
Investigating Naming Convention Adherence
in Java References

Simon Butler, Michel Wermelinger and Yijun Yu
Computing and Communications Department, The Open University

Walton Hall, Milton Keynes MK7 6AA, United Kingdom

Abstract—Naming conventions can help the readability and
comprehension of code, and thus the onboarding of new develop-
ers. Conventions also provide cues that help developers and tools
extract information from identifier names to support software
maintenance. Tools exist to automatically check naming conven-
tions but they are often limited to simple checks, e.g. regarding
typography. The adherence to more elaborate conventions, such
as the use of noun and verbal phrases in names, is not checked.

We present NOMINAL, a naming convention checking library
for Java that allows the declarative specification of conventions
regarding typography and the use of abbreviations and phrases.
To test NOMINAL, and to investigate the extent to which develop-
ers follow conventions, we extract 3.5 million reference — field,
formal argument and local variable — name declarations from
60 FLOSS projects and determine their adherence to two well-
known Java naming convention guidelines that give developers
scope to choose a variety of forms of name, and sometimes offer
conflicting advice. We found developers largely follow naming
conventions, but adherence to specific conventions varies widely.

I. INTRODUCTION

Identifier naming conventions [1][2] are intended to support
the readability of source code and also provide some cues, such
as typography and suggestions for phrase structure and the
use of words and abbreviations, that facilitate the extraction of
meaningful information. Where developers follow conventions
there is less work required for program comprehension tools
to split names [3][4] and extract semantic content from source
code [5][6]. Besides naming conventions, tools that extract se-
mantic content also rely on observations of naming practice [7]
to support their approach to phrasal analysis.

In this paper we investigate the adherence to naming con-
ventions for Java references — fields, formal arguments and
local variables — for two important reasons. Firstly, reference
names constitute 52% of the unique names and around 70%
of the declarations in a corpus of 60 FLOSS Java projects [8],
making them a potentially large source of information for
program comprehension and software maintenance tools. Sec-
ondly, unlike classes and methods where naming conventions
are largely clear and consistent [9][10], reference naming
conventions often provide conflicting advice, e.g. to use abbre-
viations for formal arguments [1] and not [2], and provide a
bewildering choice of forms, including ciphers (single letter
abbreviations in conventional settings, e.g. i as an integer
loop control variable), type name acronyms, abbreviations and
phrases. Consequently, software development tools that use

the textual and natural language features of identifiers are
processing an information source of unpredictable quality.

To check the adherence to such diverse naming guidelines
we developed our own convention checker, because available
tools such as CheckStyle [11], Google CodePro AnalytiX1

and PMD [12], do not handle phrasal structures. To ease
the check of different selections of rules, we also defined a
domain-specific language to define conventions in a simple
and declarative way. The language and the checker, called
NOMINAL, were informed by our previous study of Java
reference names [13] that observed the forms reference names
take in practice without a priori judgement about which
forms are ‘right’. In this paper, we explicitly judge names as
conventional or unconventional, depending on their adherence
or not to a naming guideline. Moreover, this paper looks at
typography, which was not covered by our previous study.

To evaluate the effectiveness and efficiency of the proposed
approach, we defined three different sets of comprehensive
naming conventions with NOMINAL and checked the ad-
herence of 3.5 million reference name declarations against
each guideline. The naming conventions are taken from the
“Java Language Specification” [1], the “Elements of Java
Style” [2], and studies of Java identifiers in the academic
literature [5][6][7][13].

In developing and applying NOMINAL to check adherence
to reference name conventions, we seek to answer the follow-
ing research questions:

• RQ1 To what extent do projects adhere to particular
naming conventions or style?

• RQ2 Do some naming conventions tend to be violated
more frequently than others?

The remainder of the paper is organised as follows. In
Section II we describe our methodology and give an overview
of the naming conventions checked. In Section III we explore
the difficulties of testing individual conventions. We address
the two research questions and report our results respectively
in Sections IV and V. In Section VI we give an account of
related work, and draw conclusions in Section VII.

II. METHODOLOGY

In this study we investigate the adherence of reference
names to naming conventions in 60 FLOSS Java projects
developed in English. We investigate only Java source code

1https://developers.google.com/java-dev-tools/codepro/doc



written in English because it is the most widely used natural
language in software development. The strong typing of Java
offers two features that simplify the identification of the role
of a reference name. Firstly, in Java all boolean identifiers are
declared using the boolean primitive or the Boolean object
type, unlike C for example, where numeric values may be used
as booleans. This allows us to accurately check the boolean
naming metaphors of Liblit et al. [7]. Secondly, analysing the
types of reference names in Java is feasible because, with the
exception of the reflection API, there are no function pointers
in Java, and there is a clear distinction between actions and
entities. All source code in this study pre-dates the introduction
of method references in Java 8.

A. The Dataset

For this survey we used INVOCD [8], a freely available
database of all names occurring in 60 well-known Java FLOSS
projects2. Among other information, INVOCD records for
each declared name its species — i.e. class, method, field,
etc. — and its type.

The corpus for this study is the bag (multiset) of all refer-
ence name declarations in INVOCD: 626,262 fields, 1,556,931
formal arguments, and 1,319,071 local variables. We check
declarations instead of just the names because the applicable
convention depends on the name’s usage context including
species and type.

Each declaration indicates the need for developers to choose
a name. If the developer reuses a particular name, it reflects
the preference for certain identifier forms, typographical styles,
phrasal structures or metaphors. The reuse of names is indeed
substantial. The 3,502,264 declarations introduce only 272,228
unique field names, 81,201 unique formal argument names and
169,428 unique local variable names. Reuse rates in the corpus
are thus 2.3, 19.2 and 7.8 times for field, formal argument and
local variable names respectively.

To capture such preferences, the corpus is a bag instead of a
set, i.e. all declarations are considered, even of the same name
with the same type and species. In this way, for a program that
declares 100 integer local variables, one named xpto and
the rest i, we obtain 99% adherence to conventions (namely
int i), whereas considering only unique names or unique
declarations would lead to a distorted figure of 50% adherence,
when in fact the developer made 100 choices, only one of
which deviated from naming guidelines.

We use the term token for a component of a name, whether
it is a dictionary word, an acronym or an abbreviation.

B. Naming Conventions

We selected three sets of naming conventions to test names
against. The first two are described in the “Java Language
Specification” [1] and “The Elements of Java Style” [2]. We
refer to these naming conventions as JLS and EJS respectively.

JLS defines both typography — the use of upper and
lower case letters and separator characters such as underscores

2See http://www.facetus.org.uk/corpus.html for the list of projects.

— and content for Java identifier names. The JLS naming
conventions remain largely unchanged since initial publication
in 1996 and are familiar to most Java developers. JLS defines
a simple typography scheme for reference names. Constant
field names — those declared with both the final and
static modifiers — are in upper case with the underscore
used to separate tokens, e.g. LEAF_IMAGE (from Google
Web Toolkit). All other field names, and formal argument and
local variable names begin with a lower case letter, and the
first letter of each subsequent word is capitalised (sometimes
known as camel case), e.g. oldValue (JabRef).

EJS began life as an internal Java style guide at Rogue
Wave Software, and reflects the practice of the company’s
Java developers. EJS consists of a group of general naming
conventions (Rules 9–14) that provide general advice on iden-
tifier names — that they should be meaningful, for example
— and conventions that provide advice on the typography and
content of each species of name (Rules 25–31 cover field,
formal argument and local variable names). The typography
is, with the exception of acronyms, identical to that defined
in JLS. While JLS permits a wide range of content in names,
EJS expresses a preference for the use of dictionary words in
names, with a few exceptions.

A survey of naming practices by Liblit et al. [7] identi-
fied a number of metaphors, phrasal forms that reflect the
role of an identifier name. For example, “true/false data are
factual assertions”. Liblit et al.’s observations both increase
the variety of phrasal forms expected, and require the division
of species into boolean and non-boolean subspecies. Liblit et
al.’s metaphors have been used as a starting point for the
extraction of information from names [5][6] and our previous
work confirms the metaphors are widely used [13]. Further,
recent research [7][5][6][14][13][9] shows that developers use
a range of phrasal structures wider than specified in EJS and
JLS.

We therefore defined a third set of naming conventions that
amalgamates the EJS conventions, because of their emphasis
on the use of dictionary words, with the observations of phrasal
structures found in practice made by Liblit et al. [7], Hill [5],
Abebe and Tonella [6], Binkley et al. [14], and ourselves [13].
We refer to this latter group as AJC, for aggregated Java
conventions. By evaluating adherence to AJC we hope to un-
derstand the extent to which the observed diversity of phrasal
structure is used in accordance with perceived conventions.

C. Nominal
To support the evaluation of adherence to naming con-

ventions we developed NOMINAL, a freely available Java
library that allows the declarative specification of naming
conventions3. Each set of conventions — EJS, JLS and AJC
— is defined in a separate configuration file.

NOMINAL consists of two components: an evaluation engine
that determines the adherence of a name to naming conven-
tions, and a configuration language that allows the declaration
of rules read by the evaluation engine.

3https://github.com/sjbutler/nominal



EJS and JLS specify the identifier species or subspecies (e.g.
constant field) to which a convention applies. The NOMINAL
configuration language follows this pattern, defining a range
of species and subspecies for which rules may be declared.
For each species or subspecies a set of rules may be given
that specify the typography, content and other characteristics
of a declaration. For example, Figure 1 shows the definition of
rules for the local-variable species and local-variable-boolean
subspecies for the AJC conventions. The labels outside the
block are hierarchical with the species name at the left and
subspecies names following. The labels form trees with a
single species at the top of each tree.

local-variable {
first-char: lower;
body: mixed;
content: cipher, NP;

}

local-variable-boolean {
content: cipher,NP,VP,AdjP,AdvP,PP;

}

Fig. 1. NOMINAL rule definitions for AJC showing rule inheritance and
overriding

To avoid repetition or verbose rules, NOMINAL follows a
simple model of rule inheritance. The rule for ‘local-variable-
boolean’ inherits the typographic rules from ‘local-variable’.
The content field overrides the definition in the parent species
and allows the use of noun phrases and verb phrases4, ob-
served by Liblit et al. [7], and of adjectival, adverbial and
prepositional phrases, that we observed [13]. Ciphers are the
only non-phrasal form of names permitted.

NOMINAL also defines some default rules for each
species/subspecies hierarchy including the use of separator
characters (none), the use of plurals (unspecified) and redun-
dant prefixes (none). Typically, these rules are used in only a
few subspecies.

The input to NOMINAL is a name with metadata about
the declaration context (including its type, species and any
modifiers used in the declaration) and tokenised versions of
the name, as well as part of speech (PoS) tags, and its phrasal
structure. This allows users to use any tokeniser, tagger and
parser of their choice. For this study, we tokenised the names
with INTT [3] and used the PoS tagger for reference names
we developed in previous work [13]. The PoS tagger has an
accuracy of 85% for reference names and 95% for individual
tokens. The Stanford Parser [15] was used to identify the
name’s phrasal structure using the technique we applied in
previous work [13].

The evaluation engine contains objects that evaluate each
rule specified in the configuration file. There is, for example,
an object that evaluates the typographical rule for the initial

4NOMINAL uses Penn Treebank notation for phrases: ftp://ftp.cis.upenn.
edu/pub/treebank/doc/tagguide.ps.gz

character of a name, and another that evaluates the use of
separator characters. The results for each rule are recorded
in an information object that annotates the name declaration
passed to the evaluation engine. When all the rules have been
evaluated, the name declaration object is returned to the caller.
The approach allows rules to be evaluated individually using
simple approaches.

D. Threats to Validity

There are at least three threats to construct validity. First,
while the conventions used are sufficiently generic and well-
known that they are likely to have been followed, there may
also have been project specific naming conventions in place
that we have not captured and thus cannot test against.

Second, whilst the accuracy of the PoS tagger, trained on
30,000 unique field names [13] from the INVOCD corpus, is
high, it is not perfect.

Third, phrase structure grammars are context free and recog-
nise the aggregation of tagged words into grammatically coher-
ent groups, but there is no guarantee that they are meaningful.
For example, ‘The mat sat on the cat’ is grammatically correct,
but absurd. Accordingly, the threat arises from an underlying
assumption that developers have created meaningful rather
than absurd names.

Threats to external validity arise because we constrained
our experiment in two dimensions. First, we analysed only
projects developed in Java, prior to edition 8, to take advantage
of its strong typing; and, secondly, we analysed projects where
names were constructed using English words. Accordingly
we cannot be sure whether our findings may be applied
to programming languages with weaker typing, or whether
developers creating names using languages other than English
use similar phrasal structures.

III. CHECKING NAMING CONVENTIONS

In this section we explore which naming conventions can be
reliably and accurately checked. The intention of the authors
of the EJS and JLS conventions was to provide guidance to de-
velopers. Consequently, convention definitions sometimes lack
the precision required to make them easy to test. For example,
JLS suggests the use of mnemonic terms in local variable and
formal argument names similar to those used as “parameters
to widely used classes.” [1] The few examples given reflect
the use of names taken from Java library classes, but they are
not the only widely used classes, particularly in teams using
specific library APIs, making the distinction between well-
known classes and others arbitrary, and, thus, difficult to test.
Reliable checking of conventions requires a convention to be
defined with a clear statement of which declarations it applies
to and readily identifiable boundaries between declarations that
conform to the convention and those that do not. Categorising
a declaration is straightforward where a convention is applied
to a species. However, where the convention is defined for a
subspecies, additional distinguishing information is required to
categorise a declaration, e.g identifying a loop control variable



declaration can require more information than is contained in
the declaration itself.

A. Name Content Conventions

EJS and JLS specify a range of content for identifier name
tokens. There are differences in the token content specified
by the two conventions. EJS advocates the use of dictionary
words (Rules 9 and 12), for example, while JLS expresses a
preference for the use of abbreviations for formal argument
and local variable names. Between them, EJS and JLS define
five types of identifier name token content:

1) Cipher: JLS specifies a largely familiar set of single
letter names (Table I) to be used “for temporary and
looping variables, or where a variable holds an undis-
tinguished value of a type.”

2) Type Acronym: specified in JLS for short-lived formal
argument and local variable names, type acronyms are
single token names that are acronyms of the declared
type, e.g. StringBuilder sb.

3) Acronym: either a pronounceable acronym such as
AWOL, or an initialism like XML.

4) Word: a word found in a dictionary.
5) Abbreviation: a string of letters and, possibly, digits,

that does not match any of the preceding four categories.

Tokens are tested and annotated with one or more objects
indicating which of the five categories they belong to. The first
test determines whether the name consists of a single token
and if that token is a cipher. A recognised cipher is further
tested to determine if it is of the correct type. A name that is
not a correct used cipher, if a single token, is then tested to
determine if it is a type acronym. For example, a declaration of
Iterator i would fail the test for a correctly used cipher
(using the list of ciphers in Table I) and would be classified as a
type acronym. Single tokens failing the first two tests and each
of the tokens found in longer names, are tested using MDSC
to determine whether they are words or acronyms. Where a
token is not recognised, it is categorised as an unrecognised
abbreviation.

MDSC5, a freely available multi-dictionary spell checking
library for identifier names, contains lists of abbreviations,
acronyms and words from the SCOWL word lists [16] with
additional lists of technical terms, abbreviations and acronyms
taken from our own work [3][9] and the AMAP project6 [17].

EJS (Rule 28) states that developers should compile their
own list of acceptable ciphers and ‘shorthands’ and offers a
list of suggestions, a few of which (c, e, o and s) are also
specified by JLS. EJS also states that using the list given in
JLS is acceptable. We amalgamate the JLS list of ciphers with
the EJS suggestions to enable us to identify commonly used
ciphers when testing the EJS conventions, rather than mark all
but a few ciphers as incorrect. EJS also suggests the use of
the ciphers x, y and z for coordinates. As there is no direct

5https://github.com/sjbutler/mdsc
6http://msuweb.montclair.edu/∼hillem/AMAP.tar.gz

TABLE I
JLS CIPHERS AND THEIR CORRESPONDING TYPES

Cipher(s) Type(s)

b byte
c char
e Exception
d double
f float
i,j,k int
l long
o Object
s String
v a value of some type

type correspondence we widen the definition of a coordinate
to include any numeric type.

Identifier name content is specified in NOMINAL rules
by a line starting with the keyword content fol-
lowed by one or more content types, including cipher,
type-acronym, abbreviation, and phrasal structure
expressed using the Penn Treebank phrase name abbrevi-
ations AdjP, AdvP, NP, PP and VP. For example the con-
tent of a local variable in JLS is specified as content:
cipher,type-acronym,abbreviation,NP. The first
three content types are relevant to single token names only,
with abbreviation indicating that standalone abbrevi-
ations such as buf, specified in JLS, are accepted. The
phrase name abbreviations can be used alone to specify single
phrases, or combined to specify more complex phrase struc-
tures. For example, NP VP specifies a noun phrase followed
by a verb phrase.

AJC follows the same typography scheme as EJS and
divides declarations into finer-grained subspecies than EJS and
JLS. Rather than, for example, treating all local variable decla-
rations identically, names declared boolean can have a phrase
structure that includes the use of verb and adjectival phrases
(Figure 1). AJC also includes subspecies specifying phrasal
structures for string constant declarations and references to
GUI actions, where we have observed the use of alternative
phrase structures [13].

B. Typographical Conventions

Typographical conventions are clearly defined in JLS and
EJS except for two grey areas: the use of single underscores
in constant field names in JLS, which was resolved by implica-
tion from the examples, and the use of upper case acronyms in
JLS, which we left unchecked. EJS is unequivocal in stating
that only the first letter of an acronym is capitalised when
appropriate (Rule 13). In contrast, JLS makes no comment on
the matter, but quotes examples of camel case names with up-
per case acronyms, e.g. the method name toGMTString(),
which would be toGmtString() according to EJS.

The rules we applied for all three conventions are that
names declared as constant fields are upper case with a single
underscore character between each token. Other names are
composed of mixed case or camel case, that is the first letter is
lower case, the initial letter (if there is one) of each subsequent



token is capitalised and the remainder are lower case for EJS
(for JLS recognised acronyms may also be upper case). Prior to
evaluating the typography, each token is categorised as a word,
acronym or abbreviation using MDSC, allowing the application
of different typographical rules for acronyms for EJS.

Testing the typographical conventions for constants and
variables is undertaken by checking the appropriate use of
underscores, the capitalisation of the first character of the
name, and the capitalisation of the remaining tokens.

We test the typography of individual tokens rather than the
entire name for two reasons. First, to evaluate context based
typographical rules for acronyms. Second, the typographical
boundaries marked by the developer do not always match the
boundaries between tokens, and token boundaries are some-
times omitted, for example MAXOPEN_DEFAULT (AspectJ)
consists of the tokens {MAX,OPEN,DEFAULT}, so should be
MAX_OPEN_DEFAULT to comply with the typography rule
for constants. This approach offers significant advantages over
the regular expressions used by CheckStyle and PMD. Chiefly,
checks at the token level determine that tokens have the correct
typography, rather than the name having the appearance of be-
ing typographically correct, which is what a regular expression
can test. NOMINAL also allows the specification of different
typographical rules for acronyms from those applied to words.

C. Reference Naming Conventions Tested

1) Field Names: JLS conventions for field names are
expressed in two NOMINAL rules field-constant and field-
variable. The typography is as described previously. JLS
specifies the content of constant fields as one or more words,
abbreviations or acronyms, and of an “appropriate” part of
speech. Given the specification of more than one token we
have assumed that any appropriate phrase is permitted.

The EJS field name conventions are expressed in four
subspecies rules: field-constant, field-constant-collection-
reference, field-variable and field-variable-collection-
reference. The collection conventions will be explained
further below. The typography rules are identical to JLS,
with the exception of acronyms in variable names noted
above. The content, however, is restricted to noun phrases
for constants, and ciphers and noun phrases for variables
reflecting EJS’s preference for the use of dictionary words
(Rule 9) and the specification of nouns/noun phrases.

AJC adds further subspecies to field-constant and field-
variable. field-constant-string contains the specification of a
‘complex’ phrase type in the content rule to include the
very long string constants observed in previous work [13].
A further subspecies with the suffix -action is used isolate
references to instances of classes representing GUI actions that
are sometimes named with what appear to be verb phrases, e.g.
SaveAction (Freemind). GUI actions are defined as declara-
tions of implementations of the Swing Action interface and
subclasses of java.util.EventObject, the superclass of
AWT and Swing events.

2) Formal Argument and Local Variable Names: The ty-
pographical rules for formal argument and local variable

names are identical for JLS, EJS and AJC, with the exception
of acronyms. Again EJS does not allow the use of type
acronyms or abbreviations, and limits content to ciphers and
noun phrases. AJC, as with variable field declarations, defines
subspecies for boolean names and references to GUI actions,
and permits the use of a wider range of phrases, though limited
to particular subspecies.

3) Collections: EJS (Rule 27) specifies that the names
of collection references should be pluralised. EJS gives the
examples of array declarations — including

Customer[] customers
— which are trivial to identify, and the use of collections
classes. We constrain EJS’s definition of collection class to
those classes in the java.util package that implement the
Collection interface. Note that the Map classes are not
considered collections by this definition. We also apply the
rule to collections declared with generic types, which were not
part of the Java language when EJS was written. For example,
the declaration List<Customer> customers.

The idea of pluralising collection names appears reasonable.
However, the EJS rule is very narrowly defined permitting
only the use of plurals in generic names where the name is the
plural of the type. However, we have seen wider use of plurals,
such as List lines (Antlr and many others), and in arrays
of primitive types, e.g. String[] lines (Rapla). To this
end we check both the occurrence of EJS pluralisation, and
pluralisation of the names of collections and arrays in order
to understand the extent to which developers use plurals in
declarations. The EJS rule for pluralisation defines the names
it applies to in a way that makes it difficult for the current
version of NOMINAL to express the rule. Accordingly the test
for EJS pluralisation is hardwired in the library. The more
generic rule used to evaluate more widespread use of plurals
in reference collections is specified in AJC as follows:

local-variable-collection-reference {
content: cipher,NP;
plural: true;

}

Although it is implied that non-collection names should
not be plurals, EJS does not make an explicit statement to
that effect. Accordingly, we treat the pluralisation of names
of non-collection references as unspecified for the EJS con-
ventions. However, in the AJC conventions the rules for all
non-collection references are specified as singular to help
understand whether declarations that might be expected to be
singular are being pluralised.

D. Other Conventions

In addition to testing for the reference name conventions
defined in EJS and JLS, each declaration is tested by default
for other known conventions such as the use of leading
underscores and redundant prefixes. While contrary to the con-
ventions specified by EJS and JLS, it is helpful to understand
if non-conformance with EJS and JLS results from developers
following other conventions.



Some developers use redundant prefixes in reference names,
either indicating the role of the name or the type, for ex-
ample the field name mPropertyName (FreeMind) where
m represents ‘member’. Neither EJS, JLS nor AJC specify
the use of redundant prefixes, so any prefix use will be seen
as unconventional by NOMINAL. Every multi-token name is
tested to determine if the first token is a role-based prefix
(f for field, m for member and p for parameter), or a prefix
representing a Java primitive type (i.e. b, c, d, f, i and l).
The use of a redundant prefix is recorded, and we also record
if it reflects the expected role or type.

E. Conventions not Fully Tested
Some rules specified in EJS and JLS cannot be fully

tested. EJS Rule 9 specifies the use of ‘meaningful names’
and is tested partially by ensuring names are constructed
of dictionary words, but does not test whether the name is
‘meaningful’. Rule 10 suggests the use of ‘familiar names’,
which the examples imply means business domain terms.
Rule 10 might be policed in practice with a dictionary of
project-approved domain terms, but in a survey of multiple
projects in diverse domains the task is not practical. Rule 11
alerts developers to potential design issues by asking them to
‘question excessively long names’. We do not evaluate Rule
11 because objective criteria are difficult to identify. Rule 14
specifies that names in the same scope should not differ by
case alone, and was tested to the extent that at least one of
the names would have unconventional typography. Rules 29
and 30 concern the use of the this keyword to distinguish
field names, and that arguments to constructors and mutator
methods should have the same name as the fields they are
assigned to. Neither rule was tested as they apply to the context
the name is used in, rather than its structure and content.

JLS lists a number of standard abbreviations for generic
formal argument and local variable names, such as buf for a
buffer. However, only a few illustrations are given as guidance.
We test for the use of abbreviations on the assumption that the
lists of abbreviations we use, taken from identifier names and
in dictionaries, reflect the intent of JLS.

To summarise, we found that the majority of conventions
specified in JLS can be evaluated accurately as they are
stated. The exception is the vague definition of ‘mnemonic’
terms. EJS is less sharply defined and in we needed to make
assumptions to define a clear boundary to some rules. Three
EJS rules (25, 26, and 31 concerning typography of references,
and phrasal content) are implemented as stated. Seven further
rules required interpretation or are partially implemented.
Four rules were ignored because they require project specific
information or relate to the way in which the name is used.

IV. ADHERENCE TO SPECIFIC CONVENTIONS (RQ1)
RQ1 concerns the extent to which projects adhere to each

convention.

A. Typography
The typographical conventions used in all three sets of

naming conventions checked differ only on the typography of

acronyms. Across the 60 projects, developers follow conven-
tional typography much of the time (Table II gives figures for
JLS where the typography of acronyms is ignored). Acronyms
are found, on average, in 10% of field declarations, 7% of
formal arguments and 9% of local variables. Adherence to the
EJS scheme of mixed case acronyms is found at high levels
in most projects, but a minority of projects use upper case
acronyms extensively.

There is some variation in typographical conformance be-
tween projects that may indicate the use of project specific
conventions or a sub-optimal application of typographical con-
ventions. The lowest conformance with typographical conven-
tions occurs amongst field declarations. Inspection of collected
declarations suggests that a contributing factor may be devel-
opers not following the conventions on when to use constant
notation, and, perhaps, the declaration of a field having been
changed from constant to variable, or vice versa, without the
typography being revised. In Beanshell, for example, there are
field declarations such as final static int normal
and private static Object NOVALUE.

TABLE II
DISTRIBUTION OF THE PERCENTAGE OF DECLARATIONS ADHERING TO

TYPOGRAPHY CONVENTIONS

Field Formal Argument Local Variable

Minimum .43 .80 .78
1st Quartile .74 .95 .92
Median .82 .97 .96
Mean .80 .96 .94
3rd Quartile .88 .99 .97
Maximum .97 1.0 1.0

Another possibility is that the definition of a constant used
by some developers is more nuanced than that given in JLS
or EJS. The Google Java Style guide7 argues that only those
reference declarations that hold a single immutable value
should have the typography of a constant. For example, while
a declaration of an instance of a collection class using the
modifiers static and final is constant in the sense that
the reference to the collection does not change, the values or
references stored in the collection can change, so the name
should not have the typography of a constant. In contrast, an
instance of java.lang.String declared static and final
is immutable and therefore constant, and should have the
appropriate typography.

A source of noise in some projects is the
java.io.Serializable interface where each
implementing class declares and assigns a value
to the field private final static long
serialVersionUID. The typography is not that of a
constant and is imposed by the Java library. Indeed, our
analysis shows that the Java Library is just above the
mean level of adherence to the typographical and content
conventions in JLS.

7https://google-styleguide.googlecode.com/svn/trunk/javaguide.html#
s5-naming



Eclipse appears to have its own field naming conven-
tions, which differ from those we tested against. Some
constant fields are named using conventional upper case
typography (e.g. VISIBILITY_PREF). Field declarations
that reference strings containing UI messages are not de-
clared as constants, and have a structure in which the first
element is the name of the class the message originates
from followed by either the message, or an explanation
and a message (e.g. LaunchView_Error_1). In addition,
many variable field declarations have redundant prefixes (e.g.
String fPrefillExp).

The lowest proportion of compliant field declarations is
found in MPXJ where variable declarations have the prefix
m_. Jetty, the next lowest at 52%, prefixes some field name
declarations — both constant and variable — with one or more
underscores, e.g. _dynamic. The least compliant typography
for formal argument declarations is found in Vuze where a
leading underscore is used for some declarations to distinguish
them from field declarations when used to pass values or
references to fields in mutator methods, and use of the C
style underscore separator in some formal declarations, e.g.
new_value. Vuze also has the least compliant typography of
local variable declarations (78%). As with formal arguments,
underscores are used both as separators and prefixes.

B. Name Content

Of the conventions tested, JLS specifies the widest range of
content, while EJS is more restrictive. AJC permits a wider
range of phrasal content, but only for particular subspecies.
Table III shows the distribution of proportion of declarations
in the projects investigated that conform to the content con-
ventions for each set of conventions tested. In several cases,
differences between EJS and AJC are only apparent at 4 or 5
significant figures.

TABLE III
DISTRIBUTION OF DECLARATIONS ADHERING TO CONTENT RULES OF

EACH CONVENTION. PARENTHESISED FIGURES INCLUDE DECLARATIONS
WITH REDUNDANT PREFIXES

Field Parameter Local

JLS Minimum .27(.77) .84(.90) .87(.90)
1st Quartile .83(.87) .93(.94) .92(.93)
Median .87(.89) .94(.95) .92(.94)
Mean .85(.89) .94(.95) .92(.94)
3rd Quartile .90(.91) .95(.96) .93(.95)
Maximum .94(.96) .99(.99) .97(.97)

EJS Minimum .27(.75) .79(.80) .70(.72)
1st Quartile .82(.86) .88(.89) .84(.86)
Median .86(.87) .90(.91) .87(.88)
Mean .83(.87) .90(.91) .86(.88)
3rd Quartile .89(.90) .93(.93) .88(.90)
Maximum .93(.96) .97(.97) .96(.96)

AJC Minimum .27(.76) .75(.75) .70(.72)
1st Quartile .86(.89) .85(.85) .84(.86)
Median .90(.91) .87(.88) .87(.88)
Mean .87(.91) .87(.88) .86(.88)
3rd Quartile .92(.93) .90(.90) .88(.90)
Maximum .97(.97) .97(.99) .96(.96)

The differences between the parenthesised and unparen-
thesised figures illustrate the wide differences in the use of
redundant prefixes in the projects studied. We discuss this
further below. The concept of correct content for formal
arguments and local variables in JLS includes the use of type
acronyms, which are excluded by EJS and AJC. Table IV
shows the distribution of type acronyms in declarations in
the 60 projects surveyed. All maximum values occur in the
same project, Polyglot, where 4.5% of fields, 13% of formal
arguments and 21% of local variables are type acronyms.

TABLE IV
DISTRIBUTION OF THE USAGE OF TYPE ACRONYMS IN NAME

DECLARATIONS

Field Parameter Local

Minimum .00 .00 .01
1st Quartile .00 .02 .04
Median .01 .03 .06
Mean .01 .04 .06
3rd Quartile .01 .06 .08
Maximum .05 .13 .21

C. Conventional usage of phrases

Table V shows the distribution of the use of conventional
phrases in name declarations with phrasal content (i.e. not
ciphers and type acronyms) in the 60 projects investigated. The
declarations surveyed include the use of redundant prefixes,
which are removed from the name before the remainder is
PoS tagged.

TABLE V
DISTRIBUTION OF THE PROPORTIONS OF DECLARATIONS WITH EXPECTED

PHRASE STRUCTURES

Field Parameter Local

JLS Minimum .77 .75 .61
1st Quartile .87 .85 .77
Median .89 .88 .80
Mean .89 .88 .79
3rd Quartile .91 .90 .83
Maximum .96 .97 .91

EJS Minimum .76 .72 .60
1st Quartile .86 .84 .77
Median .87 .88 .80
Mean .87 .87 .79
3rd Quartile .90 .90 .83
Maximum .96 .97 .91

AJC Minimum .76 .75 .61
1st Quartile .89 .85 .77
Median .91 .88 .80
Mean .91 .88 .79
3rd Quartile .93 .90 .83
Maximum .97 .97 .91

There are only minor differences between the distribution of
the proportions of conventional phrase use in declarations for
each of the three conventions. The phrasal rules for AJC are
applied at a finer granularity of subspecies and allow a wider
range of phrase structures than EJS and JLS. Sensitivity to a
wider range of phrases makes a difference for some projects,



but, generally, the improvement is marginal. This suggests that
while developers do use a richer selection of phrases than
advocated in EJS and JLS, they do so with a relatively small
proportion of declarations.

Plurals following the narrow EJS convention are extremely
rare in our corpus. Developers pluralise collection and array
references, but not consistently. They also pluralise some
references to numeric values and non-collections objects.

In summary, there is no simple answer to RQ1. There is con-
siderable variation in the extent to which the projects surveyed
follow typographical conventions. In particular, developers
in some projects appear to have difficulty adhering to the
conventions for field declarations. Developers tend to follow
the JLS conventions on the content of name declarations
rather than EJS, with many projects using type acronyms. The
phrasal content of names follows conventions closely in most
projects, though local variable declarations are less compliant
than field and formal argument declarations.

V. COMMONLY BROKEN CONVENTIONS (RQ2)

RQ2 asks which naming conventions are most commonly
broken or ignored.

A. Typography

The use of leading underscores in declarations is found in
just under half of the projects investigated. The greatest use is
found in field name declarations in Jetty where, according to
the Jetty coding standard8 two underscores are used as a prefix
for the names of variable static fields and a single underscore
for the names of other variable fields.

Some other projects analysed contain names with a range of
typographical styles. BCEL, for example, contains a mixture
of naming conventions — lower case words separated by
underscores and camel case — without a particular scheme
prevailing. Without input from the developers it is impossible
to understand whether this, apparently inconsistent, mixture of
styles is intentional.

B. Ciphers and Type Acronyms

The intention of both EJS and JLS is that ciphers are
used in formal argument and local variable names. We found
ciphers are occasionally used in field names, particularly the
declarations of field names of inner classes that provide a
generic function, such as string processing, for the outer class,
and in classes containing coordinates, such as those in graphics
applications or libraries. Rather than being a commonly broken
convention, it is a convention that appears to be broken when
considered justifiable.

Type acronyms are used extensively in some projects. The
distributions shown in Table IV suggest that developers choose
to use type acronyms as formal argument and local variable
names as suggested by JLS. However, we also found uses of
type acronyms in field declarations. Only 6 projects use type
acronyms in 2% or more of their field declarations, including

8https://wiki.eclipse.org/Jetty/Contributor/Coding Standards

ASM and Polyglot where more than 4% of field declarations
are type acronyms.

We identified two further unconventional uses
of type acronyms. The first is where the acronym
relates to a super type, for example the declaration
ServletInputStream is (Spring). The second is
where a type acronym is used as part of a name, for example
StringBuffer filenameSB (Polyglot).

C. Redundant Prefixes

As previously stated, redundant prefixes were found in
declarations in some of the projects surveyed. Table VI shows
that usage is limited, but that redundant prefixes do play a big
role in some projects.

TABLE VI
DISTRIBUTION OF THE USAGE OF REDUNDANT PREFIXES

Field Formal Argument Local Variable

Minimum .00 .00 .00
1st Quartile .00 .00 .01
Median .01 .01 .01
Mean .05 .01 .01
3rd Quartile .03 .01 .02
Maximum .73 .09 .06

JUnit uses redundant prefixes to the greatest extent. 73%
of JUnit field declarations — almost all the variable fields
declared — are prefixed with f. The naming scheme has been
revised in a later version than that tested and all redundant
prefixes removed. Some 38% of field names declared in
Xerces-J are also prefixed with f. The convention is applied
to most non-constant field declarations, but not consistently9.
Freemind also uses redundant prefixes in field name declara-
tions (13%) and formal arguments (9.2%), but rarely in local
variables (0.8%).

To summarise, we found that a few projects seem to apply
inconsistent typography, while there is evidence that others
have adopted conventions in addition to those defined in
JLS and EJS, including the use of redundant prefixes and
alternative typography. We speculate that, in these cases, the
JLS and EJS conventions do not always meet developers’
needs. We also found that some developers use type acronyms
and ciphers in what appear quite sensible ways, but other than
intended by JLS. Project specific conventions can be expressed
in NOMINAL. And, as many of the variations of conventions
are typographical, names could be refactored automatically as
the semantic content of the declarations would not be affected.

VI. RELATED WORK

There is limited literature on the holistic evaluation of
the application of naming conventions. Much of the research
evaluates the impact of specific aspects of naming conventions,
sometimes in combination with other properties of source
code, on program comprehension.

9A Google search for xerces-j coding conventions reveals that the matter
is discussed by Xerces-J contributors



Identifier naming conventions proposed by Relf were eval-
uated with developers [18]. Relf found that acceptance of
specific conventions was related to the developers’ experience,
suggesting that understanding of the value of conventions
increases with experience. The conventions were subsequently
applied in a tool to support the creation of names during
maintenance and development exercises. The subjects — 69
undergraduate computing students and 10 professional devel-
opers — using the tool tended to respond to advice from
the tool and created more higher quality names (according
to Relf’s conventions) than the control group [19].

Two groups have studied the relationship between program
comprehension and the use of abbreviations and words in iden-
tifier names. Takang, Grubb and Macredie [20] investigated
the influence of comments and identifier names containing
abbreviations and words on the comprehension of Modula-2
code by undergraduate programmers. Their results showed that
a combination of comments and identifier names containing
words rather than abbreviations improved program compre-
hension. However, they also found no statistically significant
difference between comprehension of names consisting of
abbreviations, and those composed of words.

Lawrie et al. [21] revisited this problem area undertaking
a similar experiment on the impact of identifier naming on
program comprehension. Underlying their approach to their
experiment was the understanding that comments are not
always present in source code, and that developers have to
rely on identifier names alone. Experimental subjects were
asked to describe the functionality implemented in one of three
variants of methods where identifier names were either single
letters, abbreviations or composed of words. The study found
that subjects were most confident understanding identifiers
containing full words. However, there was, often, only a
slight improvement over understanding abbreviated identifiers.
Single letter identifiers were the least well understood.

A survey of naming practices in three code bases by Libit et
al. [7] identified phrasal metaphors used by developers to
create names with particular roles. The code surveyed was
written in C, C++, C# and Java and consisted of Gnumeric, the
Java v1.3 class library, and Microsoft Windows Server 2003.
We investigated the use of the metaphors in declarations [13]
and applied them in AJC.

CheckStyle [11] and PMD [12] are widely used open source
tools that check adherence to coding conventions and include
some functionality to evaluate adherence to naming conven-
tions. Both are user configurable, with PMD offering a finer-
grained specification of names than CheckStyle. However,
both rely on limited property checks — number of characters
in a name, for instance — and regular expressions that often do
little more than check the capitalisation of the first character of
the name, and specify prefixes and suffixes. Neither undertake
phrasal analysis, nor distinguish types of content. Both also
check for coding style issues such as masking of fields (e.g
the declaration of a local variable with the same name as a
field in the scope of the field), which we do not assess in
this survey. The configuration language in NOMINAL allows

conventions to be expressed using a few simple rules, and
with much less risk than expressing typography in a regular
expression. Other static analysis tools such as FindBugs [22]
do offer some limited checks of name quality, but are not easy
to configure.

The application of statistical natural language processing
techniques by Allamanis et al. [23] in NATURALIZE, a coding
and naming convention recommendation tool, was motivated,
in part, by around 25% of code reviews suggesting changes
to naming. Allamanis et al. observe that naming conventions,
such as JLS and EJS, are prescriptive and project or team
conventions tend to evolve by consensus during a project’s
lifetime and are often not codified. NATURALIZE, however,
learns a project’s coding and naming styles and recommends
refactorings that replicate the conventions used. Consequently
it cannot check for adherence to particular conventions and
is thus at a disadvantage in the early stages of a project, or
where conventions are imposed on a project.

VII. CONCLUSION

Declarations that follow naming conventions are more read-
able and require less processing by tools, thereby helping
support program comprehension, developer onboarding and
software maintenance. For Java, references (fields, parameters
and variables) constitute around 70% of the name declarations
in source code, and have the most diverse and complex typo-
graphical and content conventions, but existing tools mostly
check a rather small subset of simple typographic conventions.

The contributions made by this paper are:
• a comprehensive survey of the adherence to three sets of

naming conventions of reference name declarations in 60
FLOSS Java projects;

• insight into the use of alternative typographical and
content conventions by some developers;

• NOMINAL, a configuration language to specify naming
conventions and a Java library to evaluate their applica-
tion;

• NOMINAL definitions for two widely known conventions,
EJS and JLS.

The open source nature of NOMINAL3 and its pre-packaged
convention definitions aim to help others adopt, adapt or
extend NOMINAL for their own tools and projects.

In our evaluation of 3.5 million reference name declarations
we found that the median is over 85% of declarations adhering
to conventions, but there is considerable variation in the
extent to which developers follow the conventions evaluated,
43–97% for field name typography being the extreme. On
inspection, we found occasional projects with inconsistent
typography, but many where developers applied a wider range
of typographical styles, particularly to differentiate the roles
of field declarations, than specified by either JLS or EJS.
NOMINAL can be used to specify project specific naming
conventions providing opportunities for development teams
to codify existing naming conventions for both content and
typography and add automated convention checking.



REFERENCES

[1] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java
Language Specification (Java SE 8 edition), Java SE 8 ed. Oracle,
2014.

[2] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz, T. Misfeldt,
J. Shur, and P. Thompson, The Elements of Java Style. Cambridge
University Press, 2000.

[3] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the tokeni-
sation of identifier names,” in 25th European Conf. on Object-Oriented
Programming, ser. Lecture Notes in Computer Science, M. Mezini, Ed.,
vol. 6813. Springer Berlin/Heidelberg, 2011, pp. 130–154.

[4] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in 6th IEEE
International Working Conference on Mining Software Repositories.
IEEE, may. 2009, pp. 71–80.

[5] E. Hill, “Integrating natural language and program structure information
to improve software search and exploration,” Ph.D. dissertation, The
University of Delaware, 2010.

[6] S. Abebe and P. Tonella, “Natural language parsing of program element
names for concept extraction,” in 18th Int’l Conf. on Program Compre-
hension. IEEE, Jun. 2010, pp. 156–159.

[7] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs,” in Proc. 18th Annual Psychology of
Programming Workshop. Psychology of Programming Interest Group,
2006.

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “INVocD: Identifier
name vocabulary dataset,” in Proc. of the 10th Working Conf. on Mining
Software Repositories. IEEE, 2013, pp. 405–408.

[9] ——, “Mining Java class naming conventions,” in Proc. of the 27th
IEEE Int’l Conf. on Software Maintenance. IEEE, 2011, pp. 93–102.

[10] E. W. Høst and B. M. Østvold, “The Java programmer’s phrase book.”
in Software Language Engineering, ser. LNCS, vol. 5452. Springer,
2008, pp. 322–341.

[11] O. Burn, “Checkstyle,” http://checkstyle.sourceforge.net/, 2007.
[12] InfoEther, “PMD,” http://pmd.sourceforge.net/, 2008.
[13] S. Butler, M. Wermelinger, and Y. Yu, “A survey of the forms of

Java reference names,” in Proc. of the 23rd Int’l Conf. on Program
Comprehension. IEEE, 2015, pp. 196–206.

[14] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proc. of the Working Conf.
on Mining Software Repositories, 2011.

[15] D. Klein and C. D. Manning, “Accurate unlexicalised parsing,” in Proc.
of the 41st Meeting of the Association for Computational Linguistics.
ACL, 2003, pp. 423–430.

[16] K. Atkinson, “SCOWL readme,” http://wordlist.sourceforge.net/
scowl-readme, 2004.

[17] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock,
and K. Vijay-Shanker, “AMAP: Automatically mining abbreviation
expansions in programs to enhance software maintenance tools,” in Proc.
of the 5th Int’l Working Conf. on Mining Software Repositories. ACM,
2008, pp. 79–88.

[18] P. A. Relf, “Achieving software quality through identifier names,” in
Qualcon 2004, 2004, presented at Qualcon 2004 http://www.aoq.asn.au/
conference2004/conference.html.

[19] ——, “Tool assisted identifier naming for improved software readability:
an empirical study,” in Int’l Symp. on Empirical Software Engineering.
IEEE, 2005, pp. 53–62.

[20] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, no. 3, pp. 143–167,
1996.

[21] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? A
study of identifiers,” in 14th IEEE Int’l Conf. on Program Comprehen-
sion. IEEE, 2006, pp. 3–12.

[22] FindBugs, “Find Bugs in Java programs,” http://findbugs.sourceforge.
net/, 2008.

[23] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proc. of the 22nd ACM SIGSOFT Int’l
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 281–293. [Online]. Available:

http://doi.acm.org/10.1145/2635868.2635883


