
Effective Mining of Software Repositories
Marco D’Ambros

REVEAL
Faculty of Informatics

University of Lugano, Switzerland
Email: marco.dambros@usi.ch

Romain Robbes
PLEIAD Lab

Computer Science Department (DCC)
University of Chile, Chile

Email: rrobbes@dcc.uchile.cl

I. PRESENTERS

Marco D’Ambros earned his Ph.D. in October 2010 and
is currently a postdoctoral researcher at the REVEAL Group,
University of Lugano, Switzerland. He previously received
MSc degrees from both Politecnico di Milano (Italy) and the
University of Illinois at Chicago. His research interests lie in
the domain of software engineering with a special focus on
mining software repositories, software evolution, and software
visualization. He authored more than 25 technical papers, and
is the creator of several software visualization and program
comprehension tools.

Contact:
Dr. Marco D’Ambros
Faculty of Informatics
University of Lugano
Via G. Buffi 13, 6904, Lugano, Switzerland
web: http://www.inf.usi.ch/phd/dambros/
email: marco.dambros@usi.ch

Romain Robbes is an Assistant Professor at the University
of Chile. He earned his Ph.D. in December 2008, from the
University of Lugano, Switzerland and received his Master’s
degree from the University of Caen, France. His research
interests lie in Empirical Software Engineering and Mining
Software Repositories. He authored more than 30 papers
on these topics, including top software engineering venues
(ICSE, ASE), and best paper awards at WCRE 2009 and
MSR 2011. He is program co-chair of IWPSE-EVOL 2011,
and the recipient of a Microsoft SEIF award 2011.

Contact:
Prof. Dr. Romain Robbes
PLEIAD Lab, DCC,
University of Chile
University of Lugano
Blanco Encalado 2120, Off. 308
Santiago, Chile
web: http://romain.robb.es
email: romain.robbes@dcc.uchile.cl

II. GOAL AND OBJECTIVES

The overall goal of this tutorial is threefold: (1) provide an
overview of what can be learned from software repositories;
(2) teach how to effectively mine such repositories, describing
concrete techniques and tools; and (3) highlight the limitations
of current software repositories and MSR approaches, present-
ing novel repositories and data structures that can be used
instead. We expect a participant, after the tutorial, to be able to
(1) know to which extent MSR can help her in learning about
her software system, and for which tasks MSR techniques can
be employed; (2) apply concrete MSR approaches to support
software maintenance activities; and (3) be aware and take into
account the limitations of current MSR approaches.

In particular, the tutorial aims to answer the following
questions:

Overview
• Which repositories can be used to perform MSR?
• How are these repositories structured, and how

much data processing is necessary?
• How can I link data from several repositories

together?
• For what kind of tasks can I use MSR? For

what kind of tasks should I refrain to use MSR
techniques?

Techniques
• How can I leverage the information in software

repositories to empirically validate or invalidate
hypotheses on software engineering development?

• How can I evaluate the effectiveness of software
engineering tools and approaches using software
repositories?

• How can I analyze and understand the large quan-
tity of data, in order to monitor the evolution of
my system?

• How can I focus Quality Assurance efforts, in the
presence of limited resources?

Limitations
• What are the known issues with software reposi-

tory data that I need to take into account?
• Are there better data sources than conventional

software repositories?
• What can I expect from these alternative software

http://www.inf.usi.ch/phd/dambros/
http://romain.robb.es


repositories?

To tackle the above questions, we will survey and synthesize
the large literature that MSR has spawned in the last decade
(and more), starting with early work on software repositories,
detailing state of the art techniques, and highlighting the next
generation of data sources, and how it has the potential to
improve the accuracy of current analyses, open the door to
new ones, and to change the evaluation techniques commonly
used in MSR.

III. SCOPE

A. Intended Audience

This tutorial is intended for a variety of people, ranging from
project managers, practicitioners, to confirmed researchers and
prospective students. All attendees will get an overview of
MSR in research and practice, and learn about the current
techniques and potential pitfalls of MSR, as well as upcoming
techniques. In addition:

• project managers will learn how MSR can help in ad-
vancing and maintaining their software projects;

• practitioners will learn about concrete tools that they can
use in their daily activities;

• researchers will learn about the methodology involved in
empirical studies based on MSR; and

• prospective students will learn about open investigation
problems that they may want to invest themselves in.

To further all of these goals, we will provide an extensive
list of references that they can use to deepen certain topics.

B. Prerequisites

The participants should have a basic background in soft-
ware engineering and software development. Nonetheless, we
designed the tutorial so that no specific previous knowledge
in MSR is required.

IV. TEACHING METHOD

The tutorial will employ two interleaved teaching method-
ologies:

1) Lecturing with slides. We will present an overview of
MSR, as well as detailing MSR techniques and examples,
using a standard lecture methodology with slides. This
methodology is still unrivalled to transmit a large amount
of information in a short amount of time. Printed slides
will be provided in advance to the participants, to facili-
tate following the lectures. In order to break the potential
monotony of this style of lecturing, we will involve the
audience at regular intervals, as the human attention spans
is measured in minutes rather than hours. To achieve
this, we will regularly open the floor for questions, and
not hesitate to ask questions ourselves to the audience;
having short ”quizzes” is a well-known technique to raise
the attention of the participants, and let them gauge their
performance.

2) Demonstrating tools. To give a more interactive and ex-
citing tutorial we will showcase a number of MSR tools,
providing concrete examples and application scenarios.
This will be interleaved with the lecture, so as to—
again—break the potential monotony of a lecture involv-
ing slides only. By presenting and demoing working tools,
we will also demonstrate the taught MSR techniques in
practice, providing the participants with practical skills.



V. SUMMARY OF CONTENTS

A. Mining Software Repositories

A bit of history. At the first conference on software
engineering in 1968 [1] software maintenance was considered
a post production activity. The seventies were also the decade
in which Software Configuration Management (SCM) emerged
as a discipline. In 1975, Rochkind introduced the first SCM,
called Source Code Control System (SCCS) [2].

In 1980, Manny Lehman in his seminal work [3], [4] intro-
duced the laws of software evolution. In the meantime, SCM
systems continued their growth. In 1982, Tichy introduced
Revision Control System (RCS) [5], while four years later
the Concurrent Versioning System (CVS) emerged.

It was in the nineties that SCM received widespread at-
tention and usage. With the advent of the Internet and the
improvement in network bandwidth, software development
started to be distributed. The first bug tracking systems were
created: GNATS being the first in 1992, followed by Debbugs
in 1994, and Bugzilla in 1998.

In the second half of the nineties, SCMs became so used
and popular that researchers started to mine source code
repositories. The first approaches were proposed by Ball et al.
in 1997 to find clusters of files frequently changed together
[6], by Graves et al. in 1998 to compute the effort necessary
for developers to make changes [7] and by Atkins et al. in
1999 to evaluate the impact of tools on software quality [8].
These are among the seminal research works where the field
of mining software repositories has its roots.

In the first half of the current decade, software repositories
received more and more attention by researchers and practi-
tioners. In the meantime, software evolution started to be an
active and well-respected research field in software engineer-
ing, and mining software repositories matured and started to
be a research area on its own. In 2004, the first International
Workshop on Mining Software Repositories (MSR) was held
[9].

So, what is MSR? Mining Software repositories consists
in gathering, modeling, and exploiting the data produced by
developers and other stakeholders in the software development
process as they create a software system. This data comes from
various sources; first and foremost, we have version control
archives, such as CVS, SVN and Git; then, issue tracking
systems, such as Bugzilla, Jira, or Trac; finally, we also
have free-form communication archives, such as development
mailing lists, IRC chats, and blog posts.

After showing early MSR contributions as examples to
concretize the discourse, we focus on data sources: We detail
the format of the most common data sources, and how to
process it in ways that allows to build subsequent analyses, in
particular on the way the information from distinct repositories
can be linked in a coherent whole. After that, we go on the next
part of the tutorial, where we present an array of representative
MSR techniques, explaining their purpose and how they use
the information at hand.

B. MSR Approaches: the State of the Art

Based on the information available in software repositories,
a variety of studies have been performed, and techniques have
been proposed to assist the stakeholders of the development
process. We present a selection of MSR approaches, grouped
in categories. In each case, we take the stance of explaining
both the results of the approaches, but also to explain in great
detail how the evaluation was performed, as most, if not all, the
evaluations performed below made use of software repository
data.

Empirical Studies We demonstrate how one can use MSR
data to perform empirical studies by way of examples; we
then extract guidelines on performing empirical studies with
software repositories. The case studies we examine are:

• The seminal study of Mockus et al. on open-source
software development, investigating Apache and Mozilla
[10];

• Tu and Godfrey’s study of the evolution of Linux [11];
• The investigation by Bird et al. on the effect of distributed

development on the defect rate in Windows Vista [12];
• The study by Battacharya and Neamtiu on the impact of

programming languages on software defects;
• Callau et al.’s study on the usage of dynamic program-

ming language features [13];
• Shihab et al.’s empirical study of reopened bugs [14];
• and the empirical study by Posnett et al. on the influence

of pattern roles on change proneness [15].

Change prediction Change prediction tackles the problem
of identifying entities in a software system that are likely to
change next. Software repositories act as both a data source
and an evaluation device for change prediction approaches;
Hassan and Holt’s Development Replay approach [16] allows
to reliably and repeatably compare the the performance of
several change prediction approaches on a large amount of
historical data. Approaches using data mining techniques to
look for development patterns in the history of the system
[17], [18] were found to outperform approaches based on
coupling metrics [19]. These approaches are based on change
(or logical) coupling, the implicit dependency between two or
more software artifacts that have been observed to frequently
change together during the evolution of a system [20].

Defect prediction In a world were ressources are limited,
managers have to focus QA efforts on parts of a system; they
cannot afford to give equal attention to each and every source
code file. Defect prediction approaches tackle this scenario.
The role of these approaches is to classify files as potentially
buggy or non-buggy by considering various attributes of the
source code, such as its complexity or its propensity to change.

Software repository data can be used to evaluate the accu-
racy of these approaches, again by using historical reenactment
techniques. The approach in a nutshell revolves in comparing
the guesses of a given approach with the actual defects that
were reported during a given period of the life of a software
system.



Some of the best-performing approaches do make use of
a system’s history (age of a file, rate of change, number of
developers involved) [21], its defect repository [22], or the
conversations between developers [23]. Other approaches use
static source code metrics only [24]

Moreover, there exist a variety of performance metrics,
corresponding to different defect prediction scenarios. The
tasks vary from binary classification, to effort-aware ranking
[25]

Expertise and Bug assignment. The information in defect
repositories can be used to model the knowledge of developers
about the systems they work on. This can be used to recom-
mend a specific expert when help is needed over a particular
piece of code [26], [27].

A related problem is automatic bug assignment: using
information from software repositories, one can choose the
person to fix it whith greater accuracy, avoiding or reducing
the ”tossing effect”, when a bug is reassigned to a chain
of people before being finally solved [28], [?] . Yet another
related approach is the automated identification of duplicated
bug reports, either to suppress the duplicates, or to combine
the information of both bug reports to increase the quality of
the resulting report [29]

Code Search. With the massive amount of code freely
accessible on the internet, there is a fair probability that a given
problem has been solved already, and that an implementation
is available somewhere. All that is needed, is to find it. Several
source code search engines have been developed, such as
CodeGenie [30], or Portfolio [31].

Reuse of source code freely available raises further prob-
lems, due to potential incompatibilities with licenses. Several
approaches deal with these problematics, determining which
license a piece of code possesses, and whether the license
threatens its reuse or not [32].

Visual Evolution Analysis Sometimes, the best way to
understand the large amount of data present in the history of a
software system is to visualize it. We dedicate a part of the tu-
torial to present a selection of software visualization tools and
approaches that handle repository data, and some of the case
studies they were evaluated on. The Moose software analysis
platform features several evolutionary visualizations based on
the Hismo Metamodel such as Chronia [33], CodeCity [34],
or SPO [35]. Visualization has been applied to industrial case
studies with results, as shown by Telea and Voinea [36], based
on their CVSGrab tool [37], [38].

Other visualization approaches focus on visualizing change
coupling. These include the EvoGraph visualization approach
[39], that combines release history data and source code
changes to assess structural stability and recurring modifica-
tions, the Evolution Radar [40], and Kiviat diagrams [41].

Human Aspects Software is built by humans, and for
humans. As such, taking the human element out of the loop is
not advisable. If there is comparatively less work that makes
use of developer communication artifacts such as e-mails and
other free-form text communication (chats, wikis, blogs), there
is still some research interest. We show some of the results

that make use of this particular kind of repository [42], [43],
[44], [23], [45].

C. Limitations of MSR

If the amount of data available for MSR studies is a boon
for empirical research. However, this data comes with strings
attached. In this last part, we document the common threats to
the validity of empirical studies based on software repositories
data. We also go further, and highlight the shortcomings of the
current crop of software repositories for empirical research,
and demonstrate some of the possible solutions [46].

With the increasing importance of software repositories,
researchers observed that software development tools (e.g.,,
SCM, bug tracking systems, integrated development environ-
ment, etc.) were not designed to support software evolution
analysis and mining. The advent of MSR was a consequence
of the widespread adoption of tools such as SCMs and
defect tracking systems, which were created before researchers
started to mine software repositories [47]

limitations of SCM systems. We argued that existing
SCMs, such as CVS, SVN and SourceSafe, are not ade-
quate for software evolution analysis for several reasons [48]:
They are file-based instead of entity-based (classes, methods,
attributes in object-oriented languages) and thus operations
like renaming and refactorings have to be reconstructed with
heuristics [49], [50]; they record changes only at commit
time, and thus important pieces of information about the
development process are lost [51].

limitations of defect repositories. Defect repositories are
not immune to issues either; several researchers have cast
doubt about the accuracy of the information recorded in
them. Aranda and Venolia performed a study of coordination
activities around bug fixing from three major product divisions
at Microsoft [52]. They first queried the bug database—
containing rich bug histories—to extract the people involved
in the bug fixes, and then contacted and interviewed them. The
authors showed that the information stored in bug repository
only is not sufficient, and at times even misleading, to support
developers coordination for bug fixing. Other studies have
been focused on possible bias in bug fix datasets, and issues
in the change to bug linking process [53], [54].

What’s next? Considering versioning systems, the alter-
native we proposed [55] is to record the change activity
in the IDE, instead of recovering it based on versioning
system commits. We have shown how this improves MSR
activities, allowing for instance the fine-grained evaluation of
development tools, such as code completion tools [56], and
change prediction tools [57]. Other tools use IDE activity
data, among them Mylyn [58], [51], and Navtracks [59]. This
reflects the opinion of several leaders of the field, that future
MSR repositories will be based on tools recording fine-grained
activity [46].

For defect tracking systems, researchers analyzed the effi-
ciency of bug tracking systems in providing useful and relevant
information that developers can use to understand and fix
the reported bugs [60]. Based on these results, researchers



proposed methodologies to improve bug tracking systems [61],
[62], [63].

[64]

VI. STRUCTURE OF CONTENTS

We organized the tutorial as follows:
A. Overview of MSR research

1) What is MSR: The history of MSR and its role in
software development and evolution.

2) A handful of early MSR approaches to animate the
discourse.

3) What are software repositories, and what format do they
use. Description of CVS, SVN, Git, Bugzilla, Jira, Trac,
and Mailing List.

4) How to preprocess the data. Issues related to linking
accross versions, and accross repositories (defects, and
changes; emails and entities; bug-inducing changes and
their fixes).

B. MSR Approaches (presented together with their tools,
when applicable, and their evaluation methodologies).
1) Empirical studies that were done using MSR data, and

the methodology behind them.
2) Change prediction approaches: motivation, evaluation

methodology, and approaches.
3) Defect prediction approaches: motivation, evaluation

methodology*ies), and approaches.
4) Expertise and bug assignment.
5) Code search engines.
6) Evolution visualization engines and case studies.
7) Approaches considering human aspects, with a focus

on emails.
C. The limitations of MSR, and their potential solutions

1 Common threats to validity behind all MSR studies.
2 Limitations of current software repository: noise in the

data, loss of information, linking issues, biases, missing
types of data.

3 Proposed solutions to these issues: Alternative sources
of information, change-based software evolution, im-
proving defect archives.

D. Conclusions

VII. CONSTRAINTS/REQUIREMENTS

We have no specific requirements, save for the usual pro-
jector. An extra projector in order to display two screens at
the same time could be a plus during the tool demonstrations.

REFERENCES

[1] P. Naur and B. Randell, Software Engineering. NATO, Scientific Affairs
Division, Brussels, 1969.

[2] M. J. Rochkind, “The source code control system,” IEEE Transactions
on Software Engineering, vol. 1, no. 4, pp. 364–370, 1975.

[3] M. M. Lehman, “On understanding laws, evolution and conservation in
the large program life cycle,” Journal of Systems and Software, vol. 1,
no. 3, pp. 213–221, 1980.

[4] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[5] W. F. Tichy, “Design, implementation, and evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference
on Software Engineering (ICSE 1982). IEEE Computer Society Press,
1982, pp. 58–67.

[6] T. Ball, J.-M. K. Adam, A. P. Harvey, and P. Siy, “If your version control
system could talk,” in Proceedings of the ICSE Workshop on Process
Modeling and Empirical Studies of Software Engineering, 1997.

[7] T. L. Graves and A. Mockus, “Inferring change effort from configu-
ration management databases,” in Proceedings of the 5th International
Symposium on Software Metrics (METRICS 1998). IEEE Computer
Society, 1998, pp. 267–273.

[8] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus, “Using version
control data to evaluate the impact of software tools,” in Proceedings
of the 21st International Conference on Software Engineering (ICSE
1999). ACM, 1999, pp. 324–333.

[9] A. E. Hassan, R. C. Holt, and A. Mockus, “MSR 2004: International
workshop on mining software repositories,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE 2004). IEEE
Computer Society, 2004, pp. 770–771.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, 2002.

[11] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case
study,” in ICSM, 2000, pp. 131–142.

[12] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? an empirical case study
of windows vista,” in Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, 2009, pp. 518–528.

[13] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger, “How developers
use the dynamic features of programming languages: the case of
smalltalk,” in MSR, 2011, pp. 23–32.

[14] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K. Matsumoto, “Predicting re-opened bugs: A case study
on the eclipse project,” in Proceedings of the 17th Working Conference
on Reverse Engineering, 2010, pp. 249 –258.

[15] D. Posnett, C. Bird, and P. Devanbu, “An Empirical Study on the
Influence of Pattern Roles on Change-Proneness,” Empirical Software
Engineering, An International Journal, pp. 1–28, 2010.

[16] A. E. Hassan and R. C. Holt, “Replaying development history to
assess the effectiveness of change propagation tools,” Empirical Software
Engineering, vol. 11, no. 3, pp. 335–367, 2006.

[17] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proc. 26th International
Conference on Software Engineering (ICSE 2004). Los Alamitos CA:
IEEE Computer Society Press, 2004, pp. 563–572.

[18] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source
code changes by mining change history,” IEEE Transactions on Software
Engineering, vol. 30, no. 9, pp. 573–586, 2004.

[19] E. Arisholm, L. C. Briand, and A. Føyen, “Dynamic coupling measure-
ment for object-oriented software,” IEEE Trans. Software Eng., vol. 30,
no. 8, pp. 491–506, 2004.

[20] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of the 14th IEEE
International Conference on Software Maintenance (ICSM 1998). IEEE
Computer Society Press, 1998, pp. 190–198.

[21] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008). ACM, 2008, pp. 181–190.

[22] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in MSR, 2010, pp. 31–41.

[23] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular classes more
defect prone?” in FASE, 2010, pp. 59–73.

[24] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Software Eng., vol. 33,
no. 1, pp. 2–13, 2007.

[25] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proceeding of the 14th European Conference on Software Maintenance
and Reengineering (CSMR 2010). IEEE Computer Society, 2010, pp.
109–118.

[26] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International
Conference on Software Engineering. ACM, 2002, pp. 503–512.



[27] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive
software evolution,” in Proceedings of the 8th International Workshop
on Principles of Software Evolution (IWPSE 2005). IEEE CS Press,
2005, pp. 113–122.

[28] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering
(ICSE 2006). ACM Press, 2006, pp. 361–370.

[29] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008). ACM, 2008, pp. 461–470.

[30] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero,
P. Baldi, and C. V. Lopes, “Codegenie: using test-cases to search and
reuse source code,” in ASE, 2007, pp. 525–526.

[31] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in ICSE, 2011,
pp. 111–120.

[32] M. D. Penta, D. M. Germán, and G. Antoniol, “Identifying licensing of
jar archives using a code-search approach,” in MSR, 2010, pp. 151–160.

[33] T. Gı̂rba, M. Lanza, and S. Ducasse, “Characterizing the evolution of
class hierarchies,” in Proceedings of the 9th IEEE European Conference
on Software Maintenance and Reengineering (CSMR 2005). IEEE CS
Press, 2005, pp. 2–11.

[34] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” in ICSE, 2011, pp. 551–560.

[35] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes, “The small project
observatory: Visualizing software ecosystems,” Sci. Comput. Program.,
vol. 75, no. 4, pp. 264–275, 2010.

[36] A. Telea and L. Voinea, “Case study: Visual analytics in software product
assessments,” in VISSOFT, 2009, pp. 65–72.

[37] L. Voinea and A. Telea, “An open framework for CVS repository query-
ing, analysis and visualization,” in Proceedings of the 3rd International
Workshop on Mining Software Repositories (MSR 2006). ACM, 2006,
pp. 33–39.

[38] ——, “Multiscale and multivariate visualizations of software evolution,”
in Proceedings of the 2006 ACM Symposium on Software Visualization
(SoftVis 2006). ACM, 2006, pp. 115–124.

[39] M. Fischer and H. C. Gall, “Evograph: A lightweight approach to
evolutionary and structural analysis of large software systems,” in
Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE 2006). IEEE Computer Society, 2006, pp. 179–188.

[40] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change infor-
mation with the evolution radar,” IEEE Trans. Software Eng., vol. 35,
no. 5, pp. 720–735, 2009.

[41] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing multiple
evolution metrics,” in Proceedings of the 2nd ACM Symposium on
Software Visualization (SoftVis 2005). ACM, 2005, pp. 67–75.

[42] D. Pattison, C. Bird, and P. Devanbu, “Talk and work: A preliminary
report,” in Proceedings of the 5th International Working Conference on
Mining Software Repositories (MSR 2008). ACM, 2008, pp. 113–116.

[43] D. S. Pattison, C. Bird, and P. T. Devanbu, “Talk and work: a preliminary
report,” in MSR, 2008, pp. 113–116.

[44] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in ICSE (1), 2010, pp. 375–384.

[45] A. Bacchelli, “Exploring, exposing, and exploiting emails to include
human factors in software engineering,” in ICSE, 2011, pp. 1074–1077.

[46] M. W. Godfrey, A. E. Hassan, J. D. Herbsleb, G. C. Murphy, M. P.
Robillard, P. T. Devanbu, A. Mockus, D. E. Perry, and D. Notkin, “Future
of mining software archives: A roundtable,” IEEE Software, vol. 26,
no. 1, pp. 67–70, 2009.

[47] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm, W. Tichy,
and D. Wiborg-Weber, “Impact of software engineering research on the
practice of software configuration management,” ACM Transactions on
Software Engineering and Methodology, vol. 14, no. 4, pp. 383–430,
2005.

[48] R. Robbes and M. Lanza, “Versioning systems for evolution research,” in
Proceedings of IWPSE 2005 (8th International Workshop on Principles
of Software Evolution). IEEE CS Press, 2005, pp. 155–164.

[49] C. Gorg and P. Weisgerber, “Detecting and visualizing refactorings from
software archives,” in Proceedings of the 13th International Workshop
on Program Comprehension (IWPC 2005). IEEE Computer Society,
2005, pp. 205–214.

[50] F. Van Rysselberghe, M. Rieger, and S. Demeyer, “Detecting move
operations in versioning information,” in Proceedings of the 10th IEEE

European Conference on Software Maintenance and Reengineering
(CSMR 2006). IEEE Computer Society, 2006, pp. 271–278.

[51] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (SIGSOFT
2006/FSE-14). ACM, 2006, pp. 1–11.

[52] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proceedings of the
31st International Conference on Software Engineering (ICSE 2009).
IEEE CS Press, 2009, pp. 298–308.

[53] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,” in Proceed-
ings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2009). ACM, 2009, pp. 121–130.

[54] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[55] R. Robbes, “Of change and software,” Ph.D. dissertation, 2008.
[56] R. Robbes and M. Lanza, “Improving code completion with program

history,” Autom. Softw. Eng., vol. 17, no. 2, pp. 181–212, 2010.
[57] R. Robbes, D. Pollet, and M. Lanza, “Replaying ide interactions to

evaluate and improve change prediction approaches,” in MSR, 2010, pp.
161–170.

[58] M. Kersten and G. C. Murphy, “Mylar: A degree-of-interest model for
IDEs,” in Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD 2005). ACM, 2005, pp. 159–
168.

[59] J. Singer, R. Elves, and M.-A. D. Storey, “Navtracks: Supporting
navigation in software maintenance,” in ICSM, 2005, pp. 325–334.

[60] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
International Symposium on Foundations of Software Engineering (FSE
2008). ACM, November 2008, pp. 308–318.

[61] S. Just, R. Premraj, and T. Zimmermann, “Towards the next generation
of bug tracking systems,” in Proceedings of the 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing (VLHCC 2008).
IEEE Computer Society, 2008, pp. 82–85.

[62] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems,” in Companion to the 31th International Conference
on Software Engineering (ICSE Companion 2009). IEEE Computer
Society, 2009, pp. 247 –250.

[63] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: Improving cooperation between developers and users,”
in Proceedings of the 2010 ACM Conference on Computer Supported
Cooperative Work (CSCW 2010). ACM, 2010, pp. 301–310.

[64] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.


	Presenters
	Goal and Objectives
	Scope
	Intended Audience
	Prerequisites

	Teaching Method
	Summary of Contents
	Mining Software Repositories
	MSR Approaches: the State of the Art
	Limitations of MSR

	Structure of Contents
	Constraints/Requirements
	References

