
SEANets: Software Evolution Analysis with Networks

Theodore Chaikalis, George Melas and Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

Email: {chaikalis, melas, achat}@uom.gr

Abstract—Evolving software systems can be systematically
studied by treating them as networks and employing ideas and
techniques from the field of Social Network Analysis. SEANets
is an Eclipse plugin that allows the analysis of multiple
software versions and the extraction and visualization of
network properties required to investigate evolutionary trends
of the underlying system.

Keywords-Software evolution; network analysis; object-
oriented design;

I. INTRODUCTION
Social networks have experienced a phenomenal growth

in an extremely short period of time [1] and their expansion
has been followed by countless studies on their structural
properties. However, as it has been recently acknowledged,
social networks are not static and therefore their evolution
has attracted the interest of the relevant community. These
efforts have resulted in elegant models of network growth
shedding light into the mechanisms that underlie network
evolution.

Object-oriented software systems can be effectively
represented as graphs where nodes correspond to elements of
the design (such as classes or methods) and edges to any
kind of relation among them [2]. Given that most software
systems are multi-version projects, their evolution is worth
investigating by observing how fundamental network
properties vary with time.

In this paper we present SEANets, which is an easy-to-
use Eclipse plug-in associated with a public repository, for
the automated analysis of multiple versions of any object-
oriented software written in Java. SEANets allows the
extraction and storage of network properties for all examined
versions as well as the generation of various reports and
charts focusing on the evolution of these properties. The
tool's output is available through a Web page. The use of a
public repository encourages the collection of data for
several software systems which will be available to the
relevant community for further analysis.

The study of network evolution in a social setting might
be useful to understand the nature of the interactions among
people. Software evolution analysis on the other hand, aims
at interpreting macroscopic network phenomena and trends
by analyzing graph properties at the node level [3], [4]. The
ultimate goal is to relate evolutionary trends with qualitative
properties of the examined software.

While both the terms network and graph refer to a
collection of objects in which some pairs are connected by
links [5], we employ the term network to emphasize the fact

that techniques are borrowed from the field of Social
Network Analysis.

II. EXISTING TOOLS
Various noteworthy tools have been developed by

research teams for large (social or other) network analysis,
featuring numerical calculations and visual representation of
the corresponding data. Wikipedia lists over 70 products
under the term social network analysis tools and libraries. A
number of them like UCINet [6], Gephi [7], Pajek [8] and
GUESS [9] are standalone programs for network
visualization and metrics computation while others are
software libraries offering customizable capabilities like
SNAP [10] for C++ and NetworkX [11] for Python. Notable
systems like NetMiner [12], igraph [13] and Cytoscape [14]
have focused in the efficient graphical representation of the
underlying networks while others like SNAP focus in the
analysis of ultra large-scale connected components
employing techniques based on sampling.

However, all of these tools do not focus on software and
they assume that a dataset containing an edge list, a node list
or a full matrix representation is already available.
Consequently, in order to analyze software one has to build
his own parser to extract the software representation and port
the results to the corresponding tool.

On the other hand several tools have been developed to
assist software maintenance by visualizing various aspects of
software evolution; however, to the best of our knowledge
these tools do not treat the software system as a network.
These tools essentially offer a timeline for the visualization
of software artifacts, such as project hierarchies [15] or
metric values [16].

The proposed tool focuses in software evolution analysis
allowing the user to map multiple versions of a Java based
object-oriented system to a set of directed graphs. Several
interesting properties can be calculated and represented
visually following a one-click approach manipulating an
easy to use web interface.

III. AVAILABLE ANALYSES AND REPORTS
In the context of SEANets, object-oriented software

projects are regarded as directed graphs where nodes
correspond to classes and an edge from a class A to a class B
indicates the presence of a method call following the Law of
Demeter [17]. Such a "friendship" between a source and a
target class can be formed by references to the target class
which are either attributes, local variables to which instances
of the target class are assigned, method parameters and
return types of the target class type.

This work has been partially funded by the Research Committee of the
University of Macedonia, Greece

978-1-4673-2312-3/12/$31.00 ©2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

634

Obviously, other kinds of class relations could also have
been taken into account; however, the selected aspect
emphasizes the notion of a class as a service provider to
other clients and the communication among them as
interactions to achieve the overall system requirements.

A. Basic Network Properties
In any attempt to study the evolution of a network one

should be able to observe the size properties, such as the
number of nodes, edges and diameter. SEANets provides line
charts concerning the evolution of these metrics as well as a
combined chart where all information is displayed on the
same plot (Fig. 1). In Fig. 1 (results are shown for project
FreeCol, which is an open-source strategy game [18]), each
circle corresponds to an examined software version and the
coordinates of the center of each circle indicate the number
of nodes in that version (x-axis) and the number of edges (y-
axis). The diameter of each circle is proportional to the actual
graph diameter. By mouse hop over it is possible to see the
exact numbers for these properties.

Such a plot indicates whether the density of the graph
increases or not and whether a shrinking or expanding
diameter model should be assumed for the underlying
system. For example, Leskovec et al. [19] claim that social
networks are governed by a shrinking diameter phenomenon
according to which nodes get closer to each other over time.
Initial evidence from software projects however, does not
seem to validate this observation, i.e. the diameter of a
software network appears to fluctuate over time. Further
experiments are required in order to discover the root cause
for this behavior.

Fig.1. Evolution of Nodes/Edges/Diameter over time

B. Evolution of Edges
One of the major goals in studying the evolution of a

network, regardless of the domain, is to gain insight into the
mechanisms that govern their growth and if possible to
determine the model that explains the corresponding
evolutionary trends [20], [21]. Such a model can serve as a
predictor of future evolution and possibly highlight problems
in the design, such as the generation of God classes
(authority or hub nodes) in future versions of a software
system.

The starting point for building such models is the
knowledge of how links among nodes are formed over time.
To this end, SEANets provides line charts illustrating the
evolution of all kinds of edges that might be present in a
network: edges between existing nodes, edges from existing
to new nodes, edges from new to existing nodes, edges
between new nodes and edges that have been deleted in a
new version. Fig. 2 shows the number of edges departing
from new and reaching existing nodes for all examined
versions of project FreeCol. As it can be observed there is a
pattern of periodical spikes where a relatively large number
of such edges are added, followed by versions with very
limited edges of this type. Further analysis could possibly
relate the spikes to major releases of the project.

Fig.2. Evolution of edges from New to Existing Nodes over time

C. Additional Network Properties
Even a detailed record of how often edges are created or

deleted is generally not sufficient to study the evolution of a
network, since the creation of edges depends on numerous
parameters such as the degree of the source and destination
node, the age of the corresponding nodes, how far edges
reach in the network, etc. In order to build more detailed
growth models one needs to know detailed distributions of
graph properties, such as the number of edges departing and
flowing into each node versus the node age, the degree
distribution, hop plots (illustrating the number of class pairs
which are h hops apart) and so on. Fig. 3 illustrates the hop
plot for the last examined version of FreeCol. The peak for
example, indicates that more than 100,000 class pairs in that
version are 3 hops apart (meaning that by traversing directed
edges a path of length 3 is required to reach one class from
the other). Moreover, it is evident that the graph diameter for
that version is 12, since there is a (small) number of class
pairs which are 12 hops apart (which is also visible in the
diameter of the last version, in Fig. 1). This kind of plots
illustrate visually whether the small world phenomenon is
present [22] according to which any two nodes of a network
can be linked by a path that is relatively short in length.

A second example of this type of information is a scatter
plot which visualizes the relation of the clustering coefficient
to the total degree of each node. The clustering coefficient of
a node is equal to the probability that two random friends of
this node are friends to each other [5]. Fig. 4 illustrates the

2012 28th IEEE International Conference on Software Maintenance (ICSM)

635

corresponding plot for the last examined version of FreeCol.
As it is reasonable to expect, classes with a large total (in +
out) degree have a low clustering coefficient, since it is
unlikely that their numerous friends are also friends to each
other. On the other hand, classes with very few friends have
a significantly higher clustering coefficient, indicating that
their neighbors are also exchanging messages. (The solid line
corresponds to the trend captured by exponential regression.)

Fig.3. Number of class pairs which are h hops apart

Fig.4. Clustering coefficient vs. Total Degree of each node

D. Network Visualization
Despite the fact that network visualization is not a

prerequisite in order to build an accurate network evolution
model, a visual representation of the network structure might
be sometimes helpful to easily identify particular properties,
such as hubs or authorities in the graph [5]. SEANets
employs the Infovis Javascript library [23], which
implements the Fruchterman-Reingold Force Directed
algorithm [24] for displaying the network’s connected
components. A sample visualization is shown in Fig. 5. The
visualization is interactive in the sense that the user can
select and move around any node of the network.

Fig.5. Network Visualization

IV. TOOL ARCHITECTURE
Figure 6 depicts graphically the main components and

data flows involved in SEANets. An Eclipse plugin written
in Java parses and analyzes the source code of multiple
versions of the software project under study, employs the
Abstract Syntax Tree to extract the graph corresponding to
each version and stores the results in a remote database. The
system default browser opened within the Eclipse workbench
retrieves the selected results from the database and employs
JavaScript to generate various reports and charts.

Public Results
Repository

Results Browser

HTTP

Version 1.2

double count = degreeMap.get(h);
if(degree > 0 && count > 0) {
 data[0][i] = degree;
 data[1][i] = count;
 i++; dataEmpty = false;
}
if(!dataEmpty)
 return data;
else
 return null;

Version 1.1

double count = degreeMap.get(d);
if(degree > 0 && count > 0) {
 data[0][i] = degree;
 data[1][i] = count;
 i++; dataEmpty = false;
}
if(!dataEmpty)
 return data;
else
 return null;

Version 1.0

double count = degreeMap.get(t);
if(degree > 0 && count > 0) {
 data[0][i] = degree;
 data[1][i] = count;
 i++; dataEmpty = false;
}
if(!dataEmpty)
 return data;
else
 return null;

Eclipse Plugin

Fig.6. Graphical Overview of the Tool's Architecture

SEANets web reports are built upon HTML5 technologies
that today leverage the user experience by offering
responsive interface components for best view on large and
small screens. The PHP backend system queries a MySQL
database via Ajax calls triggered when the user selects
various network properties. The retrieved data are visualized
by means of JavaScript libraries, thus offering the user an
easy-to-use, powerful tool, managed by a thin client and
accessed from any web browser.

V. TYPICAL USAGE SCENARIO
The primary scenario assumes that the user is interested

in analyzing the evolution of an object-oriented software
project for which various versions are available as source
code in the local workspace. The user follows the following
steps:
1. The user imports into Eclipse the versions of the project

that he wishes to analyze.
2. The user clicks the “Project Evolution Analysis” button

in order to initiate the analysis process.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

636

3. After the successful completion of the analysis, the
results will be saved automatically into the Database and
the Results Browser will appear.

4. The user selects his project from the Project Selector.
The overview table appears.

5. The user selects a single or multiple (depending on the
desired analysis) versions from the overview table.

6. The system displays the desired chart. (By mouse hop
over the user can see additional data on several charts).

In case the user has already analyzed a given system the
results are already stored in the database. Thus, access to the
results is possible without the need to re-analyze the project
versions, by simply selecting the desired system from the
project selector.

VI. MISSING FEATURES AND FUTURE WORK
Several other network properties might be of interest for

software evolution analysis, which are currently not provided
by SEANets. However, given that the Eclipse plug-in
contains a full representation of the corresponding graph any
other kind of graph metric can be implemented easily.
Currently the results repository is public allowing access to
projects that have been analyzed by others. Authenticated
access to the database could ensure that each researcher
views only the data that he/she has provided. Moreover, the
current approach according to which the user has to
download and import individually all versions that he wishes
to analyze, limits scalability. SEANets could benefit from an
automated approach where versions would be automatically
extracted from a software repository.

A future line of research is the incorporation of software
growth models by sampling the distributions of past versions
in order to predict future software evolution in terms of
network properties. The enhancement of these models by
adding domain knowledge for object-oriented systems could
also be customizable in terms of rules that can be enabled to
investigate their impact on the accuracy of the models.

VII. CONCLUSION
In this paper we have presented SEANets, an Eclipse

plugin that allows software evolution analysis in terms of
network properties. The results are available through any
Web browser in the form of tables, charts and network
visualizations. The generated reports provide insight into
evolutionary trends and phenomena governing software
growth.

The tool has been tested on several open source projects
of different size in terms of the number of generated nodes
and edges. Initial evidence indicates that the obtained results
offer added value to the already existing techniques for
software evolution analysis and the tool performs in a
reliable and efficient manner even for large systems.

TOOL WEBSITE
The SEANets Eclipse plugin and the accompanying

video screencast can be downloaded from
http://java.uom.gr/seanets/. The page contains also

installation instructions and acts as a gateway to the results
of already analyzed projects.

REFERENCES
[1] M. Anderson, "The Data: Six Billion Friends," IEEE Spectrum, vol.

48, pp. 80, June 2011.
[2] A. Chatzigeorgiou, N. Tsantalis, and G. Stephanides, "Application of

Graph Theory to OO Software Engineering," Proc. IEEE Work.
Interdisciplinary Software Engineering Research (WISER’06), May
2006, pp. 29-35.

[3] A. Chatzigeorgiou and G. Melas, "Trends in Object-Oriented
Software Evolution: Investigating Network Properties", Proc. 34th
IEEE Int. Conf. on Software Engineering (ICSE 2012), NIER Track,
June 2012.

[4] P. Louridas, D. Spinellis, and V. Vlachos, "Power laws in software,"
ACM T Softw Eng Meth, vol. 18, pp. 1-26, September 2008.

[5] D. Easley and J. Kleinberg, Networks, Crowds, and Markets:
Reasoning about a Highly Connected World, Cambridge University
Press, 2010.

[6] Ucinet Software, June 2012,
https://sites.google.com/site/ucinetsoftware

[7] Gephi, an open source graph visualization and manipulation software,
22 June 2012, http://gephi.org/

[8] Networks/Pajek, June 2012, http://vlado.fmf.uni-
lj.si/pub/networks/pajek/

[9] GUESS: The Graph Exploration System, June 2012,
http://graphexploration.cond.org/

[10] SNAP: Stanford Network Analysis Project, June 2012,
http://snap.stanford.edu/

[11] NetworkX 1.6 documentation, June 2012, http://networkx.lanl.gov/
[12] NetMiner - Premier Software for Social Network Analysis, June

2012, http://www.netminer.com/index.php
[13] The igraph library for complex network research, June 2012,

http://igraph.sourceforge.net/
[14] Cytoscape: An Open Source Platform for Complex Network Analysis

and Visualization, 22 June 2012, http://www.cytoscape.org/
[15] A. González-Torres, R. Therón, M. Wermelinger and Y. Yu,

"Maleku: An Evolutionary Visual Software Analytics Tool for
Providing Insights into Software Evolution", Proc. IEEE Int. Conf. on
Software Maintenance (ICSM'11), September 2011, pp. 594-597.

[16] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing multiple
evolution metrics,” Proc ACM Symp. on Software visualization
(SoftVis 05), May 2005, pp. 67–75.

[17] K. Lieberherr and I. Holland, "Assuring good style for object-oriented
programs," IEEE Software, vol. 6, pp.38–48, September 1989.

[18] FreeCol, 25 June 2012, http://www.freecol.org
[19] J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graphs over Time:

Densification Laws, Shrinking Diameters and Possible Explanations,"
Proc. ACM Int. Conf. Knowledge Discovery in Data Mining (KDD
05), August 2005, pp. 177-187.

[20] A.-L. Barabási and R. Albert, "Emergence of Scaling in Random
Networks," Science, vol. 286, pp. 509-512, October 1999.

[21] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, "Microscopic
Evolution of Social Networks," Proc. ACM Int. Conf. Knowledge
Discovery in Data Mining (KDD 08), August 2008, pp. 462-470.

[22] J. Kleinberg, "The Small-World Phenomenon: An Algorithmic
Perspective," Proc. ACM Symposium on Theory of Computing
(STOC 00), May 2000, pp. 163–170.

[23] InfoVis, JavaScript InfoVis Toolkit, 22 June 2012, http://thejit.org/
[24] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-

directed placement”, Software: Practice and Experience, vol. 21,
November 2001, pp. 1129-1164.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

637

	TOOL DEMONSTRATIONS TRACK
	SEANets: Software Evolution Analysis with Networks
	Theodore Chaikalis
	George Melas
	Alexander Chatzigeorgiou

