Submitted to 2012 28th IEEE International Conference on Software Maintenance (ICSM)

Build System Issues in Multilanguage Software

Andrew Neitsch, Kenny Wong
Department of Computing Science
University of Alberta
Edmonton, Canada
Email: {neitsch,kenw}@cs.ualberta.ca

Abstract—Building software from source is often viewed as
a “solved problem” by software engineers, as there are many
mature, well-known tools and techniques. However, anecdotal
evidence suggests that these tools often do not effectively address
the complexities of building multilanguage software. To investi-
gate this apparent problem, we have performed a qualitative
study on a set of five multilanguage open source software
packages. Surprisingly, we found build system problems that
prevented us from building many of these packages out-of-the-
box. Our key finding is that there are commonalities among build
problems that can be systematically addressed. In this paper, we
describe the results of this exploratory study, identify a set of
common build patterns and anti-patterns, and outline research
directions for improving the build process. One such finding is
that multilanguage packages avoid certain build problems by
supporting compilation-free extension. As well, we find evidence
that concerns from the application and implementation domains
may “leak” into the build model, with both positive and negative
effects on the resulting build systems.

Keywords—build systems, multilanguage software, program-
ming languages

I. INTRODUCTION

Build systems turn source code into executable programs
by orchestrating the execution of compilers, code generators,
and other compilation tools. They take as input a specification
of which artifacts are produced from which other artifacts by
which tools, and perform the required operations to update
the project deliverables. A typical example of a build system
consists of a Makefile read by Make [1].

Nowadays, build systems may seem to be a solved problem.
Java developers using the Eclipse IDE have a “build auto-
matically” option on by default, which provides practically-
instantaneous builds with minimal setup. There are other build
tools for other languages with similarly advanced convenience,
correctness, and speed [2].

But most advances in build tools have focused on building
single-language software. What about multilanguage software?
The appeal of using multiple programming languages is to ex-
ploit their complementary strengths. These benefits, however,
may be outweighed by the burden of creating and maintaining
a build system that supports multiple languages. For example,
Eclipse also automatically builds C/C++ code, and developers
commonly integrate Java with C/C++ code via the Java Native
Interface (JNI). But Eclipse does not support JNI builds;
instead, JNI developers must understand the internals of Java

978-1-4673-2312-3/12/$31.00 © 2012 IEEE

Michael W. Godfrey
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada
Email: migod@uwaterloo.ca

and C++ build tools in order to manually create Makefiles
extending Eclipse’s auto-generated ones [3, p. 10].

By multilanguage software we mean software written in
multiple programming languages, in which the parts written
in different languages are both necessary and interdependent
in the implementation. For example, we would not consider a
database server written entirely in C to be multilanguage just
because there is a Java client library available, because Tcl
is used for running unit tests, or because the documentation
viewer is a standalone GUI application written in Python.

Experience with tools such as Eclipse suggests that while
there are many mature tools for building single-language
software, the situation may be different for multilanguage soft-
ware. Our investigation is relevant not only to developers and
managers maintaining multilanguage projects, but also those
considering using new languages on existing projects. Also,
this work is applicable to developers and adopters of open-
source packages, for whom the inability to build the software
in uncertain deployment environments is a serious obstacle
to contribution and use. We investigate and summarize the
potential issues, and offer research directions.

A. Overview

We investigate the issues involved in build systems for mul-
tilanguage software by examining a selection of open-source
multilanguage software packages. Our research questions are:

RQ1) What are the major issues in building multilanguage

software?

RQ2) How can these build issues be addressed?

RQ3) Why do these build issues occur?

As well, we outline potential research implications in terms
of improving build processes and tools.

Our qualitative study procedure has three major stages.
First, we select five multilanguage software packages from
Ubuntu 9.10. Then, we attempt to build the packages and
explore both the build problems we encounter and build system
features that prevent problems. Finally, we compare observed
build problems and means used to avoid those problems across
packages, producing both recommendations for practitioners
and promising directions of investigation for researchers.

There are three main contributions of this work:

1) In our study, we found that four of the five randomly-

selected multilanguage packages have build systems that

require manual intervention to build or rebuild a running
development version from source code. The fifth also
requires intervention in certain cases. We believe that
build systems for multilanguage software are, in general,
error-prone, and therefore understanding and addressing
build system problems is important for software main-
tenance.

2) We present patterns and anti-patterns that summarize
the key problems, by comparing how the five different
build systems succeed or fail in similar situations.

3) We found that a likely cause of some build problems
was the presence of abstractions from application and
implementation domains that “leaked” into the build
system. This phenomenon can have both positive and
negative effects with respect to buildability.

The remainder of this paper gives background information,
details our attempts to build each package, describes the build
(anti-)patterns, and discusses our results. We conclude with
discussions of threats to validity, related work, and a summary.

II. BACKGROUND

In this section, we discuss build dependencies, describe the
phases of the build process, how they relate to build systems
that appear later, and define object-oriented build systems.

The relationships specified among artifacts and tools in a
software package are called dependencies. They are used for
building software from scratch and for incremental rebuilds.
After changes to source artifacts of already-built software, it
is faster to rebuild only those parts of the software that depend
on the changed artifacts. The build system uses dependencies
between different artifacts to check whether they are consistent
with each other, and brings them up-to-date if not. Depen-
dencies on artifacts that change infrequently, such as compiler
versions, can be omitted for faster but less-safe builds. Borison
has formalized these concepts [4], [5].

Software builds consist of three main phases: configuration,
construction, and packaging. These correspond to finalizing
the dependency structure, updating artifacts by traversing the
dependency structure, and gathering artifacts for deployment.

o The configuration phase entails deciding exactly what
to build: which sources, features, compilation tools, li-
braries, and platform capabilities to use. The output is an
automatically buildable system. This phase can involve
activities such as scripts determining whether a platform
provides support for optional features, or a developer
selecting between ‘“Release” and “Debug” variants.

o The construction phase uses the configuration to execute
the necessary steps to produce end-goal artifacts such as
executable binaries, documentation, and unit test reports.

e The packaging phase collects the artifacts produced by
the build phase for distribution, typically as platform-
specific installable packages, e.g., Ubuntu . deb files.

There is necessarily some overlap between these phases.
Some dynamic configuration decisions may be interleaved
with construction, and the final installable package is often
an artifact produced by the construction phase.

The complexity of each phase and standard methods for
performing them varies by programming language:

e C/C++ software has complicated configuration and con-
struction phases because of the need to support enormous
platform variation. The time-consuming nature of C and
especially C++ compilation means that C/C++ build
systems must correctly support incremental builds.
autotools [6] is a popular build tool for C/C++ software.
It is used by more than 50% of Ubuntu packages with
C/C++ source code. It can query for platform details such
as word size or available tools and libraries, and/or gener-
ate a corresponding Make-based build system. Packaging
is often handled by distributing software in source form
with an autotools configurator and build system generator.

e Java’s write-once-run-anywhere feature results in
straightforward configuration and packaging phases.
Typically, all source code is byte-compiled to a single
JAR archive for distribution.

o The build phase for scripting languages such as Python,
Perl, and Ruby involves only optional byte-compilation.
Build tools for these languages often provide advanced
configuration- and packaging-phase functionality such
as installing prerequisite libraries, building C-language
extensions, and uploading to a central package repository.

Build tools implemented as APIs in general-purpose pro-

gramming languages are called object-oriented build tools, and
build systems dynamically created by such tools are object-
oriented build systems. Such build systems are composed
of objects that can be subclassed, queried, and mutated.
This functionality allows projects to dynamically modify their
build systems, and to load third-party extension modules that
automatically provide build features such as documentation
generation, running of unit tests, and production of code
quality metric reports. Examples of object-oriented build tools
include SCons, Python’s distutils, and Ruby’s Rake.

Methods developed for specific languages may not be opti-

mal for building multilanguage software. For example, distutils
has some support for building C extensions, but that is an
artifact-oriented [7] process with configuration-phase emphasis
on determining platform capabilities, while Python builds are
task-oriented with configuration-phase emphasis on satisfying
prerequisites. Using autotools for the Python part of the build,
or distutils for the C part, is likely to be problematic due to
missing language-specific features, and because the tools are
not designed to integrate with each other.

III. CASE STUDIES

From among the 16153 packages in Ubuntu 9.10, we
selected five multilanguage packages as case studies, without
knowing ahead of time how they would build. To assist us
in this, we built a tool that used filename patterns similar to
those of Robles [8] and Karus and Gall [9] to classify the
programming languages of 101 GB of Ubuntu source code. We
used these classifications to identify multilanguage packages.
The selected packages, shown in Table I, are diverse along
several dimensions:

TABLE I
SELECTED MULTILANGUAGE PACKAGES

Package Application type Languages Industrial KSLOC = Age (years) | Committers
synopsis Source code documentation = C, Python No 94 9 5
python3.0 = Programming language C, Python No 585 18.5 150
gnat-gps IDE Ada, C, Python Yes 450 5 17"
axiom Computer algebra C, Lisp, Scratchpad =~ Yes and No 360 37 417
ruby-prof | Profiler C, Ruby No 4 2.5 4

“Undercounts; the studied gnat-gps and axiom versions have only 1 and 5 years, respectively, of public commit history

o Various application types.

o Industrial and non-industrial packages. gnat-gps is
a proprietarily-developed software product of AdaCore.
axiom was a closed-source IBM product that was open-
sourced after being discontinued as a commercial product.
Most of its source was industrially developed, but the cur-
rent build system was written by open-source volunteers.

o Various package sizes as measured in Kilo Source Lines
Of Code, i.e., 1000s of non-blank non-comment LOC.

e Various ages, measured in years from the package’s first
release to the release of the version studied.

o Various team sizes and vastly different committers-per-
source-line-of-code ratios.

In this early exploratory study, we simply want several
multilanguage packages to study, and use random sampling
rather than biasing ourselves toward the usual open source sub-
jects, such as Mozilla. The resulting selection is diverse along
non-build-system-specific dimensions. For future qualitative
studies to investigate along these dimensions in more detail,
purposive selection [10] of packages would be appropriate.

We attempt to build each package and consult sources such
as documentation, mailing list archives, and source code in
order to answer the following questions which address the
concerns of user, build expert, and developer stakeholders.

e Overview: What does the software do and which parts
are written in which languages?
o Build system: What kind of build system does it use?
o Build problems: What, if any, problems are encountered
when building it? When rebuilding it after a change?

In this paper we present major build problems encountered.

For each package, we build the original vendor source
code on Ubuntu, to mimic typical build scenarios such as: a
Unix end-user installing downloaded source code; a developer
making an initial change to a piece of software they use; and a
build expert examining a package to improve its build system.
We use Ubuntu because it is very popular, and has thousands
of packages with plain text metadata for all of them [11], [8].

Our expectation is that each package contains a build
system that “just works”—one capable of quickly producing
an executable binary without requiring any manual setup,
intervention, or source code modification, and that will quickly
produce an updated executable after source code changes. We
also expect that, to reduce the feedback time from making
changes to seeing them working, and to isolate development
versions, the build system can skip the packaging phase and
the software can run directly from the build directory.

configuration

JavaDoc Access HTML
z;adng)rmaetg rs comment restrictor formatter
extractor

Annotated
declaration

=
/X

Abstract syntax
graph

parse trees
e libsynopsis

Parsers

[C++ | [Python | [IDL | [Cpp |
s/

Libraries

Legend
API GBI Data flow
| Implementation | C++

Fig. 1. synopsis architecture and languages

One well-known issue with building open-source software
is that of missing or incompatible versions of tools and
libraries [2, Ch. 15]. One must recursively install compatible
versions of all required packages. We attempt to automate this
by having Ubuntu’s package manager automatically install all
build- and runtime-prerequisite packages.

Case study 1: synopsis

Overview: synopsis is a source-code documentation tool
that produces API documentation in formats such as HTML
from specially-marked source code comments. It processes
Python, IDL (Interface Description Language), C, C++, and
unpreprocessed C/C++; these are the languages of an ex-
perimental CORBA-based multilanguage windowing package
called Berlin/Fresco [12] for which synopsis was developed.

The package provides a command-line interface and Python
APL. It is written mostly in Python. Four of the five source-

code parsers are written in C/C++, but create Python objects
internally. The parsers are modified versions of previously-
existing open-source packages: the Python parser uses the
compiler and tokenize modules built in to Python, while
the IDL, C, C++, and Cpp parsers are based on the third-party
omniORB, ctool, OpenC++, and ucpp parsers, respectively.

As an example of a multilanguage architecture, the archi-
tecture of synopsis is shown in Fig. 1.

Build system: synopsis uses the standard Python distutils
build tool, and builds the parsers written in C++ with inde-
pendent, nearly-identical autotools-based builds created by the
synopsis authors. The builds use the makedepend tool to
automatically extract dependencies for header files. Because
each subproject is built as a shared-library, inter-subproject
dependencies between binary objects are not needed.

Build problems: Multiple library search paths must be
manually configured before development builds will run. The
subprojects that are modified versions of independent open-
source projects are built independently. Running synopsis
after it is built is complicated by the fact that the different build
systems put their build products into five different temporary
folders, all of which must be added to library search paths.

The synopsis README file describes a synopsis-
specific configuration-file option to reduce the number of paths
that need configuring. However, the README file notes that
builds configured in this way should not be installed, as the
installer will “get confused and not install extensions.”

Software does not run on case-insensitive filesystems. In our
first attempt at running the software we built, we were working
in Ubuntu using disk space on a Mac OS X network drive.
The Mac OS X filesystem is case-insensitive; synopsis’s at-
tempts to load the Python Synopsis.Parsers.Cxx module
collided with the presence of a script called synopsis.py.
We used a Linux filesystem for the remaining case studies.

PDF documentation fails to build due to a bug in the third-
party xmlroff tool. xmlroff gives an error about a ‘missing
namespace binding’ for XML input, with an erroneous line
number that does not change when the XML input changes.
However, the HTML documentation did build successfully.

Summary: synopsis is mainly Python with multiple C++
modules that are modified versions of pre-existing open-
source projects. The C++ modules are independently built
by autotools-based build systems that automatically extract
dependencies. Extensive manual adjustment of library search
paths is required in order to run. The package has case-
collision problems on case-insensitive filesystems. PDF docu-
mentation does not build due to a bug in a third-party tool.

Case study 2: python3.0

Overview: Python is an interactive general-purpose pro-
gramming language. The interpreter and built-in classes such
as list are written entirely in C. This separation eliminates
bootstrapping issues.

The standard library consists of about 200 top-level mod-
ules. About 80% of these modules are written in Python, 30%
in C, and 10% using both C and Python.

Build system: The build system uses autotools for config-
uration. Then a handwritten Makefile compiles together the
interpreter and the few standard library modules written in C
that are required by distutils. At this point distutils can run,
and it builds the rest of the standard library.

Build problems: We encountered no problems building
python3. 0. It just worked.

However, the manually-specified build dependencies can
cause rebuild issues. All interpreter object files are declared
as depending on all exported header files; changing any public
header file forces a lengthy rebuild of all of Python. But some
non-exported header files, such as Python/importdl.h, do
not appear in any build rules, and changes to them are ignored.

Summary: python3.0 uses an autotools-based build sys-
tem with a single handwritten Makefile. This particular hand-
written Makefile leads to maintenance problems. There are no
bootstrapping issues in running Python before Python is built,
because the language core is implemented entirely in C.

Case study 3: gnat-gps

Overview: gnat-gps, or GNAT Programming Studio, is
an IDE primarily for Ada but also C/C++, developed by
AdaCore, who also develop the GNAT Ada compiler.

Much of gnat-gps is written in Ada, with significant
portions of the user interface implemented using a Python
plugin mechanism. gnat-gps uses the GNAT Ada compiler,
also written in Ada, as a linked library for Ada parsing. Nearly
all of gnat-gps’s C code is a modified version of Red Hat’s
Source-Navigator C/C++ fact extraction and indexing package.
It executes in a separate process and we do not consider it part
of gnat-gps proper.

The mechanism for extending the user interface via Python
plug-ins is also available to end-users who save Python scripts
in ~/.gps/plug-ins. It provides concise access to the
IDE’s object model. For example, there is a 60-line example
plug-in that implements a soft tabs feature, so that pressing the
tab key in the source editor inserts the syntactically appropriate
amount of indentation rather a literal tab character.

Build system: The build system uses the GNAT Project
Manager, or gpr for short. It is an Ada-specific build tool that
implements hierarchical build systems for Ada [13]. Project
files for gpr are text files with Ada-like syntax.

There is also a hierarchy of Makefiles to build C portions
of the source code, with a structure similar to that of the Ada
build hierarchy.

Build problems: We encountered many problems trying to
build gnat-gps; ultimately, we were unable to build using
the vendor-supplied build system, and were forced to use a
replacement written in frustration by the Ubuntu maintainer.

gpr failed to parse conditionals in the project files, even
though they were nearly identical to that in the manual. We
had to manually remove each conditional.

Link errors due to incompatible changes in Gtk prevented us
from building. There were struct field name differences such as
GtkEntry.x n_ bytes versus GtkEntry.n bytes be-
tween the system GUI toolkit library and its Ada bindings.

Ubuntu packager rewrites build system. Others have also
struggled with this build system. We eventually examined the
Ubuntu patches for gnat-gps and found that the Ubuntu
packager for gnat—-gps had written a new build system. In
the source code of his replacement gps.gpr, he complains
about the vendor system’s “complex structure of project files
importing and including each other, brittle configure scripts,
[and] evil recursive Makefiles and Makefile fragments.”

He replaced dozens of gpr project files and Makefiles with
one gpr file and one Makefile. All non-Source-Navigator C
code is compiled into a static library, all Ada code is compiled
as a single project, then the two are linked together.

Once properly configured to find all of the source code, gpr
handles all Ada source file dependency issues automatically.

Once built, the software did not run properly from the build
directory. Until it was installed, icons were missing, and many
dialogs which are rendered from XML templates were blank.

Summary: gnat-gps is difficult enough to build that the
Ubuntu maintainer rewrote the build system. However, most
of these build system problems are not an issue for end-users
because the Python plug-in mechanism requires no building.

Case study 4: axiom

Overview: axiom is an interactive computer algebra pack-
age that implements a language called Scratchpad. It was
originally developed in 1971 for IBM mainframes [14]. It
includes a library of definitions and algorithms for hundreds
of algebraic structures in mathematics and computer science.

Most of the source code is in literate format, consisting of
1.5 million lines of mixed source and documentation expressed
in ISEX macro code. Extracted to individual source files, it is
roughly 360 KSLOC. The current maintainer, once a developer
of axiom at IBM, chose to convert to a literate format to
preserve knowledge of how and why the package works.

The Scratchpad interpreter-compiler is written in Lisp and
compiles Scratchpad to Lisp, which can then be interpreted or
compiled to C, which can be compiled to machine code. All
of the mathematical code is written in Scratchpad. axiom’s
interface is primarily a teletype, but there are rudimentary
graphics and documentation interfaces implemented in C that
communicate with axiom via sockets.

Build system: The source code is embedded in IETEX
files individually as large as 7 MB. A provided tool extracts
individual source files and Makefiles from the IATEX code and
calls Make. All changes must be applied to the IXTEX sources,
which must then be extracted en masse and recompiled from
scratch. There is no provision for incremental builds.

The major steps of the build process are:

1) Build GCL (GNU Common Lisp) and statically link

axiom-specific routines into the Lisp binary.

2) Build the Scratchpad interpreter-compiler.

3) Compile the math libraries.

4) Run regression tests.

Build problems: We were unable to build axiom at all
on Ubuntu 9.10 x86_64. axiom’s build system was so prob-
lematic that we consider it an outlier and exclude its more

unusual build problems from consideration of general build-
system problems. We experienced many build problems with
GCL and then axiom, working through mysterious errors
such as Command not found and cannot trap sbrk
and Cannot read address and I'm not an object
before narrowing down the problem.

axiom relies on GCL, which is broken on this version
of Ubuntu. The fundamental issue preventing the build from
succeeding is that GCL’s compiler::link function does
not work on this version of Ubuntu, due to incompatibilities
between system tools and GCL’s nonstandard symbol tables,
which are appended to the end of the binary object files outside
any section structure. This is not the first time axiom has been
unbuildable; the maintainer documents in section 0.3.2 of the
source code that when axiom was open-sourced, it had been
ported from GCL to Codemist Common Lisp (CCL), but he
ported it back to GCL, being unable to get the CCL-based
version to build. However, a build on Ubuntu 10.10 using the
Ubuntu build script did work on the first try.

The build system inadvertently ignores build errors. Con-
sider this Makefile fragment:

; cd ${GCLVERSION}; \

./configure ${GCLOPTS}; \

S{ENV} S${MAKE}; \

echo '(progn (load "lsp/sys-proclaim.lisp")' \
' (system: :save-system "${OUT}/lisp"))’ \

| unixport/saved_gcl

gcldir:

It attempts to configure GCL, build GCL, and save a new
lisp image, without stopping if any of the commands fail.
These shell commands need to be joined with conditionals
‘s &’ rather than the ‘;’ sequential list separator.

Summary axiom is impossible to build on Ubuntu 9.10
x86_64 because it relies on a broken lisp, but other aspects of
the build system such as lack of error detection and absence

of incremental builds make it difficult to determine even that.

Case study 5: ruby-prof

Overview: ruby-prof is a profiler for the Ruby program-
ming language. It can be used as a command-line tool or as a
library, providing raw profile data output or formatted cross-
referenced HTML output. The profile data capture module is
written in C, and everything else is written in Ruby.

Build system: The ruby-prof project uses Rake, an
object-oriented build system implemented in Ruby. Strangely,
the C module is not built by the Rake build system. Rake
handles unit tests and packaging, but instead of building the
C module, Rake records the need for a build in metadata
processed at installation time. At installation time, Makefiles
are generated and the C profile capture module is built.

ruby-prof provides a RubyProf::ProfileTask class
to integrate profiling into the builds of other Rake projects.

Build problems: The mkmf-library-generated Makefile for
the C extension has no dependency rules on header files. Make
will unhelpfully say, “Nothing to be done” if declarations in
header files have changed but the . c file has not.

There is no mechanism to keep the source code and a
platform-specific binary in synchronization. Having compila-

TABLE II
BUILD ISSUES

Patterns and
Antipatterns
Antipattern: Filename

synopsis python3.0

- case collision

Collision
Antipattern: Installation | - requires excessive + automatically checks
Required runtime path setup if in build directory

Antipattern: Unverified
Third Party Software

- uses buggy xmlroff

Antipattern: Ignored + build error detected

Error immediately

Antipattern: Incorrect + automatic dependency ' - manually specified

Dependencies extraction dependencies are
incorrect

Pattern: Build-Free + can extend with

Extensibility scripts

Pattern: Object-Oriented + distutils used for both

Builds standard library and

third-party extensions

tion not occur until installation time can be problematic. Win-
dows machines do not usually have compilers. ruby-prof
addresses this with a pre-built Windows .d11 module in-
cluded in the source distribution. But there is no automated
mechanism to keep it up-to-date with the source code.

Summary ruby-prof is tiny compared to other projects in
this selection. But there are still build system issues. However,
these are arguably bugs in standard Ruby libraries like mkmf
that could improve as the ecosystem matures. For example,
recent releases of ruby—-prof omit pre-built Windows .d11s,
because newer versions of the Windows Ruby installer link to
a package containing a C compiler to allow C extensions and
Ruby packages to be built at install time as intended.

IV. BUILD PATTERNS AND ANTI-PATTERNS

By comparing build problems across the five different
packages, we see both common build problems among the
packages and how other packages avoid the same problems.
We summarize these findings in terms of build patterns and
anti-patterns [15], which cover the major issues encountered.

We use the following template to structure the findings:

o Description: What is the pattern or anti-pattern?

o Consequences: What are its potential outcomes?

o Evidence: What evidence is there that it exists, particu-
larly in the case studies?

e Remedies: For an anti-pattern, how can it be fixed?

o Applicability: Does it apply to software implementation,
build systems, or builds of multilanguage software?

e Research directions: What research work could help
address, support, or explore this pattern or anti-pattern?

The distinction between remedies and research directions is
that remedies can be implemented in the short-term by prac-
titioners, while research directions represent more systematic
studies, solutions, and tools to produce in the longer term.

The applicability heading also identifies which
(anti-)patterns may apply to single-language software.

gnat-gps axiom ruby-prof

- fails to load resources
from build directory

- gpr failure

- incompatible Gtk
header file change

+ build error detected

- requires GCL, which
fails to work

- GCL build failures

immediately ignored

+ gpr handles - auto-generated build
dependencies system omits all
automatically dependencies

+ python plugin + can extend using

mechanism Scratchpad language

+ package exports build
functionality

+ library upgrades can
fix build problems

The findings are summarized in Table II, where a minus sign
indicates build issues that are instances of an anti-pattern, and
a plus sign indicates build issues that exemplify a pattern or
resolve an anti-pattern.

Anti-pattern: Filename Collision

Description: Source code files have names that cause build
or run problems on certain filesystems. Similarly-named files
may be confused on case-insensitive filesystems. Specifica-
tions of legal filenames may conflict across filesystems.

Consequences: Software may not build or run on some
operating systems, or on clients of certain network filesystems.

Evidence: When running synopsis on Ubuntu using a
filesystem served by Mac OS X, the Synopsis module cannot
be loaded since it is confused with the synopsis.py script.

Remedies: Files must be renamed to avoid conflicts. Mean-
ingful replacement names likely require human input.

Applicability: This anti-pattern is a build-system-specific
issue. There may be cross-language filename compatibility
issues, but we do not encounter any in the study.

Research directions: Projects that support a variety of plat-
forms are likely to have discovered and resolved this issue. In
general, however, it would be useful to investigate and devise
lint-like checks for the portability of build systems.

Anti-pattern: Installation Required

Description: A newly-built software package must be in-
stalled before it can be run.

Consequences: New developers may believe they made a
mistake when their newly-built software does not run. For
all developers, it is slow to re-install a package after every
compilation. Care is also needed to avoid installations of de-
velopment software from disrupting non-development activity.

Evidence: synopsis requires extensive manual path setup
to run from its build directory. gnat-gps also has problems
running from its build directory, such as icons and certain
dialogs not showing up properly. However, python3.0 has

startup routines that check whether it is running from its build
directory, and adjusts search paths accordingly.

Remedies: One way to address this problem for small
projects is to keep the file layout of the build as close to that
of the deployment as possible. For larger projects, specific
remedies such as python3.0’s startup check may be needed.

Applicability: This is a general build issue, but is more of
an issue in multilanguage software because search paths and
resource loading must be set correctly for multiple languages.

Research directions: Exploration of the underlying path
management issue could lead to standard libraries for man-
aging resource paths, including between languages. Another
potential improvement is devising general support for the
notion of “run where built” in build frameworks.

Anti-pattern: Unverified Third Party Software

Description: A package relies on third-party software, but
this software is used without specifically testing at configura-
tion time whether the required functionality works.

Consequences: A bug or incompatibility in third-party soft-
ware may cause the build to fail in a way that makes the
original package seem at fault.

Evidence: synopsis was unable to produce PDF docu-
mentation due to a bug in xmlroff. The Ada build tool gpr was
unable to handle certain syntax in gnat—gps’s build scripts.
Despite axiom shipping code and patches for three versions of
GCL, axiom could not be built at all due to an incompatibility
between the GCL Lisp implementation and the Ubuntu Linux
object file format. These problems occurred despite using the
Ubuntu package manager to install all the prerequisites.

Remedies: Consider how autotools checks that the C com-
piler works as expected. That is, autotools tries to compile
a small C program and verify that the compiler produces a
runnable executable with the expected behaviour. If this fails,
it may try to find and use other C compilers. Otherwise, the
build is aborted with a notice saying to fix the C compiler
before the build can proceed. Similar tests can be done at
configuration time for other third-party software.

Applicability: This is relevant to all build systems, but may
be more common in build systems for multilanguage software
due to use of less-popular tools such as gpr and GCL for less-
popular languages such as Ada and Lisp. GCL in particular
has not had an official release on its home page since 2005.

Research directions: Maintaining compatibility between
parallel evolving software projects is a general software prob-
lem. However, in the realm of builds, one could expand
the autotools approach by gathering and developing basic
functionality and compliance tests for other common software,
and allow these tests to be used by a variety of different build
frameworks.

Anti-pattern: Ignored Error

Description: Errors in the build process are not detected or
trapped immediately.

Consequences: The root cause of a failed build may have
occurred much earlier than when the failure is manifested,
making it more difficult to pinpoint.

Evidence: axiom’s build system tries to compile GCL but
inadvertently continues even if the compile fails, and the
result is an error later in the build when GCL is needed.
For synopsis, python3.0, and gnat-gps, while the build
errors we saw led to immediate halts, their Makefiles have
build steps whose failure could be ignored inadvertently.

This anti-pattern is common when using Make with com-
plex inline shell commands. While Make will abort a build
if an individual shell command returns an error, by default it
will abort sequences of commands chained by the ; operator
or in for loops only if the /ast command fails. This subtle
distinction is not well-known. One popular Make textbook
briefly mentions it as “one of the most important aspects
of programming robust Makefiles” [16, p. 236], but many
examples throughout the same text exhibit this anti-pattern.

Remedies: Developers can detect more errors in Make by
using && instead of ;, or by adding SHELL = /bin/sh -e
at the beginning of Makefiles. However, this involves under-
standing the subtle differences in error-handling behaviour of
various shell script operators.

Other specific fixes may be needed for other build tools.

Applicability: Ignoring error codes is a general software
issue. However, in the realm of build systems, the interacting
semantics of Make and shell scripting make it easier for errors
to be ignored inadvertently.

Research directions: The specific issue with Make is largely
amenable to automated detection and correction. More gener-
ally, ignored build errors could be detected by tracing tools
that monitor the return status of all executed commands to
abort the build if a critical one fails. However, developers
will sometimes need to intentionally ignore errors from some
commands.

Anti-pattern: Incorrect Dependencies

Description: Build dependencies are specified manually,
which is error-prone.

Consequences: Time is wasted rebuilding parts that do not
need to be rebuilt, while parts that need to be rebuilt are not.

Evidence: For its C/C++ parts, synopsis uses autotools-
generated build systems that automatically extract dependen-
cies, and that even work between projects due to the use
of shared libraries. The Ada build tool used in gnat-gps
handles all source dependency issues automatically [13].
python3.0 uses manually-specified dependencies that are
incorrect—many header file changes forces full rebuilds, while
some are ignored by the build system. ruby-prof uses
an automatically-generated build system that fails to include
dependencies for any of its nine C header files.

Remedies: Use a build tool that generates or resolves build
dependencies automatically.

Applicability: This is a build-system-specific issue. Because
so much build system research focuses on dependencies, we
expected that looking at multilanguage packages would turn
up interesting cross-language dependency issues, but that is
not the case. This may be merely due to the small sample
size.

Research directions: Most prior research has focused on this
concern. Surprisingly, it was not a major issue in our study;
even the python3. 0 rebuild issue is somewhat contrived.

Pattern: Build-Free Extensibility

Description: Contributions to projects are incorporated
through a run-time extensibility mechanism.

Consequences: Build system problems are avoided by using
extensibility mechanisms that do not require building the main
software package.

Evidence: All case studies have a dynamic extension mech-
anism. This may be a common design in multilanguage soft-
ware. In particular, python3.0’s library can be extended by
writing Python source code files. gnat-gps can be extended
with a Python-language plugin mechanism that only requires
placing a source code file in a special directory. axiom’s math-
ematical capabilities can be extended using the Scratchpad
language it implements. Also, synopsis and ruby-prof
provide object-oriented extension mechanisms.

Applicability: This is not a multilanguage issue per se,
but adding build-free extensibility mechanisms is usually
implemented via adding a scripting interface. Once that is
done, developers can find it easier to make some types of
core changes via the scripting interface—as happened with
gnat-gps—and the package becomes multilanguage.

Research directions: Empirical studies could verify our
speculation about whether projects with build-free extension
mechanisms have more active communities, and whether
adding such mechanisms is an evolutionary force towards
becoming a multilanguage package.

Fattern: Object-Oriented Builds

Description: The build system can be dynamically cus-
tomized and extended by project developers and by third-party
build libraries.

Consequences: Object-oriented build systems bring benefits
such as encapsulation and reuse into build systems. Problems
in a common build library can be fixed in one place and prop-
agated wherever it is used, potentially across many projects.

Evidence: ruby-prof’s build system problems are largely
encapsulated inside libraries that are upgraded by third parties.
ruby-prof’s build system also can export its functionality,
namely profiling, to the build systems of other projects.
python3.0’s object-oriented distutils build system is used
for its standard library but also externally as a well-supported
for building Python-language projects such as synopsis.
Problems we did see in python3.0’s build system were with
the custom non-distutils portion.

Applicability: This pattern is build-system-specific. The ad-
ditional use of encapsulation may help to address the increased
complexity of multilanguage builds.

Research directions: Standardized interfaces for tools such
as compilers and profilers would allow greater experimenta-
tion in build system design. Encapsulation of build system
processes for various languages could also be used for more
convenient build systems for multilanguage software.

V. DISCUSSION
A. Using build patterns and anti-patterns

With respect to RQ1, the build patterns and anti-patterns
help to summarize and organize the key issues identified in
the studied multilanguage packages. From the case studies, we
believe the developers were unaware of certain build problems,
at least within their own environment. For RQ2, the patterns
embody suggested designs for the build process and the anti-
patterns offer remedies to common build problems.

Nevertheless, fashioning a scalable build system or address-
ing build problems does take effort to implement. A particular
project may have other higher priorities, and may be fine in
terms of the technical debt in its build system. In practice,
build system improvements need to be selective.

Anti-pattern Incorrect Dependencies can be addressed sys-
tematically through automated tools. Other anti-patterns need
researchers to build tools, but presently, Filename Collision
and Unverified Third-Party Software could be addressed man-
ually on a case-by-case basis. For example, rather than writing
tests for all third-party packages, specific tests for key features
or known buggy packages would be advised. Some anti-
patterns may require substantial work: a thorough line-by-line
analysis of the build system for Ignored Error, and potential
implementation rearchitecting for Installation Required.

An interesting question is whether popular packages are
correlated with better build systems. Popular packages may
receive and fix more build system bug reports. It may be
that packages that are easy to build can lead to a vibrant
community. Or perhaps popular packages grow to involve
build experts who can design effective build systems. This
correlation needs further research.

B. Abstraction

Interestingly, we find that the abstractions, mental models,
business goals, and design philosophies used in the application
and implementation domain may “leak” into the build system
space. This phenomenon may be a natural consequence due
to familiarity, available skills, time pressures, or the domains,
but can have inconsistent, i.e., positive or negative, effects on
buildability. This may provide a partial answer to research
question RQ3. Consider the five case studies:

e synopsis integrates independently-developed and

independently-built software components using a
standardized interface. The approach works well, except
for some issues with setting up paths for the different
parts to be able to load each other.
This approach is similar to those of the experimental
CORBA-based windowing package that synopsis was
developed to support. Service lookup and path con-
figuration are also common issues in getting CORBA
applications to run.

e python3.0’s build system shares many qualities with
idiomatic Python code—it is simple, flat, and ex-
plicit [17]. The result is a small and efficient build system.
However, the desire to be explicit and avoid so-called

‘magic’ such as dependency extractors is also the cause
of python3.0’s rebuild issues, where explicit lists of
incorrectly-specified build dependencies lead to lengthy
and sometimes erroneous rebuilds.

e gnat—gps is shipped with a complicated hierarchi-
cal build system that the Ubuntu maintainer needed to
rewrite. However, the hierarchical build system is a nat-
ural outcome of the business goals of AdaCore, the cor-
porate developer of gnat—gps. They intend components
of gnat—gps to be split off as independent open-source
components, making Ada more attractive for development
and increasing sales of commercial Ada offerings.

e axiom provides a real-time interactive “ScratchPad” for
doing mathematics. In contrast, changing axiom’s in-
ternals is a complicated process of marking up code in
I5TEX, rebuilding the software from scratch, and running
comprehensive regression tests to ensure correctness.
However, this is similar to procedures used by some
professional mathematicians, who may initially develop
ideas on scratch paper, then I&TEX their results and submit
them to a lengthy review process prior to publication.

e ruby-prof’s build system is adequate and what issues
do exist are likely to be resolved by future upgrades to
the build libraries it uses. This mirrors the object-oriented
developer-focused Ruby philosophy [18], where frequent
change is acceptable, experimentation is valued, and bugs
are fixed by upgrades.

While this finding is speculative, it suggests that the appli-
cability of mental models and abstractions in the application
and implementation domains can affect build system quality. In
terms of research, this issue could be further explored through
systematic studies of the different concepts that people use to
think and communicate within the application, implementa-
tion, and build domains.

One implication could also be that a successful build
requires an independent build expert that is less tainted by the
peculiarities of a specific application or its implementation
technology. Indeed, MclIntosh et al. conjecture that concen-
trated build ownership results in less build maintenance effort
than dispersed build ownership for open source packages [19].

VI. THREATS TO VALIDITY

In this section we address potential sources of bias using
the standard criteria [20].

Construct validity: Were we actually measuring what we
sought out to measure? We set out to determine the build
issues of multilanguage software. One possible source of bias
is our use of Ubuntu, both as a source of packages and
platform on which to do our builds. Ubuntu is not necessarily
supported directly by any of the packages. However, Ubuntu
is extremely popular and a large portion all people building
these packages would do so on Ubuntu, so it is reasonable to
use it as a build platform. Additionally, we used the original
vendor source code for the packages, and none of the issues
that we experienced were Ubuntu-specific, except perhaps the
incompatibility with GCL when building axiom.

Internal validity: Are our casual inferences the result of
coincidence or unknown third factors? There are no serious
threats to internal validity within the main body of this
exploratory study, which are about the behaviour of build
tools on given inputs. Internal validity does apply to where
we attempt to explain why build problems happen, in Subsec-
tion V-B, which is admittedly speculative.

External validity: How generalizable are the findings? We
only looked at open-source Unix packages, and while they are
from different application areas, they are all programming lan-
guage implementations and tools. Since they were randomly
selected, their similarity may be a result of coincidence, a
property of Ubuntu, open-source, or multilanguage software
ecosystems, or bias in our language identification tool. The
issues we encountered may or may not be widespread, but
they are still real, and come from real software.

Reliability: Is the result dependent on the researchers or
tools? Only one investigator examined the software packages.
The initial setup, selection of packages, and procedure to get
to the first build system error message are all completely
reproducible. After this point, however, the measures taken
and subsequent build problems encountered could vary widely
for different investigators. The influence of experience and
preconceived opinions about the packages is addressed some-
what through the random selection. The only selected package
that the investigator had heard about prior to this study was
python3. 0. Additional investigators could perform the builds
and compare notes, but involving several people to duplicate
deep analyses of build problems seems too heavyweight for
an exploratory study.

The conclusions and (anti-)patterns inferred could also vary
between investigators. We have presented some of the more
prevalent and/or interesting (anti-)patterns that we encountered
in this study, but there certainly are other ones that could be
inferred and that other investigators would focus on instead.

VII. RELATED WORK

Adams developed visualization and refactoring tools for
Make-based build systems [21] that integrated aspect-oriented
programming, a multilanguage technique, into legacy C soft-
ware. His case studies contained deep analyses of Make build
systems including Quake and the Linux kernel [22]. We start
with multilanguage software using a variety of build tools in
addition to Make.

Smith’s practitioner-oriented book about build systems [2]
has an extensive section on ‘“Various Ways to Reduce Com-
plexity.” Some of his suggestions, such as “Use a Modern
Build Tool,” “Automatically Detect Dependencies,” and “Abort
the Build After the First Error” are consistent with our
findings. We address multilanguage software and structure our
findings in the form of patterns and anti-patterns.

Tu and Godfrey conducted case studies of build-time soft-
ware architectures, such as the techniques that compilers use to
compile themselves, or that Perl, mainly written in Perl, uses
to compile itself [23]. They focus on the build-time software

architecture view, while we focus on issues in getting software
to build at all.

Tamrawi et al. developed a static analysis tool that can
detect certain “code smells” in Makefiles [24]. We study the
behaviour of several different build systems, not only Make.

Héhne empirically studied the relative scalability and per-
formance of make and SCons using a synthetic project gener-
ator [25]. We discuss the buildability of real projects.

Several practitioner-oriented books on continuous testing
and deployment discuss creating fully-automated builds within
an organization [7], [26]. A co-author of one such book has
written a developer article [27] describing “build smells,”
which are similar to our build patterns and anti-patterns.

VIII. CONCLUSION

Build systems for software are often viewed as a solved
problem, particularly for single-language software. We quali-
tatively investigated build issues from a selection of five multi-
language software packages. Surprisingly, we found significant
problems in getting the software to build at all.

Our key finding is that many build problems can be sys-
tematically addressed. Relatively less focus in research has
been placed on the build quality or “buildability” of software,
versus other software qualities. Yet, this quality is an important
aspect for growing a developer community around an open
source software project. Consequently, understanding and ad-
dressing build problems is an important activity in maintaining
software, which needs better support and further research.
We summarize our findings by describing a preliminary set
of build patterns and anti-patterns. As described in each
(anti-)pattern’s applicability heading, many (anti-)patterns also
apply to building single-language software.

As future work, we plan to explore tool support for un-
derstanding multilanguage packages and their complexities,
specifically to address build anti-patterns. By exploring more
build systems, we wish to expand the set of build patterns and
anti-patterns. Further study is needed on unique comprehen-
sion issues in build systems, particularly the phenomenon of
mental models “leaking” into the build system.

ACKNOWLEDGEMENTS

We thank Abram Hindle for reviewing a draft of this paper.
We also thank the anonymous reviewers for their comments
and suggestions. This work is supported by the Natural Sci-
ences and Engineering Research Council of Canada.

REFERENCES

[1] S.I. Feldman, “Make—A program for maintaining computer programs,”
Software—Practice and Experience, vol. 9, no. 4, pp. 255-65, Apr.
1979. http://hdl.handle.net/10.1002/spe.4380090402

P. Smith, Software Build Systems: Principles and Experience.
Addison-Wesley, 2011, ISBN 0321717287. http://my.safaribooksonline.
com/0321717287

C. Batty, Using the Java Native Interface, 2003, accessed 2012-02-08
[Online]. Available: http://www.cs.umanitoba.ca/~eclipse/8-JNI.pdf.

E. Borison, “A model of software manufacture,” in Proc. Int.
Workshop Advanced Programming Environments, ser. Lecture Notes
in Computer Science, vol. 244. Springer, June 1986, pp. 197-220.
http://hdl.handle.net/10.1007/3-540-17189-4_99

[2]

[3]
[4]

10

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

E. A. Borison, “Program Changes and the Cost of Selective
Recompilation,” Ph.D. dissertation, Carnegie Mellon University,
Jul. 1989, University Microfilms International order #9023425.
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-89-205.pdf
E. Zadok, “Overhauling Amd for the '00s: A case study of GNU
Autotools,” in Proc. FREENIX Track USENIX Annual Tech. Conf., Jun.
2002. https://www.usenix.org/conference/2002-usenix-annual-technical-
conference/overhauling-amd-00s-case-study- gnu-autotools

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley, 2010, ISBN 0321601919. http://my.safaribooksonline.com/
0321670256

G. Robles, “Empirical Software Engineering Research on Libre
Software: Data Sources, Methodologies and Results,” Ph.D. dissertation,
Universidad Rey Juan Carlos, 2005. http:/libresoft.es/publications/
thesis-grex

S. Karus and H. Gall, “A study of language usage evolution in
open source software,” in Proc. 8th Working. Conf. Mining Softw.
Repositories, 2011, pp. 13-22. http://hdl.handle.net/10.1145/1985441.
1985447

D. E. Perry, S. E. Sim, and S. Easterbrook, “Case studies for software
engineers,” in Proc. 28th Int. Conf. Softw. Eng., 2006, pp. 1045-1046,
slides and handouts available at http://www.cs.toronto.edu/~sme/case-
studies/index.html. http://hdl.handle.net/10.1145/1134285.1134497

J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and
D. M. German, “Macro-level software evolution: A case study of a large
software compilation,” Empirical Software Engineering, vol. 14, no. 3,
pp. 262-285, 2009. http://hdl.handle.net/10.1007/s10664-008-9100-x
S. Johnston, “Interview with Stefan Seefeld of Berlin/Fresco,” May
2002. http://www.advogato.org/article/484.html

R. Dewar, “The GNAT compilation model,” in Proc. Conf. Tri-Ada
’94, 1994, pp. 58-70. http://hdl.handle.net/10.1145/197694.197708

J. H. Griesmer and R. D. Jenks, “SCRATCHPAD/1: An interactive
facility for symbolic mathematics,” in Proc. 2nd ACM Symp. Symbolic
Algebraic Manipulation, 1971, pp. 42-58. http://hdl.handle.net/10.1145/
800204.806266

W. H. Brown, R. C. Malveau, H. W. S. McCormick III, and T. J. Mow-
bray, AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis. Wiley, 1998, ISBN 0471197130.

R. Mecklenburg, Managing Projects with GNU Make, 3rd ed. O’Reilly,
2004, ISBN 0596006101. http://oreilly.com/catalog/make3/book/

T. Peters, “The zen of Python,” 2004. http://www.python.org/dev/peps/
pep-0020/

N. Willis, “On the maintainability of Ruby,” Linux Weekly News,
January 2011. http://lwn.net/Articles/423732

S. MclIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proc. 33rd Int.
Conf. Softw. Eng., 2011. http://hdl.handle.net/10.1145/1985793.1985813
R. K. Yin, Case Study Research: Design and Methods, 4th ed. SAGE
Publications, 2009, ISBN 9781412960991.

B. Adams, H. Tromp, K. De Schutter, and W. De Meuter,
“Design recovery and maintenance of build systems,” in Proc.
IEEE Int. Conf. Softw. Maint., October 2007, pp. 114-123. http:
//hdl.handle.net/10.1109/ICSM.2007.4362624

B. Adams, “Co-evolution of Source Code and the Build System:
Impact on the Introduction of AOSD in Legacy Systems,” Ph.D.
dissertation, Ghent University, May 2008, ISBN 9789085782032.
http://hdl.handle.net/1854/11742

Q. Tu and M. W. Godfrey, “The build-time software architecture
view,” in Proc. IEEE Int. Conf. Softw. Maint., 2001, pp. 398-407.
http://hdl.handle.net/10.1109/ICSM.2001.972753

A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 650-660. http://hdl.handle.net/10.1109/ICSE.
2012.6227152

L. Héhne, “Empirical Comparison of SCons and GNU Make,” Grofer
Beleg, Technical University Dresden, June 2008. http://os.inf.tu-
dresden.de/papers_ps/hachne-beleg.pdf

P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley,
2007, ISBN 0321336380. http://my.safaribooksonline.com/0321336380
P. Duvall, “Automation for the people: Remove the smell from your
build scripts,” 2006. http://www.ibm.com/developerworks/java/library/j-
ap10106/

http://hdl.handle.net/10.1002/spe.4380090402
http://my.safaribooksonline.com/0321717287
http://my.safaribooksonline.com/0321717287
http://www.cs.umanitoba.ca/~eclipse/8-JNI.pdf
http://hdl.handle.net/10.1007/3-540-17189-4_99
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-89-205.pdf
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/overhauling-amd-00s-case-study-gnu-autotools
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/overhauling-amd-00s-case-study-gnu-autotools
http://my.safaribooksonline.com/0321670256
http://my.safaribooksonline.com/0321670256
http://libresoft.es/publications/thesis-grex
http://libresoft.es/publications/thesis-grex
http://hdl.handle.net/10.1145/1985441.1985447
http://hdl.handle.net/10.1145/1985441.1985447
http://www.cs.toronto.edu/~sme/case-studies/index.html
http://www.cs.toronto.edu/~sme/case-studies/index.html
http://hdl.handle.net/10.1145/1134285.1134497
http://hdl.handle.net/10.1007/s10664-008-9100-x
http://www.advogato.org/article/484.html
http://hdl.handle.net/10.1145/197694.197708
http://hdl.handle.net/10.1145/800204.806266
http://hdl.handle.net/10.1145/800204.806266
http://oreilly.com/catalog/make3/book/
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0020/
http://lwn.net/Articles/423732
http://hdl.handle.net/10.1145/1985793.1985813
http://hdl.handle.net/10.1109/ICSM.2007.4362624
http://hdl.handle.net/10.1109/ICSM.2007.4362624
http://hdl.handle.net/1854/11742
http://hdl.handle.net/10.1109/ICSM.2001.972753
http://hdl.handle.net/10.1109/ICSE.2012.6227152
http://hdl.handle.net/10.1109/ICSE.2012.6227152
http://os.inf.tu-dresden.de/papers_ps/haehne-beleg.pdf
http://os.inf.tu-dresden.de/papers_ps/haehne-beleg.pdf
http://my.safaribooksonline.com/0321336380
http://www.ibm.com/developerworks/java/library/j-ap10106/
http://www.ibm.com/developerworks/java/library/j-ap10106/

	Introduction
	Overview

	Background
	Case Studies
	synopsis
	python3.0
	gnat-gps
	axiom
	ruby-prof

	Build Patterns and Anti-patterns
	Anti-pattern: Filename Collision
	Anti-pattern: Installation Required
	Anti-pattern: Unverified Third Party Software
	Anti-pattern: Ignored Error
	Anti-pattern: Incorrect Dependencies
	Pattern: Build-Free Extensibility
	Pattern: Object-Oriented Builds

	Discussion
	Using build patterns and anti-patterns
	Abstraction

	Threats to Validity
	Related Work
	Conclusion
	References

