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Abstract—Software clustering is one of the important 

techniques to comprehend software systems. However, 

presented techniques to date require human interactions to 

refine clustering results. In this paper, we proposed a novel 

dependency-based software clustering algorithm, SArF. SArF 

has two characteristics. First, SArF eliminates the need of the 

omnipresent-module-removing step which requires human 

interactions. Second, the objective of SArF is to gather relevant 

software features or functionalities into a cluster. To achieve 

them, we defined the Dedication score to infer the importance 

of dependencies and utilized Modularity Maximization to 

cluster weighted directed graphs. Two case studies and 

extensive comparative evaluations using open source and 

industrial systems show that SArF could successfully 

decompose the systems fitting to the authoritative 

decompositions from a feature viewpoint without any tailored 

setups and that SArF was superior to existing dependency-

based software clustering studies. Besides, the case studies 

show that there exist measurable authoritativeness limits and 

that SArF nearly reached the limits. 

Keywords - software clustering, software architecture 

reconstruction, fan-in analysis, community detection, omnipresent 

modules, dependency analysis 

I. INTRODUCTION 

Understanding the architecture of a software system is 
one of the important steps in software maintenance, because 
the architectural knowledge is often lost or outdated [1]. 
Software clustering is a technique which decomposes a given 
system into several subsystems or groups of modules (source 
files, classes, or other software entities) with manageable 
sizes. Such decomposition can be used as the architectural 
knowledge and the high-level abstraction views of the 
system [2]. 

Software clustering works well not only for systems 
written in legacy languages without sophisticated package 
system, but for modern systems. Through our industrial 
experience and observations, we found the package 
structures of modern enterprise systems tend to be aligned to 
the frameworks such as the three-tier architecture. In such 
cases, the package structures of the systems provide little 
additional architectural information beyond the framework. 
Various software clustering approaches exist, and each of 
them has its own objective and provides architectural views 
according to its objective. For example, to find modular 
subsystems, clustering algorithms finding high-cohesion and 
low-coupling decomposition [2] is appropriate. Thus, the 

developers can choose a software clustering technique that is 
suitable for their objective. 

In this paper, we propose a novel dependency-based 
software clustering algorithm, SArF. The objective of SArF 
is to gather relevant features into a cluster. Although the term 
feature has many meanings in various contexts, we used the 
definition in the feature location studies: A (software) feature 
is a functionality of the system that can be triggered by an 
external user [3]. We emphasize that SArF does not locate 
features. SArF only directs relevant features into the same 
cluster. However, SArF works only using static dependency 
information, which can be easily collected. 

We focus on software clustering using the dependency 
information of a system. Although existing approaches [2][4] 
[5][6] are semi-automated or automated, refinement feedback 
processes with human interactions are still required to reach 
satisfactory final outcomes [1][7]. One of the important issues 
which require human interactions is the existence of 
omnipresent modules [8]. Omnipresent modules are modules 
which connect to several parts of a system but do not seem to 
belong to any particular subsystem [2]. Since omnipresent 
modules look like noises in dependency information [8], many 
studies suggested that removing them would be useful to 
refine clustering results [2][9][10][11]. Removing omnipresent 
modules can be automated [4][8][12]; however, the decision 
whether the omnipresent-module-removing step is used or not 
and the parameters of the step should be made by a human, 
and the validity of the removed modules has to be checked 
manually. If the omnipresent-module-removing step is not 
needed, software clustering can be further automated.  

SArF is designed to be tolerant of omnipresent modules, 
and it eliminates the need of the omnipresent-module-
removing step. Therefore, the software clustering process 
using SArF is further automated. The tolerance of 
omnipresent modules and the feature-gathering nature is the 
key characteristics of SArF. To achieve them, we defined the 
Dedication score which represents the importance of a 
dependency relationship based on fan-in analysis, and we 
utilized Modularity Maximization [13] in the community 
detection literature to cluster directed graphs weighted by the 
Dedication score. 

The remainder of this paper is organized as follows: we 
will show related work in section II. Our new software 
clustering algorithm, SArF will be explained in section III. In 
section IV, we will describe our experiment design. In 
section V and VI, we will show the two case studies and the 
comparative evaluations and will discuss about them. The 
threats to validity will be discussed in section VII. Finally, 
we will conclude in section VIII. 
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II. RELATED WORK 

A. Software Clustering Algorithms 

There have already been various software clustering 
approaches in the literature. From a standpoint of input 
information, dependency and structural information is 
frequently used. Bunch [2] is a graph clustering approach 
that optimizes the objective function, and its objective is to 
find high-cohesion and low-coupling modular clusters. 
ACDC [4] is pattern-based approach that utilizes several 
rules to cluster modules, e.g., clustering a dominator and its 
dominated modules. To cluster modules with relevant names, 
naming conventions are used [14]. Semantic information 
such as identifiers and comments in source code are also 
used for more sophisticated natural language processing 
techniques [15][16]. Statement-level dependency is also used 
[17]. To understand behavioral properties of a system, 
dynamic information such as execution traces is used for 
recovering the architecture [18] and for clustering [11].  

From a standpoint of methodologies, hierarchical 
clustering such as single linkage and complete linkage 
[9][16][19], non-hierarchical clustering such as k-means [15], 
pattern matching [4], and graph clustering have been used 
[2][5][7][20]. Four graph clustering techniques were 
compared by Bittencourt [20].  

In recent years, graph clustering has been rapidly 
developed in the community detection field especially in 
biology and social network analysis applications. The 
Girvan-Newman (GN) algorithm [21] is a top-down graph 
clustering approach which cuts edges with high edge 
betweenness measures. GN was evaluated in [5][20] and 
showed good performance results in small software systems 
but showed poorer results in larger systems. Modularity 
Maximization such as the Newman algorithm [13] is a 
bottom-up approach which merges nodes or clusters. It was 
evaluated in [6] and showed good performance results; 
however, its performance also becomes poorer in larger 
systems as shown in Section V and VI. We utilized 
Modularity Maximization combined with the Dedication 
score to achieve better performance, the tolerance of 
omnipresent modules and a feature-gathering characteristic.  

From a standpoint of objectives, a noteworthy approach 
is proposed by Scanniello et al. [15] which has a definite 
objective that it detects the layer structure of the software 
architecture of a system. It first decomposes a system 
horizontally (according to the detected layers) and then 
decomposes each layer vertically (using semantic 
information). 

B.  Evaluation of Software Clustering 

To evaluate software clustering algorithms, a commonly 
used criterion is authoritativeness, i.e., distance or similarity 
between the decomposition computed by the algorithm and 
the authoritative decomposition which is manually created 
by experts of a target system. MoJo [22] counts the 
minimum move and join operations required to conform two 
decompositions. Since MoJo has several defects, MoJoFM 
was proposed as its refinement [23]. To evaluate 
decompositions with hierarchical nature, UpMoJo [24] was 
proposed, which counts up operations in addition to move 
and join. To take account of relationships between modules, 
measures considering edges such as EdgeSim [25] have been 
proposed. 

Since there are multiple viewpoints in a system, multiple 
correct decompositions can coexist. Therefore, even if 

algorithms poorly fit to some authoritative decompositions, it 
possibly fit to other authoritative decompositions in the same 
system. Shtern and Tzerpos [26] pointed out that different 
clustering algorithms cannot be compared if their objectives 
are different. They proposed an evaluation framework which 
uses multiple measures [27]. 

Wu et al. [19] compared several clustering studies using 
three criteria, authoritativeness, non-extremity of cluster 
distribution (NED), and stability. The aims of the criteria are 
to show some desirable properties for good software 
clustering. NED is used to check bad extreme situations, i.e., 
too few large or too many small clusters. Stability is the 
difference between two outputs of consecutive versions of 
the same software system. Good algorithms should be stable 
enough to produce similar clusters when small changes 
happen. NED and stability can be measured without 
authoritative decompositions. Most recent studies 
[6][15][16][20] employed this evaluation framework using 
relative versions of the criteria. 

III. PROPOSED METHOD 

In this section, we explain the SArF algorithm. The 
algorithm comprises of two main ideas, defining the 
Dedication score to weight dependency edges and utilizing 
Modularity Maximization to cluster weighted directed 
graphs. 

A. Dedication Score 

Since omnipresent modules behave as noises in software 
clustering [8], many studies suggested to remove 
omnipresent modules [4][12]. However, we assumed scoring 
each dependency between modules is a better way than 
removing it, because removal causes loss of information and 
requires human decision to determine various thresholds and 
parameters. 

We found another motivation in the summarizing 
execution traces literature. Hamou-Lhadj and Lethbridge 
reported removing implementation details such as utilities can 
reveal the summarized views of execution traces [28]. They 
used fan-in analysis to judge whether a trace entry is removed 
or not. Summarized traces are potential clues to find features. 
Patel et al. [11] proposed a software clustering algorithm using 
such extracted features on the basis of their observation that 
features constitute a natural grouping of the modules that 
implement them. 

Inspired by both studies, although locating a feature is 
difficult without dynamic or semantic information, we 
assumed that a set of features can be gathered into a group of 
modules that implement them by using the dependency 
information surrounding the modules, if some importance of 
dependencies is appropriately scored. We also assumed that 
such scoring can also be used to score dependencies for 
omnipresent modules. We defined such a score, named 
Dedication as described below. 

From a feature viewpoint, when module A depends on 
module B, we assumed that the importance of the 
dependency from module A to module B can be interpreted 
as how likely module B is dedicated to module A. If module 
B is dedicated only to module A, module B probably shares 
the same feature with module A. On the other hand, when 
many modules depend on module B, module B seems not to 
be dedicated to some specific modules and does not likely 
share any feature. We designed the definition based on the 
consideration. Formally, a dependency graph is denoted as G 



= <V, E>, where V is a set of vertices, and E is a set of 
directed edges. A vertex represents a module (such as a 
source file, class, and method) or a data entity. A directed 
edge represents a dependency between two modules, the 
edge from vertex A to vertex B is denoted as (A, B). In a 
simple case, the definition of the Dedication score D(A, B) of 
the edge (A, B) is as follows: 
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where fanin(B) is the number of incoming edges to vertex B.  
In practical situations, hierarchical relationships exist in 

software entities such as a class and methods. To 
comprehend a system, methods are often too detailed, and 
classes are rather manageable. However, if a method-level 
dependency graph is available, its information is worth 
considering. The Dedication score DM(A,B) in a multi-level 
case is defined as follows: 
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where MAB is the set of B’s members depended by some of 
A’s members, and xmfanin(m) is the number of members 
outside B which depend on member m, and mx(B) is the 
number of B’s members depended by some external 
members. Dedication scores in a class-level graph are 
calculated using its corresponding member-level graph and 
(2). An example of (2) is shown in Fig. 1, and the figure 
represents class X is mainly dedicated to class A. 

 
Figure 1.  Example of Dedication score calculation (multi-level case) 

B. Modularity Maximization 

Since we designed Dedication as the likelihood that 
source and target modules share common features, the 
meaningfulness of the weight of edges should be considered. 
We chose the following criterion of meaningfulness: 

 ww  (3)

where w is the weight of an edge, and w means the 
expectation of w. If (3) is positive, the edge can be 
considered meaningful. We utilized a clustering algorithm 
the strategy of which maximizes the meaningfulness of the 
weight of all intra-cluster edges. 

Modularity Maximization proposed by Newman [13] is 
one of approaches in community detection and is a bottom-
up graph clustering approach which merges leaf nodes or 
clusters into a larger cluster to maximize the objective 
function, Modularity Q. Optimizing Modularity Q is NP-
hard [29]; however, a greedy search algorithm such as the 
Newman algorithm [13] can provide a good approximation. 
The algorithm was enhanced by Clauset et al. [30] and 
became very fast, and its computational complexity is 
typically only O(|V|log

2
|V|), where |V| is the number of 

vertices. Modularity Q can be straightforwardly extended for 
weighted graphs, and recently extended for directed graphs 
as follows [31]: 
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where W is the sum of weight of directed edges in a graph, 
and Aij is the element of adjacency matrix of the graph or the 
weight of edge (i, j), and ki

OUT
 is the sum of the weight of 

outgoing edges from vertex i, and kj
IN

 is the sum of the 
weight of incoming edges to vertex j. and cx is the cluster 
where vertex x belongs, and (ci, cj) is Kronecker delta 
function which equals to 1 if ci=cj and 0 otherwise. In (4), 
the term (ki

OUT 
kj

IN
 / W) means the expectation of the weight 

of edge (i, j), and the term Aij is its actual weight. Thus, (4) 
matches the criterion (3). Modularity QD is interpreted as the 
magnitude of how much denser the intra-cluster edges are 
than their expectation. The range of Modularity QD is from -
1 to 1, and a higher value means a better clustering result.  

We used the Newman algorithm with Modularity QD in 
(4) to find clusters from a dependency graph with Dedication. 
The procedure of the Newman algorithm is briefly explained 
as follows. The detail is found in [13] [30]. 

1. Initially, each cluster contains one individual vertex. 

2. Find two clusters with the greatest gain or the least loss 
of QD of the merger, and merge them into one cluster. 
Repeat this step until all clusters are merged. The 
obtained merge tree (dendrogram) is a hierarchical 
decomposition. 

3. The optimal flat decomposition is the decomposition 
with the maximum QD. To obtain it, divide each cluster 
into its children recursively from the root cluster, while 
the gain of QD of the division is not negative. 

C. SArF Algorithm 

We proposed a new software clustering method using the 
Dedication score and Modularity Maximization. We named 
the algorithm SArF (Software Architecture Finder). Since 
the algorithm is deterministic, it has high stability. 

The procedure of the algorithm is as follows. 

1. Extracting dependency information between modules 
(classes, members, or other entities) from a target 
software system. 

2. Creating a dependency graph using the extracted 
information. Member-level information is preferable 
but not necessary.  

3. Calculating the Dedication scores of the dependency graph 
as described in Section III.A. If the graph is at member-
level, the graph is lifted up to the class-level graph. 

4. Clustering the graph using directed weighted 
Modularity Maximization as described in Section III.B. 

IV. EXPERIMENT DESIGN 

In this section, we describe the performance measures 
and the evaluation procedure used in Section V and VI. 

A. Performance Measures 

We used authoritativeness in case studies in Section V. In 
section VI, we additionally used non-extremity of cluster 
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distribution (NED) and stability as in previous studies 
[6][15][16] [19][20]. 

To evaluate authoritativeness, the authoritative 
decomposition of a target software system must be obtained 
to compare the difference between the authoritative 
decomposition and the decomposition computed by the 
algorithm. However, obtaining authoritative decomposition is 
a difficult task, because there are multiple correct 
decompositions for various viewpoints. Another reason is 
simple: creating an authoritative decomposition requires 
heavy efforts. Most of the previous studies used 
package/directory hierarchies of target systems as their 
authoritative decomposition. We also used package 
hierarchies. Additionally, for the case study two, we prepared 
a manually created authoritative decomposition. 

As in the previous studies, we used the following 
procedure to create an authoritative decomposition from the 
package hierarchy: First, each cluster corresponds to a 
package. Then, while a cluster with a size less than or equal 
to five exists, it is merged into its parent cluster. 

To evaluate authoritativeness, we used MoJoSim and 
MoJoFM [23] measures. MoJoSim (originally called MoJoQ 
[22]) is the normalized version of MoJo [22]. MoJo is a 
distance measure between two decompositions defined as 
MoJo(C,A) = min(mno(C,A), mno(A,C)), where C is the 
computed decomposition, and A is the authoritative 
decomposition, and mno(X,Y) is the minimum required 
number of move and join operations of modules to transform 
decomposition X to decomposition Y. MoJoSim and 
MoJoFM are defined as follows: 
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where N is the number of modules, and Nmaxops is the 
maximum possible value defined as max(mno(X, A)). For 
both MoJoSim and MoJoFM, the higher value means C fits 
to A better, and the value of 100% means C is equal to A. 
Two simple examples are illustrated in Fig. 2. 

MoJo has a flaw that a computed decomposition with a 
few large clusters is overestimated [23]. For example, in Fig. 
2, decomposition C is apparently more useful than 
decomposition D, because dividing a cluster is more difficult 
than merging two clusters for humans. In the examples, 
MoJoSim goes against the expectation. Since MoJoFM is 
more reasonable, we used it where possible. However, since 
majority of previous studies used MoJoSim, we also 
measured MoJoSim values.  

 
Figure 2.  Examples of MoJoSim and MoJoFM 

NED is defined as follows: 
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where c is a cluster in C, and |c| is the cardinality of c.  
Stability is defined as Stability(Ci) = MoJoSim(Ci-1, Ci), 

where Ci is the decomposition of the i-th version of a target 
system, and Ci-1 is the decomposition of the previous version. 
For the purpose of measuring stability, the bi-directional 
nature of MoJoSim is appropriate rather than unidirectional 
MoJoFM. 

B. Evaluation Procedures 

The evaluation procedure in this paper is shown in Fig. 3. 
All target software systems used in this paper are written in 
Java. We used only jar files as input. First, the jar files of the 
target software system are collected. Then, at the extracting 
step, the member-level and class-level dependency graphs are 
extracted from the jar files using a byte code analyzer based 
on Javassist (http://www.javassist.org/). Extracted types 
of dependencies are method invocation, field read, field write, 
inheritance, and class type reference. To express a class type 
reference in the member level graph, a virtual member that 
represents a class itself is introduced. The class-level graph is 
made by lifting up the member-level graph. Classes without 
any dependencies are not considered in this procedure. Since 
the authoritative decomposition was generated from the 
package structure of the system, to keep fair evaluation, 
package information was removed from dependency graphs 
preserving the identities of respective classes. Next, 
clustering algorithms are executed. All clustering tools are 
executed with the default parameters. Finally, the 
performances of the computed decompositions are measured 
using the aforementioned framework [19]. 

At the extracting dependency graph step, if multiple 
classes exist in a source file, we virtually treat all subsidiary 
classes, such as inner classes, subsequent classes and so on, 
as one class (i.e. the top-level public class), because they 
trivially belong to the same group for the clustering purpose. 

MoJoSim(C,A) = 1 – min(2,4)/10 = 80%

MoJoFM(C,A) = 1 – 2 / 8 = 75%

MoJoSim(D,A) = 1 – min(5,1)/10 = 90%

MoJoFM(D,A) = 1 – 5 / 8 = 37.5%
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Figure 3.  Evaluation Procedure 
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V. CASE STUDIES 

To examine SArF, we did two case studies. For each case 
study, the authoritative decomposition of the target software 
system can be obtained from a feature viewpoint. It fits the 
objective of SArF. The aim of the first case study is to show 
the concrete example results of SArF and other algorithms 
and to compare them. The primary aim of the second case 
study is to show SArF fits better to the reconstructed 
architecture from feature viewpoint than from package 
viewpoint. 

A. Case Study 1: Weka 

Weka is a data mining tool and was used in previous 
studies [6][11]. The architecture of its version 3.0 is well 
documented in [32], and most of its packages correspond to 
its features [11].  

In this case study, we used Weka version 3.0.6, and all 
142 classes under package weka are used. Fig. 4 shows the 
architecture of Weka using its package diagram created using 
the information in [11][32] and its jar file. The architecture 
has three layers. Package filter is in the middle layer, and 
package core is in the bottom layer. The other packages are 
in the top layer. Each package except core corresponds to 
its feature or feature set. In Fig. 4, the vertical axis represents 
the level of layers, and features are aligned with the 
horizontal axis. 

 
Figure 4.  Architecture of Weka 3.0 

We ran clustering algorithms according to Fig. 3. To 
assess the effectiveness of the Dedication score, we also ran 
the unweighted Newman algorithm using Modularity QD on 
a class-level graph, and we call it “Newman” in this paper. 
The clustering results are shown in the first row of Table I 
and Fig. 5. 

In Table I, column “Classes” shows the number of classes 
in the system, and column “Ka” shows the number of clusters 
in the authoritative decomposition. Each column labeled “K” 
shows the number of the clusters in the corresponding 
computed decomposition. Each column labeled “MoJoFM” 
shows the MoJoFM value of the decomposition. In the table, 
the results of algorithms, SArF, Newman, Bunch, ACDC, and 

the algorithm of Patel et al. are shown.  
In Fig. 5, the results are visualized using Distribution Map 

[33] technique. We overlaid the technique on the architectural 
view in Fig. 4. Each color alphabetized small square 
represents a class. Its color and alphabet represents the cluster 
where it belongs. Groups of squares are arranged so that 
relevant classes in a cluster are closely located. 

Fig. 5(a) shows the result of SArF. The result shows that 
each cluster almost matches each package except core. It 
means the algorithm effectively partitioned classes into the 
corresponding features, and it is consistent with the result that 
MoJoFM of SArF is the highest (72.9%) in Table I. Fig. 5(b) 
is the results of ACDC, and Fig. 5(c) is the results of Bunch. 
Common to both ACDC and Bunch, a few clusters widely lay 
on several packages through packages filter and core. It 
can be said that the omnipresent modules in both packages 
prevent the algorithms from effectively working. There are 
too many small clusters scattered in the ACDC result. On the 
other hand, multiple packages are amalgamated in the Bunch 
result.  

The second row “Weka 3.0.6 (w/o OM)” shows the 
results of the subset of “Weka 3.0.6” without omnipresent 
modules. To remove omnipresent modules, packages 
filters and core are entirely removed from the 
dependency graph before clustering. This treatment was used 
by Patel et al. [11], and their result is cited in the row. The 
treatment was also used in [6]. In the second row, all results 
become higher. Especially, SArF (97.0%) and Newman 
(93.9%) are very high. It means unless omnipresent modules 
affected clustering algorithms, they could generate 
sufficiently proper decompositions. Another notable point is 
that SArF and Newman excel to the result of the dynamic 
feature extraction approach by Patel et al.  

To normalize the comparison of the results in the second 
row, the results, where clustering was executed on the whole 
graph but the performances were measured on the selected 
packages excluding filters and core, are presented in the 
third row, “Weka 3.0.6 (selected)”. Since package core does 
not correspond to a specific feature, it acts as a noise source 
for the purpose of measuring the effectiveness of feature-
gathering clustering. The result of SArF is 90.9% and still 
very high. For other algorithm, the results are fairly lower 
than the results in the second row. It means SArF is tolerant 
of omnipresent modules. 

More findings exist in the SArF result. Although package 
filters was removed as omnipresent modules in [11], Fig. 
5(a) shows SArF could detect most of filter-relevant features 
(purple in Fig. 5(a)). In addition, we examined the SArF 
result in package core and found some classes are used by 
multiple packages but mainly by one package. It is difficult 
for existing omnipresent-module-removing techniques 
[4][8][12] to detect such classes. SArF could successfully 
detect them. 

Comparing the first and second rows, we hypothesized as 
follows:  
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TABLE I.  PERFORMANCE MEASUREMENT RESULTS ON WEKA 

 

MoJoFM K MoJoFM K MoJoFM K MoJoFM K MoJoFM K

 Weka 3.0.6 142 9 72.9 8 63.2 5 42.9 16 44.1 3-7

 Weka 3.0.6 (w/o OM) 97.0 9 93.9 6 85.9 5 70.1 5-9 87.83 8

 Weka 3.0.6 (selected) 90.9 8 84.9 5 55.6 15 59.6 3-7

In all the tables, bold figures  represent the highest values, and  italic figures  represent the figures are cited from the original studies.

* Since Bunch is a heavily randomized algorithm, each value is the average of five measurements. The same applies to all the tables.

Bunch* Patel et al.
System Classes Ka

SArF Newman ACDC

7106



 Hypothesis: The upper limit of measurable 
authoritativeness exists depending on the combination 
of the objective of a clustering algorithm and an 
authoritative decomposition.  

For example, since featureless package core occupies about 
20% classes, the upper limit of MoJoFM in Weka 3.0.6 seems 
to be 80%. 

 
Figure 5.  Visualization of Clustering Results on Weka 

B. Case Study 2: A Proprietary Data Mining Tool 

In the second case study, we used an industrial data mining 
product of Fujitsu tentatively called DMTool. We prepared 
two authoritative decompositions of the product. The first 
decomposition, ADpackage, is automatically generated from 
its package structure. The second decomposition, ADfeature, 
was obtained over a series of interviews with its developers. 
We requested them to create the decomposition from a feature 
viewpoint. The two decompositions are shown in Fig. 6. Both 
decompositions were laid out by the developers according to 
its architecture.  

Fig. 6(a) shows the architecture of DMTool from a package 
viewpoint. Each package name is obscured for reasons of 
confidentiality. As shown in the figure, DMTool has two major  

 
(a) Architecture from a package viewpoint 

 

 
(b) Manually created architecture from a feature viewpoint 

Figure 6.  Architecture of DMTool 

layers, and package gui has three internal layers. The higher 
GUI layer comprises menus and widgets. The middle GUI 
layer comprises several user and system tasks, and some of 
them are implemented in nested packages shown as task x. 
The lower GUI layer comprises communicators to other layers. 

Fig. 6(b) shows the architecture of DMTool from a 
feature viewpoint. In this view, package gui is divided into 
several feature set groups. Several utility classes in the lower 
GUI layer are packed into group Utility. In the bottom layer, 
bean and OR-mapper classes are rearranged into several bean 
groups according to their functionalities and interactions.  

By comparing Fig. 6(a) and 6(b), it is found that the 
design policy of the package structure of DMTool is aligned 
to layers rather than features. It is often the case in enterprise 
applications. An interesting observation is that ADpackage is 
almost orthogonal to ADfeature, i.e., ADpackage is divided 
vertically, and ADfeature is divided horizontally except 
package analyzer. The difference may affect the 
authoritativeness results.  

The clustering result of SArF is shown in Fig. 7(a) and 
7(b). Both figures show the identical clustering result in the 
different views. The performance measurements of SArF and 
other algorithms are shown in Table II. Both rows in the table 
show the performances of the identical clustering result for 
each algorithm from a two viewpoints. 

First, we focus on Fig. 7(b). The clustering result of SArF 
matches the feature-based authoritative decomposition very 
well except group Feature Set 1 (FS1) and group Utility. From 
the interviews with the developers, they put classes relevant 
to multiple features into FS1 or Utility, when they could not  
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(a) Clustering result of SArF overlaid on ADpackage 

 

(b) Clustering result of SArF overlaid on ADfeature 

Figure 7.  Visualization of Clustering Results on DMTool 

determine one group to be put into. Such cases often happen, 
because it is a well-observed developer’s habit [4]. 

In the second row of Table II is the MoJoFM values 
measured on ADfeature. MoJoFM of SArF is 81.4%, high and 
the highest, and it is consistent with the above observation.  

Then, we go back to observe Fig. 7(a). In the figure, only 
some parts of the clustering result matches the packages. 
Some clusters in the SArF result are scattered in package gui, 
bean, and ORmapper. In the first row of Table II is the 
MoJoFM values measured on ADpackage. MoJoFM of SArF 
is 68.6% and still the highest; however it is much poorer than 
the value on ADfeature. It means that ADfeature is 
appropriate for SArF to measure its effectiveness and that 
ADpackage is not so appropriate. Since SArF achieved high 
MoJoFM on ADfeature, it can be said SArF works well to 
gather features in the case. 

 The differences between SArF and Newman are greater 
than in Weka. It is caused by the susceptibleness to 
omnipresent modules. MoJoFM of Newman on ADfeature is 
poorer than on ADpackage. The reason is that Newman tends 
to generate large few clusters (refer to column “K”) and there 
is no large group such as package gui in ADfeature. About 
this topic, we will discuss further in Section VI.C. 

To estimate the upper limit of authoritativeness of SArF 
on ADpackage, assuming that the ideal of SArF is ADfeature, 
we measured MoJoFM(ADfeature, ADpackage), and it is 
73.6%. Since MoJoFM of SArF on ADpackage is 68.6%, it is 
close to the limit. As long as ADpackage is used as a 
benchmark, it can be said that feature-gathering clustering 
cannot be improved.  

Finally, to confirm the validity of the clustering result of 
SArF, we consulted the developers again. They confirmed the 
result was acceptable as one of feature views of DMTool.  

TABLE II.  PERFORMANCE MESUREMENT RESULTS ON DMTOOL 

System 
Clas
ses 

Ka 
SArF Newman ACDC Bunch* 

MoJo 
FM K 

MoJo 
FM K 

MoJo 
FM K 

MoJo 
FM K 

DMTool (ADpackage) 
253 

16 68.6 
18 

50.2 
6 

60.7 
58 

47.5 3-
18 DMTool (ADfeature) 16 81.4 36.3 65.4 40.7 

VI. COMPARATIVE ANALYSIS 

In this section, we performed comparative evaluations 
and discuss the results. 

A. Target Software Systems and Compared Studies 

The target software systems of the evaluations are 
described in Table III. The parenthesized figures after the 
versions mean the number of the versions. The first two 
systems are deemed to be packaged from a feature viewpoint 
and be suitable to assess the objective of SArF. The 
remainders were selected from the systems used in previous 
studies to remove biases. 

Surprisingly, we found that some of the systems used in 
previous studies have very few packages or one of the 
packages occupies the majority of the system. To check such 
a situation, we define Occupancy as the percent of the 
classes occupied by the largest package. Package structures 
with high Occupancy are inappropriate as authoritative 
decompositions. For example, Occupancy of JFreeChart 
0.9.2 used in [6][15] is 71%, and Occupancy of EasyMock 
2.4 used in [16][20] is 46%, and so on. We argue systems 
with Occupancy less than at most 40% should be selected. 
The rationale of 40% is that a system almost equally divided 
into three packages can be accepted. The collected systems 
shown in Table III have less than 40% Occupancy except 
JabRef shown in Fig. 9.  

TABLE III.  DESCRIPTIVE INFORMATION OF TARGET SYSTEMS 

System (versions) Description 
Previous 
Studies 

Weka 3.0.6-3.6.3 (6) Data mining tool [6][11]  
Javassist 2.4-3.16.1 (19) Byte code manipulation library - 

Ant 1.5-1.8.3 (17) Software build tool [5] 

JUnit 4.6 Unit testing framework [6] 
JHotDraw 60b1 GUI FW for drawing editors [15] 

JDK Swing 1.4.0 Java GUI widget toolkit [16] 

PMD 4.2.5 Source code static analyzer [16] 
JabRef 1.0-2.4b (35) Bibliography reference manager [20] 

B. Results 

We measured the performances of the algorithms, SArF, 
Newman, ACDC, and Bunch for the respective target 
systems according to the procedure in Fig. 3. The results are 
shown in Table IV and V. In Table IV, the right four 
columns show the NED values for the respective algorithms. 
For the first three systems, the averages of the series of the 
measured stability values are shown in Table V.  

In respect of authoritativeness, in Table IV, SArF has the 
highest MoJoFM value in the every system. In most systems, 
ACDC is the second, Newman is the third, and Bunch is the 
last. Since Javassist has a feature-based package structure, it 
is reasonable that MoJoFM of SArF on Javassist is much 
higher (63-76%) than other algorithms. Since the later 
versions of Weka have non-feature-based packages, 
MoJoFM of SArF on Weka become poorer in the later 
version (from 73% to 48%) but is still the best. 
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In respect of NED, SArF also has the highest NED value 
in the every system except PMD. It is interesting that the 
numbers of clusters (K) of SArF are close to the number of 
the clusters on authoritative decompositions. The facts 
suggest that the cluster distribution of SArF is good. 
Conversely, K of Newman is too small, and K of ACDC is 
too large. ACDC tends to generate a few large clusters and 
many tiny clusters as described in [19]. 

In respect of stability, in Table V, SArF is the best; 
however, there are little differences except Bunch. We 
observed the perturbation of the stability of Newman tends to 
be proportionally larger than SArF. It implies that the impact 
of unimportant dependencies is suppressed by Dedication 
used in SArF and that SArF is robust to the unimportant 
changes between versions. 

TABLE V.  STABILITY RESULTS 

System (versions) SArF Newman ACDC Bunch 

Weka 3.0.6-3.6.6 (6) 80.6 79.7 76.8 44.8 

Javassist 2.4.0-3.16.1 (19) 96.3  94.9  96.3  58.7  

Ant 1.5-1.8.3 (17) 94.4  89.3  83.2  47.7  

C. Discussions 

1) SArF vs Newman algorithm 

Since the Newman algorithm is the basis of the SArF 
algorithm, we discuss the performance difference of the two 
algorithms. The aforementioned results show SArF is always 
obviously superior to Newman in authoritativeness and NED 
and is always slightly superior to Newman in stability.  

The Newman algorithm was first utilized by Erdemir et 
al. [6] in software clustering. Since they did not describe the 
objective function, we could not reproduce their study. Table 
VI shows parts of the aforementioned results using MoJoSim 
and also shows the results of Erdemir et al. The first two 
systems in the table were measured in the same conditions as 
[6]. Since the underlined results are very similar, we infer the 
two utilizations are almost the same. 

Table VI also presents the symptoms of the flaw of 
MoJoSim pointed out by Wen and Tzerpos [23]. In the every 
system, MoJoSim of Newman is higher than MoJoSim of 
SArF, and on the contrary, MoJoFM of Newman is lower 
than MoJoFM of SArF. The reason of the contrariety is 
explainable. As shown in columns “K”, the clusters 
generated by Newman tend to be fewer than the clusters of 
the authoritative decomposition. The tendency is more 
eminent in larger systems. Newman can be said to be 
susceptible to omnipresent modules. The same was observed 
in the case study 2. As previously explained, since MoJoSim 
overestimates a decomposition with a few large clusters, 

MoJoSim of Newman tends to be high, and the contrariety 
occurred. 

Even if the number of clusters is too small, the result of 
hierarchical clustering has a chance to be manually expanded 
to the appropriate number of clusters. However, in the case 
of Newman, such a manual expansion does not work well. 
Since the algorithm is greedy, the obtained merge tree tends 
to be strongly unbalanced, and it may be difficult to find 
useful cut points as shown in Fig. 8(a). Fig. 8 shows the 
merge trees generated by Newman and SArF from “Weka 
3.0.6”. On the contrary, the merge trees generated by SArF 
tend to be more balanced and dividable as shown in Fig. 8(b). 

TABLE VI.  RESULTS COMPARED BETWEEN SARF AND NEWMAN 

 

 
(a) Newman 

 
(b) SArF 

Figure 8.  Clustering Processes (merge trees/dendrograms) on Weka 

2) Comparison with Other Graph Clustering Approaches 

Fig. 9 shows the comparison between existing software 
clustering approaches using graph clustering algorithms and 
SArF. The original chart of the figure was presented in 
Bittencourt and Guerrero [20] and showed the performance 
results of four algorithms, k-means, Bunch, GN, and design 
structure matrix (DSM) clustering [34], by clustering 35 
versions of JabRef. In the figure, we overlaid the curve of the 
result of SArF with a black solid line. It shows the result of 
SArF is the highest in 34 of 35 versions. We can say SArF is 
superior to the other graph clustering approaches in this case.  

Erdemir

K K MoJoSim

Weka 3.0.6 (w/o OM) 7 97.0 97.2 9 93.9 98.1 6 97.98

JUnit 4.6 16 48.5 64.8 11 36.9 73.1 7 74.55

JHotDraw 60b1 12 44.7 47.0 17 34.4 53.0 7 -

JDK Swing 1.4.0 15 46.3 47.8 21 37.6 73.9 6 -

PMD 4.2.5 26 54.0 72.7 17 48.8 77.2 8 -

System Ka
SArF Newman

MoJoFM/Sim MoJoFM/Sim

TABLE IV.  AUTHORITATIVENESS AND NON-EXTREMITY OF CLUSTER DISTRIBUTION (NED) RESULTS 

 

MoJoFM K MoJoFM K MoJoFM K MoJoFM K

 Weka 3.0.6-3.6.3 (6) 142-1114 9-56 48-73 8-34 31-63 5-17 45-55 16-150 17-41 3-48 0.944 0.563 0.636 0.538

 Javassist 2.4-3.16.1 (19) 121-206 8-13 63-76 11-15 42-59 5-7 53-63 17-29 30-48 3-26 0.710 0.268 0.457 0.549

 Ant 1.5-1.8.3 (17) 266-694 10-32 46-58 21-38 28-50 7-12 42-53 27-81 22-47 4-49 0.916 0.574 0.604 0.641

 JUnit 4.6 145 16 48.5 11 36.9 7 45.1 23 26.5 5-7 0.972 0.276 0.745 0.465

 JHotDraw 60b1 285 12 44.7 17 34.4 7 43.2 42 24.3 5-16 0.947 0.077 0.565 0.530

 JDK Swing 1.4.0 536 15 46.3 21 37.6 6 42.2 51 33.0 8-17 0.981 0.278 0.884 0.790

 PMD 4.2.5 565 26 54.0 17 48.8 8 53.0 52 36.6 10-32 0.662 0.248 0.535 0.710

System (versions) KaClasses

Authoritativeness NED (average)

Bunch*
SArF Newman ACDC Bunch*

SArF Newman ACDC



 
Figure 9.  JabRef results compared with other graph clustering approaches 

3) Validating the definition of SArF 

Since we built many assumptions in the definition of the 
Dedication score in Section III.A, its validity should be 
assessed empirically. The following results support the 
validity of the definition of the Dedication score: (1) SArF 
outperforms Bunch with the omnipresent-module removal 
shown in the second row in Table I; (2) SArF always 
outperforms Newman; and (3) Absolute high performance 
achieved by SArF. 

4) Comparison with Semantic Approaches 

Table VII shows the comparison of SArF with other 
approaches. The upper half of the table shows the 
comparison with the result reported by Scanniello et al. [15]. 
Their approach uses k-means clustering using semantic 
information and is characterized by detecting architectural 
layers. In the table, the result of SArF is much poorer than 
their result. It is explainable on the basis of the objective of 
clustering algorithms. The objective of their approach is to 
detect layers, and they chose JHotDraw because of its layer-
style architecture. As described in the case studies, the 
objective of SArF is to gather features and is orthogonal to 
detecting layers. Therefore, it can be said that JHotDraw is 
suited for their approach, but not so suited for SArF. It is to 
be noted that the result of SArF is not poor as shown in the 
row of JHotDraw in Table IV. 

The lower half of Table VII shows the comparison with 
the results in Corazza et al. [16]. Their approach uses 
hierarchical clustering using semantic information and is 
characterized by automatically weighting different lexical 
zones using EM algorithm. The results in the table show that 
the performance behaviors of their approach and SArF are 
very different. Swing is clustered well by their approach but 
not by SArF. PMD is clustered well by SArF but not by their 
approach. Since the objective of their approach is not 
definitely defined, we cannot infer the reasons of the 
difference as the previous case. 

TABLE VII.  RESULTS COMPARED WITH SEMANTIC APPROACHES 

Approach: 
Scanniello et al. [15] 

System 
SArF Scanniello 

MoJoSim MoJoSim 

Layer detection and 
semantic-based clustering 

JHotDraw 60b1 47.0 86 
 

Approach: 
Corazza et al. [16] 

System 
SArF Corazza 

MoJoSim MoJoSim 

Semantic-based 
clustering with auto-
weighted lexical zones 

JDK Swing 1.4.0 47.8 67.5  

PMD 4.2.5 72.7  47.0  
 

5) On Authoritative Decomposition 

In the case study one, we made the hypothesis, “The upper 
limit of measurable authoritativeness exists.” In both case 
studies, the hypothesis was supported. The very high MoJoFM 
of SArF on Javassist also supports it. Therefore, it is 
reasonable to support the hypothesis is true. Besides, from the 
comparisons with two approaches in Table VII, the followings 
can be said: 

1. To evaluate software clustering algorithms, it is 
important to choose systems with appropriate 
authoritative decompositions suited for the objective of 
the algorithms. 

2. If two algorithms have different characteristics, they 
cannot be compared. This was also pointed out by 
Shtern and Tzerpos [26]. 

VII. THREATS TO VALIDITY 

The objective of SArF is to gather features; however, 
since an approach without any semantic or dynamic 
information is novel, it needs many case studies and 
experiments to validate the algorithm works properly. 
Unfortunately, few of open source systems we examined 
take a feature-based packaging policy, and we found only 
Weka 3.0 and Javassist. As shown in our case studies, 
measured authoritativeness can heavily vary depending on 
used authoritative decompositions. Therefore, to evaluate 
authoritativeness precisely, the objective of the measured 
algorithm should be clarified and the authoritative 
decomposition which fits to its objective should be obtained. 

Our clustering algorithm uses static dependency graphs. 
Static and dependency-based approach has some drawbacks 
such that dynamic invocations cannot be fully tracked. To 
overcome the problem, hybrid approaches with semantic or 
dynamic techniques are promising such as the approach of 
Scanniello et al. [15]. 

Another threat is that the set of performance measures 
seems not to be complete. We used module-based measures 
such as MoJoFM. Since edges are weighted in SArF, we 
could not employ existing edge-based measures such as 
EdgeSim [25]. We expect measures for hierarchical 
decomposition such as UpMoJo [24] fit better to practical 
situations. We did not use it because of incompatibility with 
the existing evaluations.  

VIII. CONCLUSIONS 

We have proposed a novel approach of static 
dependency-based software clustering, SArF. It has two key 
characteristics. The first is that it eliminates the process of 
removing omnipresent modules which requires human 
interactions. By this elimination, software clustering process 
can be further automated. The second characteristic is that 
the objective of the algorithm is gathering modules from a 
feature viewpoint. 

The SArF algorithm comprises of two ideas, the 
definition of the Dedication score and the utilization of 
Modularity Maximization. Dedication means the importance 
of a dependency for its dependent and is defined on the basis 
of fan-in analysis. By using Dedication, important 
dependencies count, and omnipresent modules are viewed as 
unimportant but still considered. Utilization of Modularity 
Maximization effectively enables finding the structures of 
the dependencies with Dedication. 
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In the two case studies, we evaluated SArF using 
authoritative decompositions from a feature viewpoint. The 
results show the decompositions computed by SArF fit to the 
feature-based decompositions. In addition, in spite of the 
omnipresent modules, SArF could decompose the two 
systems automatically with high authoritativeness. We also 
evaluated authoritativeness, NED and stability of SArF using 
nine systems with dozens of versions. The results show the 
performance of SArF is superior to existing dependency-
based algorithms. 

The contributions of our study are summarized as 
follows: 

1. Features were successfully gathered only using static 
dependency information. 

2. The omnipresent-module-removing step is eliminated 
in dependency-based software clustering. 

3. The extensive performance evaluations show that SArF 
is superior to existing dependency-based software 
clustering algorithms in various criteria. 

4. The existence of the upper limit of measurable 
authoritativeness and the necessity of collecting suitable 
authoritative decomposition for the objective of the 
evaluated software clustering algorithm were pointed out. 

In Wu et al. [19], since their authoritativeness results 
were low, they described the used algorithms might be not 
mature. However, the existence of the upper limit may break 
their negative consideration. Since some recent algorithms 
such as [15] and SArF scored high (over 70%) MoJoSim or 
MoJoFM values in appropriate authoritative decompositions, 
we conclude software clustering is promising. 

As future work, to cover some drawbacks of static 
dependency-based approaches, we plan to examine hybrid 
approaches using semantic and dynamic approaches. Since 
the concept of Dedication is not restricted in static 
dependency, other information such as co-change information 
and developer networks can be involved. We also plan to 
combine techniques in source code summarization and 
feature location with SArF. Finally, without appropriate 
benchmarks, it is difficult to improve the accuracy of 
algorithms. Therefore, more practical performance measures 
or measurement methods are required. 
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