioral and collaborational features along with a

Signature of Commit #605471

(Kspread)

12 14 2 9 34 1 4 21 22 16 10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

get get collaborator

predicate predicate collaborator

property property collaboartor

voidacccessor voidacccessor collaborator

set set collaborator

command command collaborator

controller collaborator

Figure 30. Commit signature for the large commit #669042 from KSpread with 118 added/deleted

methods.

smaller number of structural and control features to the existing system functionality.

The distribution of method stereotypes makeup the commit signature and forms a basis

for determining commit types.

5.3 Commit Categorization

Commit categorization based on our empirical examination of the evolution history

of a number of open source systems is presented in this section. The process of commit

categorization is influenced by our previous work on uncovering patterns of design from

a single-version system at different levels of abstraction: method [Dragan, Collard,

Maletic 2006], class [Dragan, Collard, Maletic 2009], and system [Dragan, Collard,

101

Maletic 2010]. We will start with a description of how the commit categorization was

created.

Initially, we created the taxonomy of method stereotypes and reverse engineered the

method stereotypes from C++ software systems (e.g., HippoDraw and Qt) [Dragan,

Collard, Maletic 2006]. We found a number of patterns of design at the method and class

level. The validation of the method’s taxonomy on additional systems gave us further

evidence of the existence of these patterns of design abstractions.

We then classified software at the system level based on the method stereotype

distributions using the system signature [Dragan, Collard, Maletic 2009]. Automatic

hierarchical (COBWEB) and partitional (X-Means) clustering was used to classify 21

open-source C++ systems of various sizes, problem domains, and architectures (the full

list of systems is given in [Dragan, Collard, Maletic 2010]). Clusters were characterized

by the frequency and distribution of method stereotypes. The results showed that these

distributions are an indicator of system architecture/design, and we observed additional

patterns of the method stereotype distributions at the class level.

That led to a more thorough investigation of the patterns of design at the class level

[Dragan, Collard, Maletic 2010]. We created a taxonomy of class stereotypes and

developed an approach for automatic identification.

This foundation for identifying stereotypes at the method, class, and system level

allowed us to hypothesize that those patterns of design, in the form of method stereotype

distributions for a single-version system, also exist in multiple-version systems and could

characterize design changes over the evolution history. A software system evolves

102

through the changes in structural, behavioral, creational, and collaborational

characteristics which are implemented in methods. Each method in a commit has specific

responsibilities within the class, and we characterize a commit by aggregating the

responsibilities of the methods added/deleted in the change. The commit types are

defined from the distributions of method stereotypes, i.e., the commit signature.

The list of commit types is shown in Table 11. A given commit may take on, i.e.,

have the characteristics of, more than one of these types. Examples of each commit

type are presented visually in Table 11 along with an example commit and its signature

from the system Kate. The color scheme used in Table 11 is the same one as the one

found in Figure 29 and Figure 30. Clearly, categorization reflects the nature of the

systems studied in [Dragan, Collard, Maletic 2006], [Dragan, Collard, Maletic 2009],

[Dragan, Collard, Maletic 2010] and may not completely generalize to all domains. Also,

there is some subjectivity to the categorization. However, the evidence gathered so far

does support our hypothesis. We will now individually explain each commit type.

A Structure Modifier commit is responsible for changes related to data storage and

only contains methods that perform simple access and modification to the data. It

consists of only get and set methods. The example of the Structure Modifier, shown in

Table 11, is commit #502478 with 3 get and 2 set methods.

103

Table 11. Commit types. Accessors are shown in green colors, mutators – in blue, factory – in tan,

collaborational - in rose and turquoise, degenerate – in grey. The method stereotype has a grey

shadow effect if ‘collaborator’ is a secondary stereotype for this method.

Commit Type Name Signature

Structure Modifier

(commit #502478)
3 2

State Access Modifier

(commit #582964)
2 2 2 2 1

State Update Modifier

(commit #593810)
1 1 2 3 2

Behavior Modifier

(commit #493147)
1 1 3 2

Object Creation Modifier

(commit #496123)

31

Relationships Modifier

(commit #496124)
1 4 1 3 2 2

Control Modifier

(commit #6375 QuantLib)
61

Large Modifier

(commit #605471

KSpread)

12 14 2 9 34 1 4 2 1 22 16 10

Lazy Modifier

(commit #859282)
1 1 1

Degenerate Modifier

(commit #715531)
1 1

Small Modifier

(commit #525142)
1

104

A State Access Modifier commit consists of methods that provide a client with

information and does not change any data members. It consists of almost all accessor

methods. For example, commit #582964 has different types of accessors (get, property,

property collaborator and void-accessor collaborator) for 8 out of 9 methods participating

in the commit.

A State Update Modifier commit provides changes related to updates of an object’s

state. It consists mainly of mutator methods. These methods often implement complex

behavior and may involve objects of different classes. Thus, a State Update Modifier

commit involves both structural and behavioral changes. For example, commit #593810

has all 3 types of mutators (set, command and non-void-command), and 7 of 9 methods

participating in the commit are mutators.

A Behavior Modifier commit is a special case of the State Update Modifier where

the main characteristic is to execute complex internal behavioral changes within an

object. It mainly consists of command and non-void-command methods. The largest

part of the logic for the class’s behavior is implemented in these methods. The commit

#493147 is an example of the Behavior Modifier commit. About 86 % (6 out of 7) of its

methods are command and non-void-command, and there are no set methods. Note that

the difference between State Update Modifier and Behavior Modifier is in the percentage

of set methods in a commit: State Update Modifier can have many set methods and a

smaller percentage of command/non-void-command methods.

105

An Object Creation Modifier commit is responsible for changes related to the

creation of objects and has mostly factory methods. The commit #496123 is an example

of the Object Creator commit with 75% factory methods.

A Relationships Modifier commit adds or deletes methods that implement

generalization, dependency and association relationships by performing calls on

parameter or local variable objects. Therefore, changes to a system, performed by a

commit consisting of many collaborational methods, represent modifications of

relationships between classes. Alternatively, this type of commit could be a State Access

Modifier when the main purpose of its methods is to get data from a model (when it has

mainly accessors), or a Behavior Modifier when the main purpose of its methods is to

update data (when it has mainly mutators). The commit #496124 is an example of a

Relationships Modifier commit with more than 75% of methods that have a stereotype

collaborator, e.g., get-collaborator, command-collaborator, etc. The commit #593810 is

an example of State Update Modifier and Relationships Modifier.

A Control Modifier commit provides changes in the external behavior of the

participating class, i.e., it processes data of the class’s external objects. It consists mostly

of controller methods (6 out of 7) that implement external class’s behavior, because they

work only outside the class, on objects different than itself. The commit #6375

(QuantLib) is an example of this stereotype. The only change is the addition/deletion of a

controller method.

A Large Modifier commit contains a large number of responsibilities. This is a

commit with a high impact on design. “Large number” can be characterized using

106

metrics such as number of methods, number of classes, LOC, etc. However, those types

of metrics do not directly reflect the different semantics of changes. We consider a

commit a Large Modifier commit if it has many methods and combines multiple roles,

such as State Access Modifier, Behavior Modifier, Relationships Modifier and Control

Modifier. The commit #605471 (KSpread) is an example of a Large Modifier which

consists of approximately 56% accessors, 35% mutators, and 9% controller methods.

A Lazy Modifier commit is a very trivial commit that does “too little
3
”. The Lazy

Modifier commit might occur in the context of a new or planned feature that is not yet

completed. This is a commit with a minimal impact on design. Similarly, “too little” can

be interpreted using different metrics. We consider a commit a Lazy Modifier if it has

get/set methods and a low percentage of other methods. The commit is also considered

Lazy Modifier if it has a large number of degenerate methods, e.g., besides the get

method commit #859282 has 2/3 degenerate methods (collaborator empty and empty).

A Degenerate Modifier commit includes a degenerate, incidental, or empty method.

If a commit contains even one degenerate method it means that adding a new feature is

planned. As a maintainer we would like to know when exactly in the evolution history

this will occur and how this method is changed (if at all). An example of this commit is

commit #715531 that has 1 predicate-incidental and 1 empty method.

3
 Fowler uses this term in the description of bad smells. We use it in a similar fashion

here.

107

A Small Modifier commit has only one or two methods and does not change the

system significantly. Commits #715531 and #525142 are examples of the Small

Modifier type.

5.4 Reverse Engineering Commit Types

With the commit types defined based on the commit signature, we can automatically

reverse engineer the commit type. To do so we perform the following steps:

1. Recover design changes from the code changes of commit by the srcTracer tool

[Hammad, Collard, Maletic 2009].

2. Extract added/deleted methods per commit from the design changes.

3. Identify method stereotype distribution (commit signature) for the extracted methods.

4. Identify a commit type by applying rules on the commit signature.

We limit our consideration to only added/deleted methods and ignore other types of

design changes such as added/deleted classes or relationships. While this is a current

limitation of the approach we feel it is a good approximation of using all the information.

Changes to method stereotypes implicitly cover other design changes in many cases.

For example, adding a new class will be reflected in adding a number of new methods

and their corresponding stereotypes, and adding a new dependency will often be realized

by the addition of a new collaborational method.

Additionally, we also ignore changes to existing methods. Again, this is a limitation

of the approach but we feel little additional information will be added by its inclusion.

Our main argument for this is because we are particularly interested in changes that

impact the system’s design. Small changes to the body of existing methods often reflect

108

error corrections (bug fixes) and are less likely to impact the design. For example,

Raghavan et al. [Raghavan et al. 2004] showed that most bug fixes changed if

statements. In our previous work [Hammad, Collard, Maletic 2009] we showed that most

bug fixes contain a small number of changed lines and do not add or delete any methods.

Clearly, additional investigation is necessary to fully understand the impact of such

changes and to completely support our argument. We leave a comparison of using these

other types of changes in the derivation of commit categories for future work.

A tool was developed to automatically identify the commit types presented in the

previous section. The commit signature is used to assign types to a commit. The rules

for identification of commit types are influenced by the rules on automatic identification

of patterns of design at the class level for a single-version system [Dragan, Collard,

Maletic 2010].

 First, we briefly describe our approach on identifying design changes within a

commit. Then we present the rules to reverse engineer commit types from (C++) source

code and give details of a tool that automatically labels a commit with its type(s).

5.4.1 Design Changes during Evolution

In [Hammad, Collard, Maletic 2009], an approach and a tool srcTracer (Source

Tracer) was developed to automatically identify code changes that break traceability links

between code and design. A design change is defined as the addition or deletion of a

class, a method, or a relationship (i.e., generalization, association, dependency) in the

corresponding UML class diagram of the code. These types of changes impact the

structure of the class diagram in a meaningful way with respect to the abstract design.

109

Any commit that causes the addition/deletion of a class or method, or addition/deletion in

a class relationship, is considered a design impact commit.

The approach of identifying design changes begins by examining a single code

change within a commit. First, the source code of the two revisions is translated to

srcML [Collard, Maletic, Marcus 2002], an XML format that supports the static analysis

required. Second, the code changes are represented with additional XML markup in

srcDiff [Maletic, Collard 2004] that supports syntactical analysis on the differences.

Lastly, the changes that impact the design are identified from the code changes via a

number of XPath queries. The design changes are identified by querying the differences

(in srcDiff), and added/deleted classes, methods and relationships (generalizations,

associations, and dependencies) are reported (for more complete details see [Hammad,

Collard, Maletic 2009]).

Here this approach is applied to the analysis of the code changes in commits over a

period of system evolution to identify added/deleted methods from commits. As we

mentioned previously, other types of design changes are ignored.

5.4.2 Rules to Identify Commit Types

The identification rules (Table 12) for commit types are based on the method

stereotype distribution of the commit signature. Fractional thresholds, natural number

thresholds with generally accepted meanings, average, and standard deviation are used in

rule definitions. These thresholds are proposed in [Lanza, Marinescu 2006] as a means to

110

Table 12. Identification rules for commit categorization.

Type Description Rule

Structure Modifier

Only the simple accessor and

mutator, get and set, are present

|get| + |set| ≠ 0 & |methods| – (|get|

+ |set|) = 0

State Access

Modifier

Consists mostly of accessors |accessors| > ⅔ · |methods|

State Update

Modifier

Consists mostly of mutators |mutators| > ⅔ · |methods|

Behavior Modifier
Consists mostly of command and

non-void-command methods

|command|+ |non-void-

command|> ⅔· |methods|

Object Creation

Modifier

Consists mostly of factory methods |factory| > ⅔ · |methods|

Relationships

Modifier

More collaborators than non-

collaborators

Not all the methods are factory

methods

Low number of controller methods

|collaborators| >

|non-collaborators|

|factory| < ½ · |methods|

|controller| < ⅓ · |methods|

Control Modifier

Many control features

Controller is present

|controller| + |factory| >

⅔ · |methods|

|controller|≠ 0

Large Modifier

Categories of stereotypes (accessor

with mutator) and (factory with

controller) have to participate in

distributions not in small proportions

Controller or factory have to be

present

Number of methods in a commit is

high

|accessors| + |mutators| >
1
/5 ·

|methods|

|factory| > 1/10 · |methods| ∨

|controller| > 1/10 · |methods|

|accessors| <=½ · |methods| ∨

|mutators| <=½ · |methods|

|factory| ≠ 0 ∨ |controller|≠ 0

|methods| > average + stdev

Lazy Modifier

Has to contain get/set methods

It might have a large number of

degenerate methods

Occurrence of other stereotypes is

low

|get| + |set| ≠ 0

|methods| – (|get| + |set| -

|degenerate|) <= ⅓· |methods|

|degenerate| > ⅓ · |methods|

Degenerate

Modifier

Has at least one degenerate method |degenerate| > 1

Small Modifier
Number of methods in a class is less

than 3

|methods| < 3

111

characterize and evaluate the design of object-oriented systems. First we introduce

the notation used in the rules for commit type identification.

Let {stereotype} be a set of method stereotypes of the type stereotype, e.g., {get} is a

set consisting of get and get- collaborator methods. {methods} is a set of all the methods

in a class.

The set {accessors} consists of all the accessors (get, predicate, etc), accessors

collaborators (get collaborator, predicate collaborator, etc) and accessors degenerate

(predicate incidental, void-accessor empty, etc.). The set {mutators} is constructed in a

similar way.

The set {collaborators} consists of all the collaborational methods, e.g., get

collaborator, set collaborator, factory collaborator, etc. Thus, {non-collaborators} =

{methods} - {collaborators}.

The set {degenerate} consists of accessors degenerate (predicate incidental, void-

accessor empty, etc), mutators degenerate (command incidental, non-void command

incidental), and collaborator degenerate (collaborator incidental, collaborator empty).

|stereotype| is the cardinality of the set {stereotype}. Note, average and stdev of number

of methods are calculated per system.

5.4.3 Implementation

Our tool, StereoCode, was extended to obtain commit signatures and reverse

engineer the commit types. StereoCode reverse engineers method stereotypes using an

infrastructure based on srcML (SouRce Code Markup Language) [Collard, Maletic,

112

Marcus 2002], an XML representation that supports both document and data views of

source code.

After the generating commit signatures, they are fed into the tool StereoCommit that

determines the type of each commit using the rules described previously. A commit is

assigned the type if all conditions of a rule are met. A commit may satisfy more than one

rule and the assigned type is the concatenation of all matches. The stereotype

identification part of StereoCommit is implemented in C++. The tool currently works

only for C++ source code as input.

5.5 The Case Study

The evolutionary histories of four C++ open source projects (Table 13) over specific

time durations were analyzed. The main questions we address here are the following: Do

the commit types identified by the tool exist in the evolution histories of real systems?

Do most commits fit into at least one commit type? What are the most common types?

What kinds of changes are prevalent in the evolution history?

The systems selected include the KDE editor Kate
4
, the KOffice spreadsheet

KSpread
5
, the quantitative finance library QuantLib

6
, and the cross-platform GUI library

4
 See kate-editor.org

5
 See www.koffice.org/kspread

6
 www.quantlib.org

113

wxWidgets
7
. The systems were chosen to represent a range of sizes, problem domains,

and architectures. These projects are written in C++, well documented, have a large

evolutionary history, and vary in their purposes.

Table 13. An overview of the software systems evaluated in the empirical studies. Ordered by the

number of commits.

System Time Period
Total

Commits
Commits with Design Changes

Kate
3 years

(1/1/2006–12/31/2008)
1592 403

KSpread
3 years

(1/1/2006–12/31/2008)
2389 686

QuantLib
3 years

(1/1/2006–12/31/2008)
2701 748

wxWidgets
3 years

(1/1/2005–12/31/2007)
11438 1531

For each system we automatically determined the types of each commit using the

StereoCommit tool. The resulting distribution of commit types for each system is given

in Table 14.

The results show that all commits fit into at least one of the commit types and all

commit types occur in all of these systems. The most common type is Relationships

Modifier that occurs in between 63% to 87% of the commits in the four systems. The

State Update Modifier and Behavior Modifier types occur in at least 46% in three of the

7
 www.wxwidgets.org

114

systems, but less than 20% in one system - QuantLib. The State Access Modifier type

occurs frequently (about 70%) for QuantLib, but the occurrence is low in the three other

systems (from 14.4% to 24.9%). The Degenerate Modifier type occurs in about 10% of

the commits for 3 systems and 7.3% for KSpread. Control Modifier and Object Creation

Modifier types do not occur in significant numbers in any of the systems (maximum of

4.7% and 3% respectively). Lazy Modifier varies significantly (from 5.4% to 44.8%) and

Large Modifier occurs from 4.2% to 10.1%. The Structure Modifier commit type has

very low numbers (maximum of 2%).

Table 14. Distribution of commit types across 4 open-source systems.

Kate KSpread QuantLib wxWidgets
Commit type

% # % # % # % M
in

(%
)

M
a

x

(%
)

A
v

g

(%
)

S
td

e

v

(%
)

Structure Modifier 4 1.0 1 0.1 5 0.7 4 0.3 0.1 1.0 0.5 0.4

State Access Modifier 58 14.4 171 24.9 520 69.5 229 15.0 14.4 69.5 30.9 26.2

State Update Modifier 263 65.3 354 51.6 145 19.4 986 64.4 19.4 65.3 50.2 21.4

Behavior Modifier 227 56.3 315 45.9 120 16.0 880 57.5 16.0 57.5 43.9 19.3

Object Creation Modifier 7 1.7 9 1.3 22 2.9 46 3.0 1.3 3.0 2.2 0.9

Relationships Modifier 254 63.0 465 67.8 647 86.5 1068 69.8 63.0 86.5 71.8 10.2

Control Modifier 19 4.7 22 3.2 14 1.9 52 3.4 1.9 4.7 3.3 1.2

Large Modifier 17 4.2 69 10.1 45 6.0 122 8.0 4.2 10.1 7.1 2.5

Lazy Modifier 60 14.9 37 5.4 335 44.8 207 13.5 5.4 44.8 19.6 17.3

Degenerate Modifier 39 9.7 50 7.3 72 9.6 152 9.9 7.3 9.9 9.1 1.2

Small Modifier 236 58.6 382 55.7 352 47.1 1004 65.6 47.1 65.6 56.7 7.7

Coverage 99.5% 96.5% 99.3% 98.2%

Based on the distribution of the commit types we observed some similarities and

differences between the systems. The two systems, Kate and wxWidgets, show a similar

distribution for about half of the commit types. KSpread and wxWidgets are close in

distribution of Structure Modifier (0.1% and 0.3%), Relationships Modifier (67.8% and

115

69.8%), and Control Modifier (3.2% and 3.4%). QuantLib’s pattern is opposite to the

other systems – a high number for State Access Modifier (69.5%) and a low number for

the State Update Modifier and Behavior Modifier types (19.4% and 16%). This system

has a very high percentage of relationships updates and a very low percentage of changes

of control features. However, QuantLib and Kate are close in percentages for Degenerate

Modifier commit type.

The chi-square test of independence was performed between the commit types and

the four software systems. The null hypothesis is that the distribution of the commit

types in different systems is a random phenomenon; the alternative hypothesis is that

there is a link between commit types and software systems. Chi-square reports a p-value

<0.0001 with 95% confidence and 30 degrees of freedom that lets us reject the null

hypothesis. The critical and observed values are 43.7732 and 1389.114 respectively.

The results also show that the frequency and distribution of the commit types across

a system reflects an implementation of particular design decisions, the underlying

architecture, and good/bad design changes. For example the finance library has the

highest percentage of Relationships Modifier and State Access Modifier, which is not

surprising given the domain — these types of commits will be typically impacting

calculations. Another example is that commit type Degenerate Modifier could represent

a bad practice. Degenerate methods participating in this commit type should be tracked

through the evolution history. If they are left unchanged during the evolution then we

can assume that they are candidates for refactoring. Behavior Modifier, State Access

Modifier, and Large Modifier are candidates for added/deleted (or edited) features or

116

concepts while that commit type of Structure Modifier does not include adding or

deleting new features. However, a full investigation whether commit types reveal

particular design/architecture, good/bad design changes and added/deleted (or edited)

features and concepts is needed.

5.6 Applying the Approach – Commit Labeling

We now apply our approach of commit categorization by introducing a commit label.

This is a direct and practical way to enrich the current versioning systems with additional

information about code changes (i.e. commits). Previously, a commit labeling concept

was described [Hammad, Collard, Maletic 2010], but it was limited to listing the exact

design changes of commits. Here we use the commit label to brand a commit with its

type. An example of a commit labeling is given in Figure 31. First, the commit type

characterizes the commit at a high level. Then the commit signature presents a detailed

view of changes performed in the overall commit. Finally, class-change signatures show

detailed views of changes at the class level for all classes that participated in the commit.

The commit label in Figure 31 is for commit #496124 of Kate. Overall, this commit

is labeled with the commit types Relationships Modifier and Degenerate Modifier.

Looking further at the participating classes, we see that the commit involved

added/deleted methods of four different classes. In particular, the class change signatures

show that the class KateScriptConfigPage is responsible for the commit type Degenerate

Modifier, and the other three classes are responsible for the commit type Relationships

Modifier.

117

Figure 31. The Commit Label for commit #496124 of Kate presents both a high-level and detailed

view of the commit. The Commit Type and Commit Signature are shown for the entire commit. The

Participating Classes are the individual classes that contributed to the Commit Signature. For each

of these Participating Classes, the individual Class-Change Signatures are given.

Commit labels could provide support for understanding the direction in which a

software system as well as individual classes have been developing, and to assist in the

identification of the most important commits/changes with respect to design changes. By

analyzing the commit label at a particular point of time in the history of a project, one

could learn what and to which degree it has been modified. That is, was the class’s

structure, behavior, collaborations or control functionality modified? For example, by

using commit labels, the monthly/weekly distribution of commit types can be analyzed

for the following purposes:

1. Determining the direction of the evolution of the system during a specific time period.

E.g., months with the commit types of Structure Modifier and State Access Modifier

indicate that the focus of changes to the system is to modify the access (reading) of

object state.

118

2. Assistance in planning maintenance activities using the commit type to determine

which classes need further design work and refactoring.

3. Determining how features and bug fixes were implemented, what commit types

correspond to these activities, and finding if there was any specific ordering of

commit types for these activities.

5.7 Threats to Validity

Commit type identification and the StereoCommit tool are subject to a number of

threats to validity. The rules for stereotype identification are subjective in part, and

thresholds might vary depending on differences in interpretation. The results of

automatic identification of design changes are based on applying srcTracer which has its

own threats to validity [Hammad, Collard, Maletic 2009].

The case study is limited to only four open source projects with one continuous time

period for each project. Results may vary for other projects or variable and different time

durations. However, the extracted data and time periods are not small or seriously

limited.

The approach was only applied to C++ systems. However, the srcML format

supports Java, and rules for method stereotype identification could be modified for Java.

The commit type rules are applicable for other object-oriented languages, and we believe

that our approach can be extensible to other languages.

119

5.8 Related work

Recently, more attention has been focused on the discovery of evolutionary change

from historical data. Evolutionary information of complex software systems at different

levels is a focus in software engineering research, and is a solution for the problems of

increasing complexity and decreasing software quality [Gall, Lanza 2006].

Automatic classification of large changes in software systems into various categories

of maintenance tasks - corrective, adaptive, perfective, feature addition, and non-

functional improvement - using machine learning techniques is given in [Hindle et al.

2009]. Hattori et al. [Hattori, Lanza 2008] propose commit classification with respect to

the size that is based on the number of files. Additionally, they classify commits by the

types of development (forward engineering) and maintenance (reengineering, corrective

engineering, and management) activities based on the content of the comments.

Evolution of the object-oriented software system at a coarse-grained level (such as

package-level) is analyzed in [Dong, Godfrey 2008]. In their exploratory study, seven

releases of Apache Ant, a Java-based build tool, are analyzed using hybrid models

proposed by the approach. Design patterns on the class-level are investigated in [Kim,

Pan, Whitehead 2006] to develop results which are common across projects or releases

and help maintainers capture and better comprehend architectural evolution. Three open-

source projects written in Java are analyzed to identify common kinds and frequencies of

micro patterns as well as bug-prone patterns. Analysis of changes on a method-level, i.e.,

function signature changes through evolution such as their kind, frequency, correlation

120

with changes in LOC and number of function body modifications, and evolution patterns,

is performed in [Kim, Whitehead, Bevan 2006].

Evolution patterns of change types such as “new features added”, “bugs fixed”, and

“consistency of coding rules re-established” are presented in [Fluri, Giger, Gall 2008].

Source code changes of one commercial and two open-source software systems are

extracted, and then the agglomerative hierarchical clustering is applied. The results show

that the control flow, the exception flow, or the API is affected by the changes.

Our work is distinguished by identifying key characteristics of commits, such as

changes to the class structure, class behavior, changes related to the communication,

creation and control of other objects, and type of access to class’s data members

(read/write) used in the commit altered methods.

Gîrba et al. [Gîrba et al. 2007] proposed the usage of formal concept analysis to

identify groups of entities with similar properties that change in the same way and at the

same time. Using predefined conditions, specific change patterns are detected. For

classes, the goal is to identify bad smells. Robillard [Robillard 2005] proposed a

technique based on structural dependencies to automatically discover the program

elements (including classes) relevant to a change task. The method depends on static

analysis of the source code and does not take into account the history of changes.

Aversano et al. present an empirical study on evolution of design patterns in three

open source systems and analyze which patterns tend to change more frequently

[Aversano et al. 2007]. Vaucher et al. [Vaucher, Sahraoui, Vaucher 2008] proposed

techniques to discover patterns of evolution in large object-oriented systems. To locate

121

patterns, they use clustering to group together classes that change in the same manner at

the same time. We do not study the internal or external evolutionary patterns of classes;

instead we match the semantic information about a group of added/deleted methods to a

set of classes.

Static design patterns at the class-, package- and system-level have been investigated

by many researchers. Class-level design patterns are presented in [Gil, Maman 2005] and

[Lanza, Ducasse 2001b]. A number of approaches identify key classes in a software

system [Zaidman, Demeyer 2008], [Greevy, Ducasse 2005]. We look at the dynamics of

a system by analyzing method stereotypes. Our approach provides a characterization of

patterns through the evolution history and gives a description of semantic changes at the

method- and class-level performed in a commit. The main differences of our work is that

we identify key features of commits by looking at how commits are impacted by design

changes, and we categorize commits based on the stereotypes of methods participating in

high-level design changes.

5.9 Conclusions

We present a categorization of commits that was derived from an empirical

investigation of open source systems written in C++ and based on method stereotypes

distribution. The implemented tool automatically reverse engineers a commit type and

labels the commit with this information. The case study conducted shows that the

commit types identified by the tool exist in evolution histories of real systems, and in the

studied systems all commits fit into at least one commit type. In addition, we showed

122

how the resulting information can be used to create a commit label which combines an

overview along with detailed information about the commit.

We are investigating the correlation between the commit type and maintenance type

(e.g., bug fix, feature addition, and refactoring). Our initial results on one open source

system show that this correlation exists. However, additional analysis is required for

further conclusions.

For future work we also plan to infer from the commit label information about

specific time durations/points in the history, and further investigate the questions whether

commit types and labels reveal good/bad design changes and added/deleted (or edited)

features or concepts.

The next chapter presents another application of method stereotypes to system

evolution analysis. We now analyze the evolutionary patterns of design with respect to

milestones, such as system releases. The changes in method stereotypes distributions

through the releases, the distributions stability, and their correlation with respect to the

different release types - ‘bug fixes’, ‘refactorings’, and ‘adding new features’ - have been

investigated.

123

CHAPTER 6

EVOLUTION OF METHOD STEREOTYPES

In this chapter, we present our ongoing research on method stereotypes evolution: a

case study for two open-source C++ projects investigated over more than twenty different

releases. Why do we need to know that the method stereotype evolves? During the

evolution of a software project, the original design changes, and those changes are

embodied by the system’s atomic blocks - methods. Therefore, we would like to be able

to trace those changes, having historical data in the form of source code that is available

from subversion repositories. Finding evolution patterns of design at the method level

allows us to generalize this knowledge across projects and predict common situations in

the future.

The next section describes the importance of analyzing evolution changes in system

releases. Section 5.2 6.2 describes a case study for two open source projects, HippoDraw

and QuantLib, of 20 and 23 releases respectively. In Section 5.3 6.3 we present the

results on method stereotypes evolution and their correlation to release types. Section

 5.4 6.4 describes patterns discovered, which is followed by a discussion of the results

(Section 6.5). 5.5

6.1 Motivation

The common metrics to measure system-size changes during system evolution are

number of lines of code, number of commits, number of files, and number of classes

124

[Dong, Godfrey 2008] [Purushothaman, Perry 2005], [Alali, Kagdi, Maletic 2008],

[Hattori, Lanza 2008] [Hammad, Collard, Maletic 2010], however these are poor

predictors of specific design changes. On the other hand, the fact that the number of the

method stereotype, for example ‘predicate collaborator’ or ‘predicate incidental’, is

increased twice at release x.i.ii is almost certainly an indicator of an ‘adding new

features’ design change. We analyze whether and how the changes in method-stereotype

distribution across multiple releases help us understand the evolution of the system.

Software evolution can be analyzed at different levels of abstraction: design pattern

evolution [Dong, Zhao, Sun 2010], tracing design changes at the package-, class-, and

method-level [Dong, Godfrey 2008], [Kim, Pan, Whitehead 2006],.[Kim, Whitehead,

Bevan 2006]. We consider system evolution as evolution of the method stereotypes

which is the fine-grained level closest to source code, and we have the infrastructure and

the tool to automatically extract this information. Main questions we are interested in

are: at what points in the history of a project is there a significant change in the

stereotypes of methods, and what triggers these changes?

6.2 Case Study

The two open-source medium-sized software system HippoDraw and QuantLib are

used in the case study. Our tool, StereoCode, was applied to extract method stereotype

information. HippoDraw is an open-source C++ application providing a data-analysis

environment. It is a wide-ranging application with parts for data-analysis processing and

visualization with an application GUI interface. QuantLib is a finance library for

modeling, trading, and risk management. The source code for both is well written,

125

follows a consistent object-oriented style, and the version history and detailed

documentation is available. The overview of the projects analyzed is given in Table 15.

Table 15. The overview of the projects, HippoDraw and QuantLib, in the case study.

Date
Number of

methods
Number of files

System

Number

of

releases first

release

last

release

first

release

last

release

first

release

last

release

HippoDraw 20 03/22/2004 10/01/2007 2585 3411 484 692

QuantLib 23 11/21/2000 01/11/2008 401 5262 113 1695

6.3 Results and Observations

In this section we present our observations from the exploratory case study where we

tried to answer the following questions:

1. How does the distribution of method stereotypes evolve over time? Is the trend for

stereotype evolution the same as for the system size?

2. Does the initial stereotypes distribution hold through the project releases?

3. How different are the distributions of method stereotypes for different release types:

‘bug fixes’, ‘changes’, and ‘adding new features’ releases?

4. Which stereotypes change more in the distribution? What are release-to-release

increases and decreases?

5. What relationships exist between stereotype categories: collaborators vs. non-

collaborators, accessors vs. mutators vs. external collaborators, degenerate vs.

regular?

126

6.3.1 Evolution of Stereotype

Research questions. How does the size of the system evolve? Does the number of

methods of a particular stereotype change with the same trend as the system size? Which

stereotypes are different and how: is the trend decreasing, flat or erratic?

The size evolution in terms of the number of methods is shown in Figure 32.

HippoDraw system size increases roughly logarithmically, while QuantLib size evolution is

closer to exponential. The possible explanation for this fact is that HippoDraw is a one-

developer application while QuantLib is an open-source library with multiple developers.

The system size of HippoDraw stabilizes at some point and the size curve is almost flat for

the last eight releases: starting from the release 1.20.6 the system size is 3397 methods,

then it is increased insignificantly (up to 3411 methods) in the next-to-last release.

QuantLib’s size is constantly increased, and the most drastic changes are observed in the

last 3 releases.

Size Evolution

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23

#
 m

e
th

o
d
s HippoDraw

QuantLib

Log. (HippoDraw)

Expon. (QuantLib)

Figure 32. The evolution of the projects size in terms of the number of methods through the releases

analyzed.

127

Now consider how the method stereotypes evolve. Note that in this case study

(comparing with the case study in previous chapters) we additionally considered another

type of method, Degenerate::stateless: it has no data members read/written directly, and

it can have only one call to other class methods. The results of analyzing changes in the

method stereotypes distribution follow.

HippoDraw.

There exists stability of the method-stereotypes distribution after some point in time

starting at the release 1.20.0 along with the system stabilization.

A number of stereotypes follow the system size trend and have the overall increase

of the stereotype percentage including stereotype predicate, predicate collaborator (Figure

33), property collaborator, controller, collaborator empty, and factory stateless (clone).

Clone is a simple factory method which has the only purpose to create an external object

and return it to the client. Clone does not read or write the object’s state.

Possible explanation for the trend of these stereotypes is that when the system

primarily evolves by adding new functionality but not just fixing bugs, then establishing

new relationships is crucial. As a result, the collaborational aspects of the system

increase, and methods which are responsible for behavior but not for supporting the

structure of the system start playing a more important role. HippoDraw is a data analysis

system, and accessing data seems to be more important than updating data;this results in

increasing percentage of accessors in the stereotypes distribution.

128

HippoDraw 'predicate' evolution

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.
11

.1

1.
12

.4

1.
14

.1

1.
15

.3

1.
15

.6

1.
19

.1

1.
20

.0

1.
20

.8

1.
21

.0

1.
21

.2

s
te

re
o
ty

p
e
 %

predicate

predicate stateless

predicate incidental

predicate collaborator

predicate collaborator

stateless

predicate collaborator

incidental

Figure 33. Evolution of the predicate stereotype in the HippoDraw system.

A number of stereotypes have the overall decrease of the stereotype percentage

including get collaborator, property, and void-accessor.

A number of stereotypes stayed relatively flat, i.e. they grow almost at the same rate

as the system evolves, including get/set, set collaborator, command, non-void-command,

command collaborator, factory, and degenerate (stateless, incidental). Stateless are

simple methods which have just one call. They are completely flat. Incidental methods

are mostly flat with the exception of the predicate category. We have mostly the non-

collaborational categories in this group. All the flat or relatively flat categories do not

play an important role in system evolution and are mostly responsible for supporting

system structure or simple system behavior.

The following stereotypes are erratic with some ‘spikes’ during the evolution, while

overall the stereotype percentage is slightly increased/decreased in the system

distribution: void-accessor collaborator is very spiky before the stable releases but overall

129

has a small increase; non-void-command collaborator has a small overall decrease but

with some spikes before stabilization. In general, stereotypes in this group are a small

part of the system and present non-prevalent categories: void-accessors (collaborators)

are not very typical and present degenerate accessors when a class data-member accessed

is returned through a parameter or is not returned at all; non-void-commands are

approximately 1/5 of the large command category. More analysis is needed to find

whether specific design changes exist which trigger those spikes.

QuantLib.

We follow the same classification as in the case for HippoDraw and have four

categories of stereotypes distribution: overall increase, overall decrease, flat, erratic.

However most of the stereotypes are ‘spiky’ while comparing them with the HippoDraw

evolution.

The following stereotypes have an overall increase of the stereotype percentage:

get/set collaborator, predicate, predicate collaborator, property collaborator (Figure 34),

void-accessor collaborator, command collaborator, and factory.

The following stereotypes have an overall decrease: get, property (Figure 34),

command, non-void-command, non-void-command collaborator, and incidental.

Here we have the same trend as for HippoDraw. In the ‘overall increase’ group all

the stereotypes but one belong to the collaborational group and they are mostly accessors.

Mutators do not increase: for QuantLib they are mostly in the overall decrease group, but

in the flat group for HippoDraw.

130

QuantLib 'property' evolution

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.
1.

1
0.

2.
0

0.
3.

0
0.

3.
3

0.
3.

6
0.

3.
8

0.
3.

10

0.
3.

12

0.
3.

14

0.
8.

0
0.

9.
0

0.
9.

7

release

s
te

re
o

ty
p

e
 %

property

property collaborator

property collaborator incidental

property collaborator stateless

property incidental

property stateless

Poly. (property collaborator)

Poly. (property)

Figure 34. Evolution of of the property stereotype in the QuantLib system.

The stereotypes stateless are the only stereotypes in the flat category. The majority

of stereotypes for the QuantLib system are not flat.

The following stereotypes are erratic: void-accessor, set, factory, property

collaborator stateless, command stateless, and non-void-command stateless.

Except for the degenerated categories, only void-accesor and a special kind of

factory are very unstable. Void-accessor has a low importance in the system (stereotype

percentage is about 2).

6.3.2 Stereotype Distribution Stability

Research question. Does the initial stereotypes distribution hold through the project

releases?

Figure 35 shows the distribution of the method stereotypes for the first and last

releases of HippoDraw. As seen, the system is stable, and despite the small changes,

131

there is no considerable redistribution. The top method stereotypes - command, property,

factory, and controller - are the same during the system’s evolution.

QuantLib is unstable. There is a big difference between the first and last release’s

distribution. The changes in the stereotype percentage are significant, and redistribution

is massive (see Figure 36). Order of importance is almost the same through the

evolution: property, get, and command. However, these stereotypes decrease in favor of

their collaborators; controller exchanged its place with the non-void command. An

explanation of this fact is that QuantLib is an open-source finance library for modeling,

trading, and risk management. The library is exploited across different research

institutions, banks, and software companies, and should reflect constant and quick

changes in economical life.

132

HD distribution of method stereotypes (%) for

the 1-st and the last releases analyzed

0

5

10

15

20

25

get

get
,*

pre
dic

at
e

pre
di

ca
te

,*

pro
pe

rt
y

pro
pe

rt
y,
*

vo
id

ac
ce

ss
or

vo
id

ac
ces

so
r,
*

ac
ce

sso
r
de

ge
ner

at
e

se
t

se
t,*

co
m

m
an

d

co
m

m
an

d,*

non
-v

oid
-c

om
m

an
d

non
-v

oi
d-c

om
m

an
d,

*

m
uta

to
r
deg

en
er

at
e

co
ntr

ol
le

r

co
ntr

ol
le

r
de

gen
er

at
e

fa
ct

or
y

unc
la

ss
ifi

ed

em
pty

s
te

re
o

ty
p

e
 %

1.11.1 1.21.3

Figure 35. Method stereotypes distribution for the first-and-last releases of HippoDraw (* stands for

the stereotype collaborator).

QuantLib distribution of method stereotypes

(%) for the 1-st and the last releases analyzed

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

ge
t

ge
t,*

pr
ed

ic
at

e

pr
ed

ic
at

e,
*

pr
op

er
ty

pr
op

er
ty

,*

vo
id

ac
ce

ss
or

vo
id

ac
ce

ss
or

,*

ac
ce

ss
or

 d
eg

en
er

at
e

se
t

se
t,*

co
m

m
an

d

co
m

m
an

d,
*

no
n-v

oid
-c

om
m

an
d

no
n-v

oid
-c

om
m

an
d,

*

m
ut

at
or

 d
eg

en
er

at
e

co
ntr

ol
le
r

co
ntr

ol
le
r
de

ge
ner

at
e

fa
ct

or
y

un
cl

as
si

fie
d

em
pt

y

s
te

re
o

ty
p

e
 %

0.1.1 0.9.7

Figure 36. Method stereotypes distribution for the first-and-last releases of QuantLib (* stands for

the stereotype collaborator).

133

6.3.3 Stereotype Distribution vs. Release Types

Research question. How does the method stereotype percentage change over the

different release types: ‘bug fixes’, ‘changes/refactoring’ and ‘adding new

features’.

Method stereotypes distribution for two 'bug-fixes' releases

0.00

5.00

10.00

15.00

20.00

25.00

method stereotype

s
te

re
o
ty

p
e
 %

1.15.3 1.15.4

Figure 37. Method stereotypes distribution in two bug fixes releases of HippoDraw.

Here we analyzed only data for the HippoDraw system, because the information

about release types was available on the project website provided by the original

developer (unfortunately, we did not have that classification for the QuantLib system).

The experiments showed that the method-stereotypes distribution is stable in ‘bug fixes’

releases (Figure 37), and there are changes in the method-stereotypes distribution in

‘refactoring/changes’ and ‘adding new features’ releases.

134

6.4 Patterns discovered

6.4.1 HippoDraw

The distribution of get/set has some contrast to other accessors/mutators.

Collaborators have a higher percentage than their primary category. However, get/set-

collaborator has a lower percentage than get/set and is almost flat with a small decrease

in the beginning. Get and set are almost twice and three times as big as get collaborator

and set collaborator, respectively. The explanation for this fact is that collaborations for

get and set are less important, because native types represent a simple concept (e.g., size,

counter, etc.), and simple get/set is a natural thing to use.

Collaborators for predicate and property are lower in the beginning. Overall, the

raw number and the percentage of predicates both increase. It makes sense and means

that in the beginning of implementation, the source code had to undergo more

refactoring. This is a motivating practice and could be an indicator of good design.

Predicate collaborator underwent a massive increase in the 1.14.1 release before the

predicate did (Figure 33). The same holds for predicate incidental in the 1.12.2 release.

Both massive increases can be interpreted as a preparation for implementation of new

features in further releases.

Raw numbers for predicate collaborator continue to grow but the percentage goes

down after the 1.5.6 release, which means that the system grows faster than predicate

collaborator does.

Property has the same pattern as predicate does: initially the percentage of

collaborator is lower than that of its primary stereotype. It is easier initially to write

predicates and properties based on native types, and through the system evolution it gets

135

more complex. Predicate/property based on user-defined types becomes more important

when the system evolves (1.13.1 and 1.15.3 releases are points of changes).

There is a very low percent of command-stateless in contrast to

predicate/property-stateless. The main purpose of command methods is executing

complex updates to an object state, and therefore methods with one call in the command

category are not very common in the system.

6.4.2 QuantLib

Collaborators constantly play a more significant role over the project evolution.

There is significant redistribution in favor of collaborators with respect to non-

collaboarational method stereotypes. Collaborators have a higher percentage than

their primary category for all the stereotypes during the whole period of evolution,

because many mathematical and financial objects are involved. However, in the last

release we observe a drastic increase of collaborators with respect to non-collaboarational

stereotypes - approximately 10 times (see Figure 38 and Figure 39). The explanation for

this fact is that a large amount of more complex objects started playing a more important

role in financial calculations and engines.

Accessors have a larger distribution than mutators and play an even more

important role towards the last release. The main objective of the library is to provide

financial information for further usage in developers programs or applications, therefore

all the accessors (get, predicate, property, void-accessor) and collaborators display a

constant increase through the evolution history; updating information is not very

136

essential. Despite the overall raise of command collaborator, the proportion of all the

accessors increases (approximately from 58% to 68%) compared to all the mutators.

Role of controller methods decreases. Number of controllers is decreased almost 3

times. Most likely classes were refactored to perform their tasks with their own data

member objects, not delegating it to external objects. However, more detailed

investigations of documentation and release notes are required to define specific reasons.

Also, a number of factory methods increased, which could partially substitute roles of

controller methods.

Degenerate methods decreased significantly. The percentage of degenerate

methods went down from 1.7% to 0.3%, which indicates a good practice – initially non-

functional methods were refined and implemented.

137

QuantLib 0.1.1
mutator

collaborator, 16.5

mutator, 11.7

accessor

collaborator, 32.2

accessor, 25.9
controller, 10.5

unclassified , 1.2empty/

incidental, 1.7factory, 0.0

Figure 38. Stereotype Category distribution for the first releases of QuantLib (0.1.1).

QuantLib 0.9.7

mutator, 3.7

controller, 3.4

empty/

incidental,

 0.3

accessor

collaborator, 61.7

factory, 1.8

mutator

collaborator, 22.4

accessor, 6.1

Figure 39. Stereotype Category distribution for the last releases of QuantLib (0.9.7).

6.5 Discussion

The results show that the method stereotypes distribution across releases is indicative

of types of design changes and correlates with system size evolution for several

138

stereotypes. For the system with detailed information about the release types

(HippoDraw), the method-stereotypes distribution was stable in ‘bug fix’ releases (8

releases) and changed in ‘refactoring/changes’ or ‘adding new features’ releases. For

primary categories, in most of the cases, the frequency of collaborator methods was

higher than that of non-collaborators. In general, accessors increased, while mutators

remained stable or decreased.

We plan to extend this work by studying the historical data of a broader range of

systems to identify evolutionary patterns related to method and class stereotypes. This

will also examine whether architecture style, domain, programming style and number of

developers reflect common evolution trends of a software system.

 Additionally, we plan to more thoroughly investigate change patterns on the

method- and class-level through the evolution of a project. Detailed analysis of release

notes and documentation is needed to correlate specific development and maintenance

activities to particular method and class stereotypes and their sequences in the design

changes.

139

CHAPTER 7

CONCLUSIONS

The dissertation addresses several research issues related to reverse engineering,

design recovery, and program understanding. The first issue deals with characterization

of software at different levels of abstraction: method, class and system. The basis for

automatic identification of patterns of design at all levels is the method stereotypes and

the two perspectives of method stereotypes distributions. The second issue deals with

characterization of changes in software during its evolution history. Automatically

classifying commits and uncovering evolution patterns of method stereotypes help

developers gain a high-level perspective of design over a system’s evolution.

7.1 Contributions

The main contributions of the presented research are discovering emergent laws of

stereotypes in object-oriented source code and their relationships with design, as well as

developing a new approach to automatically classify software with respect to method

stereotypes.

The first specific research contribution is the taxonomies of object-oriented method

stereotypes [Dragan, Collard, Maletic 2006] and class stereotypes [Dragan, Collard,

Maletic 2010] that reveal roles and responsibilities of methods and classes with respect to

structural, behavioral, collaborational, and control features. This is the first broad

investigation on the topic of method stereotypes with respect to reverse engineering and

design recovery. Reverse engineering method stereotypes allowed recovering a class

140

design model with respect to the boundary, control, and entity class’s stereotypes from

existing object-oriented code.

The second contribution is designing approaches and tools to characterize and

reverse engineer patterns of design at the method- [Dragan, Collard, Maletic 2006], class-

[Dragan, Collard, Maletic 2010] and system-levels [Dragan, Collard, Maletic 2009].

Based on the method stereotype taxonomy the notion of a signature and its two

perspectives, Stereotype and Stereotype Category, was introduced and serves as a

foundation for the automatic identification of class stereotypes, classifying software at the

system level and categorizing commits. The tools StereoCode and StereoClass were

implemented to automatically identify the methods and class stereotypes and redocument

source code with the stereotypes. Hierarchical and partitional clustering algorithms were

used to classify software at the system level. The results show that the frequency and

distribution of the method stereotypes is a good indicator of system architecture/design.

 The third contribution is an application of the method stereotypes to historical data

and analysis of evolutionary patterns of commits stored in a version control system, and

system releases. The commit signature, based on the method stereotypes distribution in a

commit, was used to categorize commits that impact the design changes to a class or

classes over the system evolution. The StereoCommit tool was implemented to

automatically identify the commit types. An application of the commit categorization is a

commit label. The commit label combines an overview along with detailed information

about the commit and is useful for analyzing the system evolution in maintenance

activities.

141

The final contribution is the evaluation of the approaches and the tools by

performing empirical studies. A wide range of about 30 open source object-oriented

software systems, of a different size and different domains, was investigated and the

results can serve as a benchmark for further investigations and studies.

7.2 Future work

This work forms the basis for a number of avenues of research in design recovery,

and we plan to extend our work in a few directions. The construction of design-quality

metrics based on stereotype classification is an interesting and useful application. In the

initial phases of this investigation we attempted to apply classical object oriented metrics

to the problem of method-stereotype classification. However, these metrics are too

coarse grained and were poor predictors of stereotypes.

The automatic identification of class stereotypes supports better program

comprehension and forms a foundation for a number of applications based on class

stereotypes. We plan to integrate annotation features into editing in Eclipse plug-in for

srcDoc [Shearer, Collard 2007]; incorporating method and class stereotype information in

UML class diagrams to improve program comprehension, and for automated layout of

class diagrams with respect to architectural importance. The proposed class stereotypes

could be used to not only characterize design and implementation solutions but also to

evaluate and improve design or use as an indicator of bad design in need of refactoring.

A few class stereotypes are candidates for refactoring in particular situations, and we will

investigate this as future work.

142

We plan to expand the work at the system level by studying the change of signatures

over the evolution of a system. This will examine whether the signature of a system

changes over the development of a project, and at what point the signature becomes

stable.

The correlation between the commit type and maintenance type (e.g., bug fix, feature

addition, and refactoring) is also being investigated. Our initial results on one open

source system show that this correlation exists. However, additional analysis is required

for further conclusions. For future work we also plan to infer from the commit label

information about specific time durations/points in the history, and further investigate the

questions whether commit types and labels reveal good/bad design changes and

added/deleted (or edited) features or concepts.

While our tools are specifically for C++ the approach is easily extended to other

object-oriented programming languages (ex., Java, C#).

143

APPENDIX A

METHOD STEREOTYPES DISTRIBUTIONS IN THE CLASSIFIED SYSTEMS

This appendix gives both Stereotype Perspective and Stereotype Category

Perspective of method stereotypes distributions for all 21 systems used in the case study

of classifying software.

A.1 Distributions for systems in Mutator Pattern

A.1.1 Stereotype Category Perspective

ClanLib%

12.8

10.8

2.0

25.6

31.6

2.4

6.8

2.2

1.3

1.9

2.6

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

CppUnit%

7.6

7.5

0.5

26.3

42.4

3.6

4.4

2.4

1.2

2.3
1.6

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

144

A.1.2 Stereotype Perspective

CppUnit%

6.5
2.0

5.3

1.3

0.5

4.9

55.6

8.2

3.6

4.4

2.4

1.2

2.3

1.6 get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

ClanLib%

5.1
4.5

12.9

1.1

2.0

6.0

41.1

10.1

2.4

6.8

2.2

1.3

1.9

2.6

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

145

A.2 Distributions for systems in Mutator-Data Storage Pattern

A.2.1 Stereotype Category Perspective

Ivf++%

6.7
4.8

0.0

37.0

28.5

5.3

13.2

0.2

2.2

0.2
1.8

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

FlightGear%

18.9

7.9

0.3

33.2

27.8

2.5

5.8

1.3

0.2

1.0
1.2

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

146

A.2.2 Stereotype Perspective

Ivf++%

10.6

0.4

0.0

0.5

0.0

13.6

45.8

6.1

5.3

13.2

2.2

0.2
1.80.2

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

FlightGear%

19.9

1.1

5.4

0.4

0.3

15.0

37.6

8.5

2.5

5.8
1.3

1.2

1.0

0.2

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

147

A.3 Distributions for systems in Mutator-Collaborator Pattern

A.3.1 Stereotype Category Perspective

Kdevelop%

5.0

13.4

0.7

16.0

55.6

1.0

3.4

1.2

1.8

1.4 0.5

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

CodeBlocks%

6.4

12.4

0.5

17.1

51.7

1.5

3.8

1.3

1.6

0.8

2.9

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

PPTactical%

7.1
6.0

0.1

22.8

50.5

2.6

4.8

3.0

1.4

1.3
0.5

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

148

A.3.2 Stereotype Perspective

Kdevelop%

9.3

2.3

6.1 0.6

0.7

5.4

58.3

8.0

1.0
1.2 1.8

0.5
1.4

3.4
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

CodeBlocks%

2.7

6.5 0.7

0.5

5.3

51.5

12.0

1.5

1.3

1.6

2.9

8.8

0.8

3.8
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

PPTactical%

11.2

0.3

1.6

0.0

0.1

12.1

49.0

12.2

2.6

4.8

3.0

1.4

1.3

0.5

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

149

A.4 Distributions for systems in Non-void-Mutator-Collaborator Pattern

A.4.1 Stereotype Category Perspective

ACE%

6.9

10.2

0.2

15.4

49.2

1.5

5.3

2.7

2.0

4.0

2.6

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

150

A.4.2 Stereotype Perspective

ACE%

2.8

0.6

10.9
2.8

0.2

3.5

15.2

45.9

1.5

5.3

2.7

2.0

4.0

2.6
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

151

A.5 Distributions for systems in Mutator-Accessor-Collaborator Pattern

A.5.1 Stereotype Category Perspective

Ice%

7.4

20.0

1.4

11.3
47.2

1.4

5.6

1.1

2.0

0.5

2.0

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

OpenWBEM%

4.0

23.8

0.6

8.2

50.7

2.9

3.7

0.9

2.7

1.6

0.8

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

CEL%

5.0

10.5

1.4

15.2

49.6

2.9

6.9

3.2

0.2

3.6

0.0

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

CrystalSpace%

5.7

15.2

1.3

11.8

47.6

2.0

6.1

2.8

4.0

2.9

0.8

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

152

A.5.2 Stereotype Perspective

Ice%

9.4

4.4

8.7

4.8

1.4

5.1

42.4

11.1

1.4

5.6
2.0

2.0
0.51.1

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

OpenWBEM%

4.5
3.9

12.1

7.4

0.6

4.5

39.3

15.1

2.9

3.7 2.7

1.6

0.8
0.9

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

CEL%

9.1

1.6

4.5

0.3

1.4

8.7

46.3

9.8

2.9

6.9

3.2

3.6

0.2

0.0
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

CrystalSpace%

11.4

1.9

6.2
1.4

1.3

6.1

40.6

12.7

2.0

6.1

2.8

4.0

2.9

0.8

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

153

A.6 Distributions for systems in Accessor-Mutator-Collaborator Pattern

A.6.1 Stereotype Category Perspective

WxWidgets%

9.9

18.6

2.0

16.1

41.4

2.4

3.0

0.9

3.0

0.62.0

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

Qt%

9.1

25.5

1.9

13.1

38.0

1.2

3.6

3.0

1.2

0.5

3.0

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

SmartWin++%

2.6

33.6

1.7

5.8

43.9

0.2

5.2
5.2

0.5

0.3

0.9

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

ICU%

1.2

29.1

1.6

4.7

49.0

0.3

3.4

1.8

0.6

7.9

0.4

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

154

A.6.2 Stereotype Perspective

WxWidgets%

11.1

5.9

9.8

1.7

2.0

6.2

42.9

8.4

2.4

0.9
3.0

0.6

2.0

3.0
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

Qt%

7.6

5.7

19.7

1.5

1.9

4.8
38.2

8.1

3.6

3.0 3.0

0.51.2

1.2

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

SmartWin++%

8.5

5.2

20.3

2.1

1.7

4.026.1

19.7

0.2

5.2
5.2

0.5

0.3
0.9

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

ICU%

10.4

0.0

16.6

3.3

1.6

2.6

34.9

16.2

0.3

3.4

1.8

0.6

7.9 0.4
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

155

A.7 Distributions for systems in Accessor-Collaborator Pattern

A.7.1 Stereotype Category Perspective

CGAL%

6.2

51.2

1.1

8.0

22.3

0.6

5.6

2.9

0.7

0.4
1.0

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

Quantlib%

4.7

60.0
3.3

4.3

21.9

0.3

1.1

0.4

2.2

1.4
0.4

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

C++Fuzzy%

14.7

23.6

3.2

9.6

34.5

0.0

8.6

0.6

0.0

2.6

2.6

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

156

A.7.2 Stereotype Perspective

CGAL%

8.8

9.7

36.1

2.7

1.1

4.0

18.0

8.5

0.6

5.6

0.7

0.4

1.02.9
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

Quantlib%

20.9

3.4

35.3

5.1

3.3

4.5

16.7

0.3

1.1

0.4

2.2

1.4

5.1

0.4
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

C++Fuzzy%

10.9

0.6

22.7

4.2

3.2

8.0

28.8

7.3

0.0

8.6

0.6

0.0

2.6

2.6
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

157

A.8 Distributions for systems in Accessor-Mutator-Controller Pattern

A.8.1 Stereotype Category Perspective

HippoDraw%

15.5

15.3

5.9

16.3

25.9

2.1

7.1

0.2

1.5 9.5 0.5

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

158

A.8.2 Stereotype Perspective

HippoDraw%

8.4

4.2

15.2

3.1

5.9

4.3

31.9

6.0

2.1

7.1

0.2

1.5 9.5 0.5
get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

159

A.9 Distributions for systems in Controller-Collaborator Pattern

A.9.1 Stereotype Category Perspective

Doxygen%

3.6
6.9

0.1

8.3

27.7

1.79.4
1.0

39.9

0.9

0.3

accessors

accessors_collab

accessors_degen

mutators

mutators_collab

mutators_degen

controllers

collaborator

collaborator_degen

factory

unclassified

160

A.9.2 Stereotype Perspective

Doxygen%

4.8
0.3

0.1

3.9

15.4

16.7

1.79.4
1.0

39.9

0.9

0.3 1.8

3.6

get

predicate

property

voidaccessor

accessors_degen

set

command

non-void-command

mutators_degen

controller

collaborator

collaborator_degen

factory

unclassified

161

APPENDIX B

SOURCE CODE OF HIPPODRAW CLASSES REDOCUMENTED BY THE

STEREOCODE AND STEREOCLASS TOOLS

This appendix shows source code of the HippoDraw classes redocumented with the

method stereotypes and their distributions. Comments added to the source files by the

StereoCode and StereoClass tools are shown in bold.

B.1 Entity - class Range

/* Class report: Method stereotypes distribution
Range, get, 3

Range, predicate, 2

Range, property, 3

Range, set, 4

Range, command, 4
Range, command collaborator, 1

*/

/** @file

hippodraw::Range class interface

Copyright (C) 2000-2004, 2006 The Board of Trustees of The

Leland Stanford Junior University. All Rights Reserved.

…

*/

…

class MDL_HIPPOPLOT_API Range {

private:

 /** The minimum in the range.

 */

 double m_min;

 … //more declarations here

/** @stereotype property */

inline

double

Range::

length () const

162

{

 return (m_max - m_min);

}

template < class Iterator >

/** @stereotype command collaborator */

void

Range::

setRange (Iterator first, Iterator end)

{

 m_min = DBL_MAX;

 m_max = -DBL_MAX;

 m_pos = DBL_MAX;

 while (first != end) {

 double test = *first; // input might be pointer to float.

 m_min = std::min (m_min, test);

 m_max = std::max (m_max, test);

 if (test > 0.0) m_pos = std::min (m_pos, test);

 ++first;

 }

}

/** @file

hippodraw::Range class implementation

…

*/

… //constructors here

/** @stereotype get */

double

Range::low() const

{

 return m_min;

}

/** @stereotype set */

void

Range::setLow (double x)

{

 m_min = x;

 assert (m_min <= m_max);

}

/** @stereotype get */

double

Range::high() const

{

 return m_max;

}

/** @stereotype set */

163

void

Range::setHigh (double x)

{

 m_max = x;

 assert (m_min <= m_max);

}

/** @stereotype get */

double

Range::pos() const

{

 return m_pos;

}

/** @stereotype set */

void

Range::setPos (double x)

{

 m_pos = x;

 assert (m_min <= m_max);

}

/** @stereotype command */

void

Range::setRange (double low, double high, double pos)

{

 m_min = low;

 m_max = high;

 m_pos = pos;

 assert (m_min <= m_max);

}

/** @stereotype command */

void

Range::setLength (double val, bool high_hold)

{

 if(high_hold){

 m_min = m_max - val;

 } else {

 m_max = m_min + val;

 }

 assert (m_min <= m_max);

}

/** @stereotype predicate */

bool

Range::includes (double val) const

{

 return val >= m_min && val <= m_max;

}

/** @stereotype predicate */

bool

Range::

164

excludes (double value) const

{

 return value < m_min || value > m_max;

}

/** @stereotype property */

double

Range::

fraction (double value) const

{

 return (value - m_min) / (m_max - m_min);

}

/** @stereotype set */

void Range::setEmpty (bool yes)

{

 m_empty = yes;

}

/** @stereotype command */

void Range::setUnion (const Range & range)

{

 if (m_empty) {

 m_min = range.m_min;

 m_max = range.m_max;

 m_pos = range.m_pos;

 m_empty = false;

 }

 else {

 m_min = min (m_min, range.m_min);

 m_max = max (m_max, range.m_max);

 m_pos = min (m_pos, range.m_pos);

 }

 assert (m_min <= m_max);

}

/** @stereotype command */

void Range::setIntersect (const Range & range)

{

 if (m_min > range.m_max || m_max < range.m_min) return;

 m_min = max (m_min, range.m_min);

 m_max = min (m_max, range.m_max);

 m_pos = max (m_pos, range.m_min);

 assert (m_min <= m_max);

}

/** @stereotype property */

int

Range::numberOfBins (double width) const

{

 assert (m_max > m_min);

165

 double number = (m_max - m_min) / width;

#ifdef _MSC_VER

 return static_cast < int > (number+0.5);

#else

 return static_cast < int > (rint(number));

#endif

}

B.2 Minimal Entity - class Point

/* Class report: Method stereotypes distribution
Point, get, 3

Point, set, 1

Point, command, 3

*/

/** @file

Point class interface

…

*/

…

class MDL_HIPPOPLOT_API Point

{

 private:

 double m_x;

 double m_y;

 double m_z;

 … // more declarations here

/** @stereotype get */

inline

double

Point::

getX() const

{

 return m_x;

}

/** @stereotype get */

inline

double

Point::

getY() const

{

 return m_y;

}

/** @stereotype get */

inline double

Point::

getZ() const

166

{

 return m_z;

}

/*

 * HippoPlot Point class implementation

 …

*/

…

… // constructors here

/** @stereotype command */

void Point::setPoint(double x, double y) {

 m_x = x;

 m_y = y;

}

/** @stereotype command */

void Point::setPoint(double x, double y, double z) {

 m_x = x;

 m_y = y;

 m_z = z;

}

/** @stereotype command */

void Point::moveBy (double x, double y)

{

 m_x += x;

 m_y += y;

}

/** @stereotype set */

void Point::setZ (double z)

{

 m_z = z;

}

B.3 Data Provider (and Entity) - class BinnerAxis

/* Class report: Method stereotypes distribution
BinnerAxis, get, 2

BinnerAxis, get collaborator, 1

BinnerAxis, property, 3

BinnerAxis, void-accessor, 2

BinnerAxis, non-void-command, 1

BinnerAxis, predicate incidental, 1
*/

/** @file

hippodraw::BinnerAxis class implementation

…

*/

… // constructors here

/** @stereotype get */

167

const string &

BinnerAxis::

name () const

{

 return m_name;

}

/** @stereotype predicate incidental */

bool

BinnerAxis::hasEqualWidths () const

{

 return false;

}

/** @stereotype property */

double

BinnerAxis::axisGetLow() const

{

 return m_range.low();

}

/** @stereotype property */

double

BinnerAxis::axisGetHigh() const

{

 return m_range.high();

}

/** @stereotype get collaborator */

const Range &

BinnerAxis::

getRange() const

{

 return m_range;

}

/** @stereotype get */

int

BinnerAxis::axisNumberOfBins () const

{

 return m_num_bins;

}

/** @stereotype void-accessor */

void

BinnerAxis::setStartRange (bool dragging) const

{

 if (m_dragging == false) {

 m_range_start = m_range;

 }

 m_dragging = dragging;

}

/** @stereotype void-accessor */

168

void

BinnerAxis::setStartWidth (bool dragging) const

{

 if (m_dragging == false) {

 m_width_start = m_width;

 }

 m_dragging = dragging;

}

/** @stereotype non-void-command */

const vector< double > & BinnerAxis::binEdges ()

{

 if(m_bin_edges.size() == 0)

 {

 m_bin_edges.resize(m_num_bins + 1);

 m_bin_edges[0] = m_range.low();

 for(int i = 0; i < m_num_bins; i ++)

 m_bin_edges[i] = m_bin_edges[i-1] + axisBinWidth(i);

 m_bin_edges[m_num_bins + 1] = m_range.high();

 }

 return m_bin_edges;

}

/** @stereotype property */

double

BinnerAxis::

calcBinWidth (int parm, bool dragging) const

{

 setStartWidth (dragging);

 double multiplier = (50 - parm) / 50.0;

 int num_start = getNob (m_width_start);

 if (num_start == 1) {

 multiplier *= 4.0;

 }

 double num_new = num_start + num_start * multiplier;

 num_new = std::max (1.0, num_new);

 m_num_bins = static_cast < int > (num_new);

 double new_width = calcWidthParm (m_num_bins);

 return new_width;

}

169

B.4 Commander (and Boundary) - class DrawBorder

/* Class report: Method stereotypes distribution

DrawBorder, get collaborator, 1

DrawBorder, set collaborator, 1

DrawBorder, command, 1

DrawBorder, command collaborator, 1

*/

/** @file

hippodraw::DrawBorder class implementation

…

*/

… // constructors here

/** @stereotype set collaborator */

void DrawBorder::setView (ViewBase * view)

{

 m_view = view;

}

/** @stereotype get collaborator */

ViewBase * DrawBorder::getView ()

{

 return m_view;

}

/** @stereotype command collaborator */

void DrawBorder::draw()

{

 Rect rect = m_view->getDrawRect();

 double width = rect.getWidth();

 double height = rect.getHeight();

 width = width - 2;

 height = height - 2;

 vector <double> vx (8);

 vector <double> vy (8);

 vx [0] = 2;

 vy [0] = 2;

 vx [1] = width;

 vy [1] = 2;

 vx [2] = width;

 vy [2] = 2;

 vx [3] = width;

 vy [3] = height;

170

 vx [4] = width;

 vy [4] = height;

 vx [5] = 2;

 vy [5] = height;

 vx [6] = 2;

 vy [6] = height;

 vx [7] = 2;

 vy [7] = 2;

 m_view->drawViewLines (vx, vy, Line::Solid, Color(180, 180,

180), 0);

 // Now draw the knobs.

 drawKnob (2, 2); //Upper Right.

 drawKnob (width / 2, 2); //Upper Middle.

 drawKnob (width, 2); //Upper Left.

 drawKnob (2, height / 2); //Middle Left.

 drawKnob (width, height / 2); //Middle Right.

 drawKnob (2, height); //Lower left.

 drawKnob (width / 2, height); //Lower middle.

 drawKnob (width, height); //Lower right.

}

/** @stereotype command */

void DrawBorder::drawKnob(double x, double y)

{

 int size = 2;

 vector <double> vx (8);

 vector <double> vy (8);

 vx [0] = x-size;

 vy [0] = y-size;

 vx [1] = x+size;

 vy [1] = y-size;

 vx [2] = x+size;

 vy [2] = y-size;

 vx [3] = x+size;

 vy [3] = y+size;

 vx [4] = x+size;

 vy [4] = y+size;

 vx [5] = x-size;

171

 vy [5] = y+size;

 vx [6] = x-size;

 vy [6] = y+size;

 vx [7] = x-size;

 vy [7] = y-size;

 m_view->drawViewLines (vx, vy, Line::Solid, Color(180, 180,

180), 0);

}

B.5 Boundary (and Data Provider) - class DataView

/* Class report: Method stereotypes distribution

DataView, get collaborator, 1
DataView, property collaborator, 9

DataView, set collaborator, 1

DataView, command collaborator, 1

*/

/** @file

hippodraw::DataView class implementation

…

*/

… // constructors here

/** @stereotype get collaborator */

const Rect &

DataView::

getMarginRect () const

{

 return m_margin_rect;

}

/** @stereotype set collaborator */

void

DataView::

setMarginRect (const Rect & rect)

{

 m_margin_rect = rect;

}

/** @attention In the implementation, make sure the left margin

stops

 growing at same time maximum Y tick labels stop growing.

 */

/** @stereotype command collaborator */

void

DataView::

prepareMarginRect ()

{

172

 const Rect draw = getDrawRect();

 float width = draw.getWidth();

 float height = draw.getHeight();

 float marginXLeft = draw.getHeight () * 0.20;

 marginXLeft = std::min (marginXLeft, 55.0f);

 float marginXRight = 20.0 ;

 // Get a pointer to the plotter.

 PlotterBase* plotter = getPlotter();

 // Set and adjust top margin

 float marginYTop = 30.0;

 if (m_plotter -> hasAxis (Axes::Z))

 {

 marginYTop = 70.0;

 }

 const FontBase* titlefont = plotter->titleFont();

 if (titlefont) {

 marginYTop = marginYTop+titlefont->pointSize()-9.0;

 }

 const FontBase* zfont = plotter->labelFont(Axes::Z);

 if (zfont) {

 marginYTop = marginYTop+zfont->pointSize()-7.0;

 }

 // Set and adjust bottom margin

 float marginYBottom = 34.0 ;

 const FontBase* labelfont = plotter->labelFont(Axes::X);

 if (labelfont) {

 marginYBottom = marginYBottom+labelfont->pointSize()-11.0;

 }

 // Add additional margins. Now it can be added by PNG title,

labels.

 marginYTop+=plotter->getTopMargin()+plotter->getZMargin();

 marginYBottom+=plotter->getBottomMargin();

 marginXLeft+=plotter->getLeftMargin();

 double aspect_ratio = m_plotter -> getAspectRatio ();

 float marginWidth = width - marginXLeft - marginXRight;

 float marginHeight =height - marginYTop - marginYBottom;

 if (aspect_ratio > 0.0) {

 if (marginWidth /aspect_ratio > marginHeight){

 marginWidth = aspect_ratio*marginHeight;

 }

173

 else {

 marginHeight = marginWidth/aspect_ratio;

 }

 }

 m_margin_rect.setRect (marginXLeft, marginYTop,

 marginWidth, marginHeight);

}

/** @stereotype property collaborator */

float

DataView::

userToMarginX (double x) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 double diff = x - user_rect.getX ();

 double scale = m_margin_rect.getWidth() / user_rect.getWidth

();

 double margin_x = m_margin_rect.getX () + diff * scale;

 return margin_x;

}

/** @stereotype property collaborator */

float

DataView::

userToInvertedMarginX (double x) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 double diff = x - user_rect.getX ();

 double scale = m_margin_rect.getWidth() / user_rect.getWidth

();

 double margin_ix = m_margin_rect.getX() +

m_margin_rect.getWidth() - diff*scale;

 return margin_ix;

}

/** @stereotype property collaborator */

float

DataView::

userToMarginY (double y) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return m_margin_rect.getY ()

 + (y - user_rect.getY ())

 * m_margin_rect.getHeight () / user_rect.getHeight ();

}

/** @stereotype property collaborator */

float

DataView::

userToInvertedMarginY (double y) const

{

174

 const Rect & user_rect = m_plotter -> getUserRect ();

 return m_margin_rect.getY ()

 + m_margin_rect.getHeight ()

 - (y - user_rect.getY ())

 * m_margin_rect.getHeight () / user_rect.getHeight ();

}

/** @stereotype property collaborator */

float

DataView::

userToMarginColor (double c) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return m_margin_rect.getX ()

 + (c - user_rect.getZ ())

 * m_margin_rect.getWidth () / user_rect.getDepth ();

}

/** @stereotype property collaborator */

double

DataView::

marginToUserX (double x) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return user_rect.getX ()

 + (x - m_margin_rect.getX())

 / (m_margin_rect.getWidth () / user_rect.getWidth());

}

/** @stereotype property collaborator */

double

DataView::

marginToInvertedUserX (double x) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return user_rect.getX ()

 + (m_margin_rect.getX() + m_margin_rect.getWidth() - x)

 / (m_margin_rect.getWidth () / user_rect.getWidth());

}

/** @stereotype property collaborator */

double

DataView::

marginToUserY (double y) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return user_rect.getY ()

175

 + (y - m_margin_rect.getY())

 / (m_margin_rect.getHeight () * user_rect.getHeight ());

}

/** @stereotype property collaborator */

double

DataView::

marginToInvertedUserY (double y) const

{

 const Rect & user_rect = m_plotter -> getUserRect ();

 return user_rect.getY () +

 (m_margin_rect.getY()

 + m_margin_rect.getHeight() - y)

 / (m_margin_rect.getHeight () / user_rect.getHeight ()) ;

}

B.6 Factory - class QtViewFactory

/* Class report: Method stereotypes distribution
QtViewFactory, collaborator factory, 3

*/

/** @file

QtViewFactory implemenatation

…

*/

… // constructor here

/** @stereotype collaborator factory*/

ViewFactory * QtViewFactory::instance ()

{

 if (m_instance == 0) {

 m_instance = new QtViewFactory ();

 }

 return m_instance;

}

/** @stereotype collaborator factory */

ViewBase *

QtViewFactory::

createView (PlotterBase * plotter) const

{

 QtView * view = new QtView (plotter);

 return view;

}

/** @stereotype collaborator factory */

FontBase *

QtViewFactory::

createFont () const

176

{

 return new QtFont ();

}

B.7 Controller - class DisplayController

This class is too big (1778 LOC, 93 methods) - only the class report is shown.

/* Class report: Method stereotypes distribution

DisplayController, get collaborator, 2

DisplayController, predicate collaborator, 2

DisplayController, property collaborator, 2
DisplayController, void-accessor collaborator, 5

DisplayController, command collaborator, 15

DisplayController, non-void-command collaborator, 4

DisplayController, controller, 45

DisplayController, collaborator factory, 18

*/

B.8 Pure Controller (and Factory) - class BinnerAxisXML

/* Class report: Method stereotypes distribution
BinnerAxisXML, controller, 1

BinnerAxisXML, collaborator factory, 2

*/

/** @file

BinnerAxisXML implementation

…

*/

… // constructors here

/** @stereotype collaborator factory */

XmlElement *

BinnerAxisXML::

createElement (const BinnerAxis & binner)

{

 XmlElement * tag = BaseXML::createElement ();

 setAttributes (tag, binner);

 return tag;

}

/** @stereotype controller */

void

BinnerAxisXML::

setAttributes (XmlElement * tag, const BinnerAxis & binner)

{

 const string & type = binner.name();

 tag->setAttribute (m_type, type);

177

 const Range & range = binner.getRange ();

 double high = range.high();

 double low = range.low ();

 tag->setAttribute (m_high, high);

 tag->setAttribute (m_low, low);

 double width = binner.getBinWidth ();

 tag->setAttribute (m_width, width);

}

/** @stereotype collaborator factory */

BinnerAxis *

BinnerAxisXML::

createObject (const XmlElement * element)

{

 string type;

 bool ok = element->attribute (m_type, type);

 assert (ok);

 BinnerAxisFactory * factory = BinnerAxisFactory::instance ();

 BinnerAxis * binner = factory->create (type);

 double high = 1.0;

 double low = 0.0;

 ok = element->attribute (m_high, high);

 ok &= element->attribute (m_low, low);

 assert (ok);

 Range range (low, high);

 binner->setRange (range, false);

 double width = -1.0;

 ok = element->attribute (m_width, width);

 assert (ok);

 binner->setBinWidth (width);

 return binner;

}

B.9 Pure Controller (and Small) - class AxisTickXML

/* Class report: Method stereotypes distribution
AxisTickXML, controller, 2

*/

/** @file

AxisTickXML class implementation

…

*/

178

… // constructors here

/** @stereotype controller */

void

AxisTickXML::

setAttributes (XmlElement & tag,

 const AxisTick & tick)

{

 double value = tick.value ();

 tag.setAttribute (m_value, value);

 const string & label = tick.content ();

 tag.setAttribute (m_label, label);

}

/** @stereotype controller */

void

AxisTickXML::

setAttributes (AxisTick * tick,

 const XmlElement * element)

{

 double value;

 bool ok = element -> attribute (m_value, value);

 tick -> setValue (value);

 string label;

 ok = element -> attribute (m_label, label);

 tick -> setContent (label);

}

B.10 Large Class (and Boundary) - class FunctionController

This class is too big (1212 LOC, 52 methods) - only the class report is shown.

/* Class report: Method stereotypes distribution
FunctionController, void-accessor collaborator, 2

FunctionController, command collaborator, 17

FunctionController, non-void-command collaborator, 9
FunctionController, controller, 10

FunctionController, collborator factory, 13

*/

B.11 Lazy Class - class BinsBase

/* Class report: Method stereotypes distribution

BinsBase, get, 3

BinsBase, set, 3

BinsBase, incidental, 3

179

BinsBase, empty, 1
*/

/** @file

BinsBase class implementation

…

*/

… // constructors here

/** @stereotype get */

const string &

BinsBase::

name () const

{

 return m_name;

}

/** @stereotype get */

bool BinsBase::isDirty ()

{

 return m_values_dirty;

}

/** @stereotype set */

void BinsBase::setDirty()

{

 m_values_dirty = true;

}

/** @stereotype incidental */

double BinsBase::scaleFactor () const

{

 return 1.0;

}

/** @stereotype incidental */

double BinsBase::getZValue (double, double) const

{

 return 0;

}

/** @stereotype get */

bool

BinsBase::

isEmpty () const

{

 return m_empty;

}

/** @stereotype set */

void

BinsBase::

scaleNumberOfEntries (double number)

{

 m_scale_factor = number;

}

180

/** @stereotype set */

void

BinsBase::

setEntriesScaling (bool on)

{

 m_is_scaling = on;

}

/** @stereotype empty */

void

BinsBase::

setMinEntries (int entries)

{

}

/** @stereotype incidental */

int

BinsBase::

getMinEntries ()

{

 return -1;

}

B.12 Degenerate Class – class AxisRep2D

/* Class report: Method stereotypes distribution
AxisRep2D, collaborator incidental, 2

AxisRep2D, collaborator factory, 1

*/

/** @file

hippodraw::AxisRep2D class implementation

…

*/

… // constructors here

/** @stereotype collaborator factory */

AxisRepBase * AxisRep2D::clone()

{

 return new AxisRep2D(*this);

}

/** @stereotype collaborator incidental */

void

AxisRep2D::

drawZLabels(const AxisModelBase &,

 ViewBase &, const std::string &)

{

 assert(false);

 // Should never be called.

}

181

/** @stereotype collaborator incidental */

void

AxisRep2D::

drawAllZTicks (const AxisModelBase &,

 const TransformBase &,

 ViewBase &)

{

 // Should never be called;

 assert(false);

}

B.13 Data Class - class AxisTick

/* Class Report: Method stereotypes distribution

AxisTick, get, 2

AxisTick, set, 2
*/

/* HippoPlot AxisTick class implementation

 …

 */

… // constructors here

/** @stereotype get */

double

AxisTick::value () const

{

 return m_v;

}

/** @stereotype set */

void

AxisTick::setValue (double v)

{

 m_v = v;

}

/** @stereotype get */

const string &

AxisTick::content () const

{

 return m_c;

}

/** @stereotype set */

void

AxisTick::setContent (const std::string & s)

{

 m_c = s;

}

182

RERERENCES

[Abbott 1983] Abbott, R., (1983), "Program Design by Informal English Descriptions",

Communications of the ACM, vol. 26, no. 11.

[Alali, Kagdi, Maletic 2008] Alali, A., Kagdi, H., and Maletic, J. I., (2008), "What's a

Typical Commit? A characterization of Open Source Software Repositories", in

Proceedings of IEEE 16th International Conference on Program Comprehension

(ICPC '08) Amsterdam, The Netherlands June 10-13, pp. 182-191.

[Albin-Amiot et al. 2001] Albin-Amiot, H., Cointe, P., Guéhéneuc, Y.-G., and Jussien,

N., (2001), "Instantiating and detecting design patterns: Putting bits and pieces

together ", in Proceedings of 16th IEEE International Conference on Automated

Software Engineering (ASE'2001), pp. 166-173.

[Andriyevska et al. 2005] Andriyevska, O., Dragan, N., Simoes, B., and Maletic, J. I.,

(2005), "Evaluating UML Class Diagram Layout based on Architectural

Importance", in Proceedings of 3rd IEEE International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT'05), Budapest, Hungary

September 25, pp. 14-20.

[Anquetil, Fourrier, Lethbridge 1999] Anquetil, N., Fourrier, C., and Lethbridge, C. T.,

(1999), "Experiments with Clustering as a Software Remodularization Method",

in Proceedings of Working Conference on Reverse Engineering, pp. 235-255.

183

[Antoniol, Fiutem, Cristoforetti 1998a] Antoniol, G., Fiutem, R., and Cristoforetti, L.,

(1998a), "Design Pattern Recovery in Object-Oriented Software", in Proceedings

of 6th IEEE International Workshop on Program Comprehension (IWPC'98),

Ischia, Italy, June 24-26, pp. 153-160.

[Antoniol, Fiutem, Cristoforetti 1998b] Antoniol, G., Fiutem, R., and Cristoforetti, L.,

(1998b), "Using Metrics to Identify Design Patterns in Object-Oriented

Software", in Proceedings of 5th IEEE International Symposium on Software

Metrics (METRICS'98), Bethesda, MD, November 20-21, pp. 23 - 34.

[Arevalo, Ducasse, Nierstrasz 2003a] Arevalo, G., Ducasse, S., and Nierstrasz, O.,

(2003a), "Understanding Classes using X-Ray Views", in Proceedings of 2nd.

International Workshop on MASPEGHI 2003 (MAnaging

SPEcialization/Generalization HIerarchies) in ASE 2003, pp. 9-18.

[Arevalo, Ducasse, Nierstrasz 2003b] Arevalo, G., Ducasse, S., and Nierstrasz, O.,

(2003b), " XRay Views: Understanding the Internals of Classes", in Proceedings

of 18th IEEE International Conference on Automated Software Engineering, pp.

267-270.

[Atkinson, Kuhne, Henderson-Sellers 2002] Atkinson, C., Kuhne, T., and Henderson-

Sellers, B., (2002), "Stereotypical Encounters of the Third Kind", in Proceedings

of UML, pp. 100-114.

[Aversano et al. 2007] Aversano, L., Canfora, G., Cerulo, L., Grosso, C. D., and Penta,

M. D., (2007), "An Empirical Study on the Evolution of Design Patterns", in

Proceedings of 6th Joint Meeting of the European Software Engineering

184

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, Dubrovnik, Croatia, pp. 385-394.

[Basili, Briand, Melo 1996] Basili, V. R., Briand, L. C., and Melo, W. L., (1996), "A

Validation of Object-Oriented Design Metrics as Quality Indicators", IEEE

Transactions on Software Engineering, vol. 22, no. 10, October, pp. 751-761.

[Beck, Cunningham 1989] Beck, K. and Cunningham, W., (1989), "A laboratory for

teaching object oriented thinking", in Proceedings of Object-Oriented

Programming Systems, Languages and Applications (OOPSLAConference on),

pp. 1-6.

[Bennett, Rajlich, 73-87 2000] Bennett, K. H., Rajlich, V., and 73-87, I.-F. o. S. T.,

(2000), "Software maintenance and evolution: a roadmap", in Proceedings of

International Conference on Software Engineering - The Future of Software

Engineering Track, pp. 73-87.

[Bieman et al. 2003] Bieman, J., Straw, G., Wang, H., Munger, P. W., and Alexander, R.

T., (2003), "Design patterns and change proneness: An examination of five

evolving systems", in Proceedings of 9th Ninth International Software Metrics

Symposium (Metrics' 2003), Bethesda, MD, November 20-21, pp. 40-49.

[Booch, Jacobson, Rumbaugh 1999] Booch, G., Jacobson, I., and Rumbaugh,

J.,(1999),The Unified Software Development Process, Addison-Wesley.

[Briand, Daly, Wüst 1999] Briand, L. C., Daly, J., and Wüst, J., (1999), "A unified

framework for coupling measurement in objectoriented systems", IEEE

Transactions on Software Engineering, vol. 25, no. 1, January, pp. 91-121.

185

[Briand, Daly, Wüst 1997] Briand, L. C., Daly, J. W., and Wüst, J., (1997), "A Unified

Framework for Cohesion Measurement in Object-Oriented Systems", in

Proceedings of 4th International Software Metrics Symposium (METRICS'97),

Albuquerque, NM, November 5-7, pp. 43-53.

[Brown 1996] Brown, K., (1996), Design Reverse-Engineering and Automated Design

Pattern Detection in Smalltalk North Carolina State University, Raleigh NC,

Master Thesis.

[Brown et al. 1998] Brown, W. J., Malveau, R. C., Brown, H. W., McCormick III, W.

H., and Mowbray, T. J.,(1998),Anti Patterns: Refactoring Software,

Architectures, and Projects in Crisis, 1st ed., John Wiley and Sons.

[Bruegge, Dutoit 2000] Bruegge, B. and Dutoit, A.,(2000),Object-Oriented Software

Engineering Conquering Complex and Changing Systems, Prentice Hall.

[Chidamber, Kemerer 1991] Chidamber, S. R. and Kemerer, C. F., (1991), "Towards a

Metrics Suite for Object Oriented Design", in Proceedings of OOPSLA'91, pp.

197-211.

[Chidamber, Kemerer 1994] Chidamber, S. R. and Kemerer, C. F., (1994), "A Metrics

Suite for Object Oriented Design", IEEE Transactions on Software Engineering,

vol. 20, no. 6, pp. 476-493.

[Clarke, Malloy, Gibson 2003] Clarke, P. J., Malloy, B. A., and Gibson, J. P., (2003),

"Using a Taxonomy Tool to Identify Changes in OO Software", in Proceedings of

7th European Conference on Software Maintenance and Reengineering, pp. 213-

222.

186

[Collard, Maletic, Marcus 2002] Collard, M. L., Maletic, J. I., and Marcus, A., (2002),

"Supporting Document and Data Views of Source Code", in Proceedings of ACM

Symposium on Document Engineering (DocEng’02), McLean VA, November 8-

9, pp. 34-41.

[Conallen 2002] Conallen, J.,(2002), Building Web Applications with UML 2nd ed.,

Addison-Wesley.

[De Lucia et al. 2009] De Lucia, A., Deufemia, V., Gravino, C., and Risi, M., (2009),

"Design pattern recovery through visual language parsing and source code

analysis", Journal of Systems and Software, vol. 82, no. 7, pp. 1177-1193.

[Deitel, Deitel 2001] Deitel, H. M. and Deitel, P. J.,(2001),C++ How to Program, 3rd

ed., Prentice Hall.

[Dekel, Gil 2003] Dekel, U. and Gil, Y., (2003), "Revealing Class Structure with

Concept Lattices ", in Proceedings of 10 th Working Conference on Reverse

Engineering (WCRE'03), Victoria, Canada, 13–16 November, pp. 353–365.

[Demeyer, Ducasse, Lanza 1999] Demeyer, S., Ducasse, S., and Lanza, M., (1999), "A

Hybrid Reverse Engineering Approach Combining Metrics and Program

Vizualization", in Proceedings of Working Conference on Reverse Engineering

(WCRE ' 99), pp. pp. 175-186.

[Demeyer, Ducasse, Nierstrasz 2000] Demeyer, S., Ducasse, S., and Nierstrasz, O.,

(2000), "Finding refactorings via Change Metrics", in Proceedings of Object-

Oriented Programming, Systems, Languages and Applications (OOPSLA ' 00),

pp. pp.166-177.

187

[Dong, Zhao, Sun 2010] Dong, J., Zhao, Y., and Sun, Y., (2010), "Design pattern

evolutions in QVT

", Software Quality Journal, vol. 18, no. 2, pp. 269-297.

[Dong, Godfrey 2007] Dong, X. and Godfrey, M. W., (2007), "A Hybrid Program Model

for Object-Oriented Reverse Engineering", in Proceedings of IEEE International

Conference on Program Comprehension, Banff, AB, Canada, pp. 81-90.

[Dong, Godfrey 2008] Dong, X. and Godfrey, M. W., (2008), "Identifying Architectural

Change Patterns in Object-Oriented Systems", in Proceedings of IEEE

International Conference on Program Comprehension Amsterdam, The

Netherlands, pp. 33-42.

[Dragan 2005] Dragan, N., (2005), Method Stereotypes and their Automatic

Identification, Kent State University, Kent, Ohio, Masters Thesis.

[Dragan, Collard, Maletic 2006] Dragan, N., Collard, M. L., and Maletic, J. I., (2006),

"Reverse Engineering Method Stereotypes", in Proceedings of 22nd IEEE

International Conference on Software Maintenance (ICSM'06), Philadelphia,

Pennsylvania USA, pp. 24-34.

[Dragan, Collard, Maletic 2009] Dragan, N., Collard, M. L., and Maletic, J. I., (2009),

"Using Method Stereotype Distribution as a Signature Descriptor for Software

Systems", in Proceedings of IEEE International Conference on Software

Maintenance (ICSM'09), Edmonton, Canada September 20-26, pp. 567-570.

[Dragan, Collard, Maletic 2010] Dragan, N., Collard, M. L., and Maletic, J. I., (2010),

"Atomatic Identification of Class Stereotypes", in Proceedings of 26th IEEE

188

International Conference on Software Maintenance (ICSM'10), Timisoara,

Romania September 12-18, pp. to appear.

[Eick, Steffen, Summer 1992] Eick, S., Steffen, J. L., and Summer, E. E., (1992),

"Seesoft - A Tool For Visualizing Line Oriented Software Statistics", IEEE

Transactions on Software Engineering, vol. 18, no. 11, November, pp. 957-968.

[Eisenbarth, Koschke, Simon 2003] Eisenbarth, T., Koschke, R., and Simon, D., (2003),

"Locating Features in Source Code", IEEE Transactions on Software

Engineering, vol. 29, no. 3, March, pp. 210 - 224.

[Fenton 1991] Fenton, N. E.,(1991),Software Metrics : A Rigorous Approach, New

York, Chapman & Hall.

[Fisher 1987] Fisher, H. D., (1987), "Knowledge acquisition via incremental conceptual

clustering ", Machine Learning, vol. 2, no. 2, pp. 139-172.

[Fluri, Giger, Gall 2008] Fluri, B., Giger, E., and Gall, H. C., (2008), "Discovering

Patterns of Change Types", in Proceedings of 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE'08), L'Aquila, Italy, pp.

463-466.

[Fowler 1999] Fowler, M.,(1999),Refactoring: Improving the Design of Existing Code,

Addison-Wesley.

[Fowler 2000] Fowler, M.,(2000),UML Distilled: A Brief Guide to the Standard Object

Modelling Language, 3rd ed., Addison-Wesley.

[Fuggetta 1993] Fuggetta, A., (1993), "A Classification of CASE Technology", IEEE

Computer, vol. 26, no. 12, December, pp. 25-38.

189

[Gall, Lanza 2006] Gall, H. C. and Lanza, M., (2006), "Software Evolution: Analysis

and Visualization", in Proceedings of 28-th International Conference on Software

Engineering (ICSE’06), Shanghai, China, pp. 1055-1056.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,(1995),Design

Patterns, Addison-Wesley.

[Genero et al. 2008] Genero, M., Cruz-Lemus, J. A., Caivano, D., Abrahão, S. M.,

Insfrán, E., and Carsí, J. A., (2008), "Does the use of stereotypes improve the

comprehension of UML sequence diagrams?" in Proceedings of 2nd International

Symposium on Empirical Software Engineering and Measurement (ESEM'08),

Kaiserslautern, Germany, October 9-10, pp. 300-302.

[Gil, Maman 2005] Gil, J. and Maman, I., (2005), "Micro Patterns in Java Code", in

Proceedings of Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA'05), San-Diego, California USA.

[Gîrba et al. 2007] Gîrba, T., Ducasse, S., Kuhn, A., Marinescu, R., and Daniel, R.,

(2007), " Using concept analysis to detect co-change patterns"", in Proceedings of

9th International Workshop on Principles of Software Evolution (IWPSE'07),

Dubrovnik, Croatia, pp. 83-89.

[Gogolla, Henderson-Sellers 2002] Gogolla, M. and Henderson-Sellers, B., (2002),

"Analysis of UML Stereotypes within the UML Metamodel", in Proceedings of

UML, pp. 84-99.

[Greevy, Ducasse 2005] Greevy, O. and Ducasse, S., (2005), "Characterizing the

Functional Roles of Classes and Methods by Analyzing Feature Traces ", in

190

Proceedings of 6th International Workshop on Object-Oriented Reengineering

(WOOR'05).

[Guéhéneuc, Guyomarc’h, Sahraoui 2010] Guéhéneuc, Y.-G., Guyomarc’h, J.-Y., and

Sahraoui, H., (2010), "Improving design-pattern identification: a new approach

and an exploratory study", Software Quality Journal, vol. 18, pp. 145-174.

[Guéhéneuc, Sahraoui, Zaidi 2004] Guéhéneuc, Y.-G., Sahraoui, H., and Zaidi, F.,

(2004), "Fingerprinting design patterns ", in Proceedings of 11th Working

Conference on Reverse Engineering (WCRE'04), pp. 172-181.

[Hammad, Collard, Maletic 2009] Hammad, M., Collard, M. L., and Maletic, J. I.,

(2009), "Automatically Identifying Changes that Impact Code-to-Design

Traceability", in Proceedings of 17th IEEE International Conference on Program

Comprehension (ICPC’09), Vancouver, Canada, May 17-19, pp. 20-29.

[Hammad, Collard, Maletic 2010] Hammad, M., Collard, M. L., and Maletic, J. I.,

(2010), "Automatically Identifying Changes that Impact Code-to-Design

Traceability During Evolution ", Journal of Software Quality vol. 18, no. , to

appear, accepted for publication April, 2010.

[Hattori, Lanza 2008] Hattori, L. P. and Lanza, M., (2008), "On the Nature of Commits",

in Proceedings of 4th International ERCIM Workshop on Software Evolution and

Evolvabillity (EVOL'08), pp. 63 - 71.

[Henderson-Sellers 1996] Henderson-Sellers, B.,(1996),Software Metrics, U. K.,

Prentice Hall.

191

[Hindle et al. 2009] Hindle, A. J., German, D. M., Godfrey, M. W., and Holt, R. C.,

(2009), "Automatic Classification of Large Changes into Maintenance

Categories", in Proceedings of IEEE International Conference on Program

Comprehension (ICPC'09), Vancouver, Canada 17-19 May 2009.

[HippoDraw] HippoDraw, "HippoDraw MainPage", Date Accessed: 08/02,

http://www.slac.stanford.edu/grp/ek/hippodraw/index.html.

[Hitz, Montazeri 1995] Hitz, M. and Montazeri, B., (1995), "Measuring Coupling and

Cohesion in Object-Oriented Systems", in Proceedings of International

Symposium on Applied Corporate Computing, Monterrey, Mexico, October.

[HotDraw 1999] HotDraw, (1999), "HotDraw HomePage", Date Accessed: 08/02,

http://st-www.cs.uiuc.edu/users/brant/HotDraw/HotDraw.html.

[Hutchens, Basili 1985] Hutchens, H. D. and Basili, R. V., (1985), "System Structure

Analysis: Clustering with Data Bindings ", IEEE Transactions on Software

Engineering, vol. 11, no. 8, pp. 749-757.

[Kagdi, Poshyvanyk 2009] Kagdi, H. and Poshyvanyk, D., (2009), "Who Can Help Me

with this Change Request?" in Proceedings of IEEE 17th International

Conference on Program Comprehension (ICPC '09) Vancouver, BC May 17-19,

pp. 273-277.

[Kim, Pan, Whitehead 2006] Kim, S., Pan, K., and Whitehead, E. J. J., (2006), "Micro

Pattern Evolution", in Proceedings of International Workshop on Mining

Software Repositories (MSR ’06) Shanghai, China.

192

[Kim, Whitehead, Bevan 2006] Kim, S., Whitehead, E. J. J., and Bevan, J., (2006),

"Properties of Signature Change Patterns", in Proceedings of 22nd IEEE

International Conference on Software Maintenance (ICSM'06) Philadelphia,

Pennsylvania USA, 24-27 Sept. 2006, pp. 4-13.

[Kim, Whitehead Jr. 2008] Kim, S. and Whitehead Jr., E. J., (2008), "Classifying

Software Changes: Clean or Buggy?" IEEE Transactions on Software

Engineering, vol. 34, no. 2, pp. 181-196.

[Koschke, Eisenbarth 2000] Koschke, R. and Eisenbarth, T., (2000), "A Framework for

Experimental Evaluation of Clustering Techniques", in Proceedings of 8th

International Workshop on Program Comprehension (IWPC'00), Limerick,

Ireland, June 2000, pp. 201-210.

[Kuzniarz, Staron, Wohlin 2004] Kuzniarz, L., Staron, M., and Wohlin, C., (2004), "An

empirical study on using stereotypes to improve understanding of UML models",

in Proceedings of 12th IEEE International Workshop on Program Comprehension,

Bari, Italy, pp. 14.

[Lanza 1999] Lanza, M., (1999), Combining Metrics and Graphs for Object-Oriented

Reverse Engineering, University of Berne, Switzerland, M.S. Thesis Thesis.

[Lanza 2003] Lanza, M., (2003), Object-Oriented Reverse Engineering - Coarse-

grained, Fine-grained, and Evolutionary Software Visualization, University of

Berne, Switzerland, PhD. Dissertation Thesis.

[Lanza, Ducasse 2001a] Lanza, M. and Ducasse, S., (2001a), "A Categorization of

classes based on the visualization of their Internal Structure: the Class Blueprint",

193

in Proceedings of 16th ACM Conference on Object-Oriented Programming,

Systems. Languages and Applications (OOPSLA ' 01), pp. pp. 300-311.

[Lanza, Ducasse 2001b] Lanza, M. and Ducasse, S., (2001b), "A Categorization of

classes based on the visualization of their Internal Structure: the Class Blueprint",

in Proceedings of 16th ACM Conference on Object-Oriented Programming,

Systems. Languages and Applications (OOPSLA ' 01), pp. 300-311.

[Lanza, Marinescu 2006] Lanza, M. and Marinescu, R.,(2006),Object-Oriented Metrics

in Practice - Using Software Metrics to Characterize, Evaluate, and Improve the

Design of Object-Oriented Systems, Springer.

[Li, Henry 1993] Li, W. and Henry, S., (1993), "Object-Oriented Metrics that Predict

Maintainability", Systems and Software, vol. 23, no. 2, pp. pp. 111-122.

[Lorenz, Kidd 1994] Lorenz, M. and Kidd, J.,(1994),Object-Oriented Software Metrics:

A Practical Approach, Prentice-Hall.

[Maletic, Collard 2004] Maletic, J. I. and Collard, M. L., (2004), "Supporting Source

Code Difference Analysis", in Proceedings of IEEE International Conference on

Software Maintenance (ICSM'04), Chicago, Illinois, September 11-17, pp. 210-

219.

[Mancoridis et al. 1999] Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.,

(1999), "Bunch: A Clustering Tool for the Recovery and Maintenance of

Software System Structures", in Proceedings of IEEE International Conference on

Software Maintenance, Oxford, England, August 30 - September 03, pp. 50-62.

194

[Mäntylä 2003] Mäntylä, M., (2003), Bad smells in software - a taxonomy and an

empirical study, Helsinki University of Technology, PhD Dissertation Thesis.

[Maqbool, Babri 2007] Maqbool, O. and Babri, A. H., (2007), "Hierarchical Clustering

for Software Architecture Recovery", IEEE Transactions on Software

Engineering, vol. 33, no. 11, November 2007, pp. 759-780.

[Marinescu 2004] Marinescu, R., (2004), "Detection strategies: Metrics-based rules for

detecting design flaws ", in Proceedings of 20th IEEE International Conference

on Software Maintenance (ICSM'04), pp. 350–359.

[Martin 2002] Martin, R. C.,(2002),Agile Software Development: Principles, Patterns,

and Practices, Prentice Hall.

[Mayrhauser, Vans 1995] Mayrhauser, A. and Vans, M. A., (1995), "Program

Comprehension During Software Maintenance and Evolution", Computer, vol.

Vol. 28 , No. 8, pp. 44-55.

[Mitchell, Mancoridis 2006] Mitchell, S. B. and Mancoridis, S., (2006), "On the

Automatic Modularization of Software Systems Using the Bunch Tool", IEEE

Transactions on Software Engineering, vol. 32, no. 3, pp. 193-208.

[Moha et al. 2008] Moha, N., Guéhéneuc, Y.-G., Le Meur, A.-F., and Duchien, L.,

(2008), "A domain analysis to specify design defects and generate detection

algorithms ", in Proceedings of 11th International Conference on Fundamental

Approaches to Software Engineering (FACE'2008).

195

[Montes de Oca, Carver 1998] Montes de Oca, C. and Carver, L. D., (1998), "

Identification of Data Cohesive Subsystems Using Data Mining Techniques", in

Proceedings of International Conference on Software Maintenance, pp. 16-23.

[Muller 1986] Muller, H. A., (1986), Rigi - A Model for Software system Construction,

Integration,, and Evaluation based on Module Interface specifications, Rice

University, PhD Dissertation Thesis.

[Munro 2005] Munro, M. J., (2005), "Product Metrics for Automatic Identification of

“Bad Smell” Design Problems in Java Source-Code", in Proceedings of 11th

International Software Metrics Symposium (METRICS 2005), pp. 15.

[Ng, Guéhéneuc 2007] Ng, K.-Y. and Guéhéneuc, Y.-G., (2007), "Identification of

behavioral and creational design patterns through dynamic analysis", in

Proceedings of 3rd International Workshop on Program Comprehension through

Dynamic Analysis (PCODA'2007), pp. 34-42.

[Pelleg, Moore 2000] Pelleg, D. and Moore, A. W., (2000), " X-means: Extending K-

means with efficient estimation of the number of clusters", in Proceedings of 17th

International Conference on Machine Learning, San Francisco, CA, pp. 727-734.

[Poshyvanyk, Marcus 2007] Poshyvanyk, D. and Marcus, A., (2007), "Combining

Formal Concept Analysis with Information Retrieval for Concept Location in

Source Code ", in Proceedings of 15th IEEE International Conference on Program

Comprehension (ICPC 2007), Banff, Canada, June 26-29, pp. 37-48

196

[Purushothaman, Perry 2005] Purushothaman, R. and Perry, D. E., (2005), "Toward

understanding the rhetoric of small source code changes", Transactions on

Software Engineering vol. 31, no. 6, pp. 511-526.

[Raghavan et al. 2004] Raghavan, S., Rohana, R., Podgurski, A., and Augustine, V.,

(2004), "Dex: A Semantic-Graph Differencing Tool for Studying Changes in

Large Code Bases", in Proceedings of 20th IEEE International Conference on

Software Maintenance (ICSM'04), Chicago, Illinois, September 11 - 14, pp. 188-

197.

[Ricca et al. 2010] Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., and Ceccato, M.,

(2010), "Influence Web Application Comprehension Tasks Supported by UML

Stereotypes: A Series of Four Experiments", IEEE Transactions on Software

Engineering, vol. 36, no. 1, pp. 96-118.

[Richner, Ducasse 2002] Richner, T. and Ducasse, S., (2002), "Using Dynamic

Information for the Iterative Recovery of Collaborations and Roles ", in

Proceedings of 18th IEEE International Conference on Software Maintenance

(ICSM'02), Montreal, Canada, October 3-6, pp. 34-43.

[Riehle, Berczuk 2001] Riehle, D. and Berczuk, S., (2001), "Types of Member Functions

in C++", http://www.riehle.org/computer-science/industry/publications.html.

[Riel 1996] Riel, A. J.,(1996),Object-Oriented Design Heuristics, Addison-Wesley.

[Robbes, Ducasse, Lanza 2005] Robbes, R., Ducasse, S., and Lanza, M., (2005),

"Microprints: A pixelbased semantically rich visualization of methods", in

197

Proceedings of ESUG 2005 (13th International Smalltalk Conference - Academic

Track) pp. 172 - 188.

[Robillard 2005] Robillard, M. P., (2005), "Automatic generation of suggestions for

program investigation", ACM SIGSOFT Software Engineering Notes, vol. 38, no.

5, May, pp. 11-20.

[Rosenberg, Scott 1999] Rosenberg, D. and Scott, K.,(1999),Use Case Driven Object

Modeling with UML: A practical Approach, Addison-Wesley.

[Salvitch 1999] Salvitch, W.,(1999),Problem Solving with C++: The Object of

Programming, 2nd ed., Addison-Wesley.

[Sharif, Maletic 2009] Sharif, B. and Maletic, J. I., (2009), "The Effect of Layout on the

Comprehension of UML Class Diagrams: A Controlled Experiment", in

Proceedings of IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT'09), Edmonton, Canada September 25,

pp. 11-18.

[Shearer, Collard 2007] Shearer, D. and Collard, M. L., (2007), "Enforcing Constraints

Between Documentary Comments and Source Code ", in Proceedings of 15th

IEEE International Conference on Program Comprehension (ICPC'07), Banff,

Alberta, Canada, pp. 271-276.

[Siff, Reps 1999] Siff, M. and Reps, T. W., (1999), "Identifying Modules via Concept

Analysis ", IEEE Transactions on Software Engineering, vol. 25, no. 6, pp. 749-

768.

198

[Staron, Kuzniarz, Wohlin 2006] Staron, M., Kuzniarz, L., and Wohlin, C., (2006),

"Empirical assessment of using stereotypes to improve comprehension of UML

models: A set of experiments", Journal of Systems and Software, vol. 79, no. 5,

pp. 727-742.

[Storey, Muller 1995] Storey, M.-A. D. and Muller, H. A., (1995), "Manipulating and

documenting software structures using SHriMP views", in Proceedings of 11th

International Conference on Software Maintenance (ICSM'95), pp. 275.

[Stroustrup 2000] Stroustrup, B.,(2000),The C++ Programming Language, Addison-

Wesley.

[Tonella 2001] Tonella, P., (2001), "Concept Analysis for Module Restructuring", IEEE

Transactions on Software Engineering, vol. 27, no. 4, July, pp. 351-363.

[Tonella 2003] Tonella, P., (2003), "Using a Concept Lattice of Decomposition Slices

for Program Understanding and Impact Analysis", Transactions on Software

Engineering, vol. 29, no. 6, June 2003, pp. 495-509.

[Tremblay, Cheston 2001] Tremblay, J.-P. and Cheston, G. A.,(2001),Data Structures

and Software Development in an Object-Oriented Domain, Prentice Hall.

[Tzerpos, Holt 1999] Tzerpos, V. and Holt, R. C., (1999), "MoJo: A Distance Metric for

Software Clustering", in Proceedings of WCRE'99, Atlanta, October.

[Vaucher, Sahraoui, Vaucher 2008] Vaucher, S., Sahraoui, H., and Vaucher, J., (2008),

"Discovering New Change Patterns in Object-Oriented Systems", in Proceedings

of 15th Working Conference on Reverse Engineering (WCRE'08), pp. 37-41.

199

[Weiss 1999] Weiss, M. A.,(1999),Data Structures & Algorithm Analysis in C++,

Addisson-Wesley.

[Wirfs-Brock 1993] Wirfs-Brock, R., (1993), "Stereotyping: a technique for

characterizing objects and their interactions", Object Magazine, vol. 3, no. 4, pp.

50-53.

[Wirfs-Brock, B., Wiener 1994] Wirfs-Brock, R., B., W., and Wiener, L., (1994),

"Responsibility-Driven Design: Adding to Your Conceptual Toolkit", ROAD, vol.

2, pp. 27-34.

[Workman 2002] Workman, D., (2002), "A Class and Method Taxonomy for Object-

Oriented Programs", Software Engineering Notes, vol. 27, no. 2, pp. 53-58.

[Yusuf, Kagdi, Maletic 2007a] Yusuf, S., Kagdi, H., and Maletic, J. I., (2007a),

"Assessing the Comprehension of UML Class Diagrams via Eye Tracking", in

Proceedings of IEEE International Conference on Program Comprehension,

Banff, Alberta, Canada, pp. 113-122.

[Yusuf, Kagdi, Maletic 2007b] Yusuf, S., Kagdi, H., and Maletic, J. I., (2007b),

"Assessing the Comprehension of UML Diagrams via Eye Tracking ", in

Proceedings of 15th IEEE International Conference on Program Comprehension

(ICPC 2007), Banff, Canada, June 26-29, pp. 113-122. .

[Zaidman, Demeyer 2008] Zaidman, A. and Demeyer, S., (2008), "Automatic

Identification of Key Classes in a Software System Using Webmining

Techniques", Journal of Software Maintenance and Evolution: Research and

Practice, vol. 20, no. 6, pp. 387-417

