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Abstract- The search history of memory 
based heuristics like tabu search can be used to 
design a category of parallel algorithms called 
cooperative search. These algorithms execute in 
parallel several search programs on the same op- 
timization problem instance. At run time, the 
data gathered in the memory by one sequen- 
tial search program need not be used only by 
this program, but it can be recycled and shared 
with other concurrently executing tabu search 
programs for the same purpose. Several such 
cooperative search algorithms have already been 
proposed in the literature, but yet, very little is 
known about how they work as problem solving 
methods, particularly about their optimization 
properties. In this paper we compare the global 
behavior of cooperating and non-cooperating 
tabu search programs. We show that cooperating 
programs tend to have a search pattern whichis 
less diversified than non-cooperating programs. 
Our findings also indicate that this second or- 
der impact of the sharing of gathered data on 
the search behaviors of cooperating programs is 
not related to the optimization properties of the 
individual tabu programs. 

I. INTRODUCTION 

Memory based local search methods such as 
the tabu search method use data gathered from 
previously visited regions of the solution space 
as input of their acceptance criteria to select 
new configurations. In a parallel programming 
environment, there seems to be an obvious be- 
nefit for a population of concurrently executing 
tabu search programs to reuse the data which 
have being gathered in the tabu memories of a 
program to improve the acceptance criteria of 
the other concurrently executing tabu programs. 
For the past 10 years, several cooperative al- 
gorit hms have been designed and implemented 
based on the sharing of gathered information, 
using tabu search [4] or other search methods 
[2], [6], [8], [9], [lo], [12]. Most empirical studies 
conclude that a population of search programs 
exchanging gathered data obtains better perfor- 
mance compared with the same population of 
non-interacting programs. But still, according 
to several researchers [l], [5 ] ,  [ll], we lack a the- 
ory that could explain and predict how the ex- 
change of information improves the performance 
of cooperating programs. In the present paper 
we address a particular aspect of this problem 
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by showing that some of the modifications oc- 
curring in the search pattern of cooperating tabu 
programs are not related to the content of the 
messages which are exchanged. 

Our demonstration is based on an experiment 
where data gathered in the tabu memories are 
replaced by data provided by the state of a cellu- 
lar automaton (CA) evolving in a complex non- 
periodic attractor. Such data are meaningless 
in terms of information that can be used by the 
tabu search programs, but these data modify the 
sequence of configurations visited by the “coope- 
rating” tabu search programs. By comparing 
the diversity of the configurations generated by 
a population of programs exchanging data from 
their tabu memories and the same population of 
programs interacting through the data provided 
by a cellular automaton, we show that the di- 
versity of the configurations of these two popu- 
lations is very similar, but much lower than the 
same population of programs which do not in- 
teract with each other in any manner. Other 
tests which are based on randomly generated 
data show diversity values which are higher than 
cooperating programs using (reusing) attributes 
of previously visited configurations. We conclude 
that, besides being useful as input to the accep- 
ting criteria of the local search methods, the in- 
teractions among search programs create a se- 
cond order phenomenon which is a kind of self- 
organization of the search patterns of these pro- 
grams. This self-organization behavior is not re- 
lated to the optimization properties of the search 
programs since it can be achieved by sharing 
data which are totally insignificant for the search 
met hods. 

This paper is organized as follows. In the next 
Section we describe the issues related to local 
search methods and to the design of our coope- 
rative tabu search method. In Section 3 we in- 
troduce the parallel procedures and a few results 
from the cellular automata theory on which de- 
pends the experimental part of this study. In 
Section 4, we present and analyze the numerical 
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11. COOPERATIVE TABU SEARCH 
METHOD 

Local search methods are among the appro- 
ximation methods most often used to find near 
optimal solutions to NP-hard combinatorial op- 
timization problems. A local search starts with 
an initial configuration and generates a sequence 
of configurations by perturbing the current con- 
figuration with a transition move. New confi- 
gurations are generated with the application of 
transition moves, they are accepted as configu- 
rations in the sequence of configurations if they 
meet some acceptance criteria. Acceptance crite- 
ria are essential components of local search me- 
thods. We can used them to characterize search 
methods. For example, tabu search methods [7] 
are based on sophisticated acceptance criteria 
which depend on the history of the exploration 
in the solution space. Attributes of previously 
generated configurations are stored in a multi- 
layered time related memory structure. Accep- 
tance criteria then select configurations accor- 
ding to some correlations that attributes of these 
configurations have with attributes of configura- 
tions stored in the “tabu memories”. 

As the acceptance criteria become more so- 
phisticated, the calibration of these criteria 
reaches a point where their impact on the per- 
formance of the search methods becomes a chal- 
lenging issue. This is the case for search methods 
such tabu search, simulated annealing and ge- 
netic algorithms. In tabu search methods, search 
parameters such as which attributes to use, how 
much of the history should be stored, when a rule 
should overwrite another, etc., have to be Cali- 
brated before-hand or to evolve during the com- 
putation. Each of these parameters affects the 
precise sequence of configurations accepted for a 
given problem instance. On the other hand, the 
different configuration sequences resulting from 
different calibrations provide quite an opportu- 
nity for using parallel computers to enhance the 
performance of a method like tabu search. Given 
that each calibration is suxeptible to generate a 
different sequence of configurations, calibration 
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can then be used to induce different explorations 
of the solution space, each exploration becoming 
a task that can be executed concurrently with 
the others. Cooperative tabu search algorithms 
are based on this implicit decomposition of the 
solution space using different search parameters 
to obtain parallel tasks. Cooperation is then ob- 
tained by exchanging at run time some of the 
attributes stored in the tabu memories of the 
concurrent programs. 

111. PARALLEL PROCEDURES 

Let PO, PI , .  . . , Pp-l be a population of p tabu 
search programs (the tabu search programs are 
similar to the one described in [3]), each pro- 
gram using a different calibration of the search 
parameters. Based on this population of search 
programs, we have designed five types of paral- 
lel procedures. The first one, cooperative search 
([Proc. 1- CS] in Table I), consist of programs 
interacting by asynchronous exchanges of good 
configurations in their sequence. The second one, 
independent searches ([Proc. 2- IS] in Table I), 
is a parallel procedure where each search pro- 
gram generates a configuration sequence based 
only on its own set of search parameters, with- 
out interacting in any manner with the other 
programs. The third parallel procedure, ran- 
dom data ([Proc. 3- RD] in Table I), is based 
on randomly generated configurations which are 
synchronously sent to each program every time 
they have completed the generation of 6 config- 
urat ions. 

The fourth and fifth parallel procedures, 
SIM,, and SIM22 ([Proc. 4- SIMI~] and [Proc. 
5- SIM22] in Table I), are synchronous coope- 
rative algorithms which use cellular automata to 
create interactions among the programs. Each 
time a program has generated S configurations, 
it sends one of these 6 configurations to the CA. 
The configuration sent by a program Pi to the 
CA is a binary vector mi of length n (the number 
of decision variables in the optimization prob- 
lem). Once the CA has received p configura- 
tions (one from each program), it concatenates 
them into a single binary vector M of length 
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Fig. 1. Rule 18 from an initial state generated with 
p=1/2 

p x n representting a state in the state space 
of the CA. The vector M is used as the initial 
state of the CA. Once initialized, the CA per- 
forms t iterations using a particular transition 
rule. Once the CA has entered its t-th state, the 
binary vector of this state is partitioned into p 
configurations, each one being returned to a dif- 
ferent program. Each program then resumes its 
exploration of the solution space from the con- 
figuration received from the CA. This outer loop 
is repeated until the tabu search programs reach 
their respective stopping criteria. 

The parallel procedures SIMl, and S1M22 are 
based on a cellular automaton which evolved ac- 
cording to transition rules 18 and 22 respectively 
(see [13]). The time evolution of both rules is 
known to induce complex non-periodic attractors 
in the state space of one dimensional cellular au- 
tomata. In Figure 1 for example, the structures 
(triangles) show that the state of each cell de- 
pends increasingly on a larger number of cells 
relatively to the number of iterations of the cel- 
lular automaton. Assume that 4 stands for either 
rule 18 or 22. We deduce a global transition rule 
@ between the set of configurations: 

@ : C + C  (1) 

where C is the set of possible configurations of 
the cellular automaton. (Equation 1 means that 
the transition rule q5 is applied to each configu- 
ration in E.) Let flT = @‘E be the set of con- 
figurations generated after T iterations of @. For 
cellular automata transition rules which genera- 
te complex non-periodic attractors, the following 
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holds [14]: 

V+l = @a' E QT (2) 

i.e. the application of the rule CP to all confi- 
gurations of the set 0' at iteration T results in 
a set fir+' at iteration T + 1 where the number 
of configurations is lower or equal to the set R'. 
This evolution towards a lower number of con- 
figurations in the set R means that the entropy 
associated with the set R' decreases or stays the 
same as the number of iterations increases. Such 
decreases in the entropy is a typical manifesta- 
tion of a self-organized behavior. 

It can also be shown that the decrease in the 
number of configurations in the set R occurs be- 
cause blocks of sub-configurations get excluded 
from the configurations generated by the rule 4 
of the cellular automaton: 

Proposition 1: A sub-configuration of length 
1 is excluded after r iterations of a rule 4 if 
there is no sub-configuration from a one dimen- 
sional cellular automaton initial configuration of 
length (1 + 2) x T which evolves toward the sub- 
configuration of length 1. 
(see [14] for details). 

IV. EXPERIMENTAL RESULTS 
Each of these five parallel procedures has been 

run on twelve instances of the location-allocation 
combinatorial optimization problem as intro- 
duced in [3]. Each problem instance is searched 
using 4, 8 and 16 sequential tabu search pro- 
grams which are slightly different versions of the 
sequential TS method described in [3]. Each pro- 
gram executes 300 TS iterations in parallel on 
a network of Sparc workstations. The location- 
allocation problem has two types of decision 
variables: design variables, which are boolean 
( O / l ) ;  and flow variables, which are continuous. 
The tabu search method runs in the space de- 
fined by the design variables, therefore the solu- 
tion space is given by X n  C Bn. 

We have compared these five parallel proce- 
dures in term of the diversity of the sequence 
of configurations generated by the search pro- 
grams. Let p be the number of search programs, 

t the number of iterations executed by each pro- 
gram. In terms of the number of configurations 
visited, a parallel procedure can reach p x t con- 
figurations with p sequential programs. The di- 
versity is measured using the Hamming distance 
between the configurations in the following way: 

H(mi ,  mj) is the Hamming distance between 
two configurations mi and m3 from any pro- 
grams in the population; 
Hz+ = c,=o '=( txp ' - lH(mz ,mj)  is the Ham- 
ming distance between a configuration mi 
and the (t x p )  - 1 configurations of the p 
programs; 
diu = cf~~"" ' - '  Hi+ is the global Hamming 
distance, i.e. the Hamming distance between 
all the configurations of all the p programs. 

Assuming that div(Prob,) is the diversity of a 
given parallel procedure for the problem instance 
P~obi ,  then Table I shows the average diversity 
((Ciz:2 d iu (Prob i ) ) / l 2 ) .  The diversity of the 
cooperative search is substantially lower than for 
the independent searches, the diversity of paral- 
lel procedures based on self-organized cellular au- 
tomata is closer to cooperative search compared 
to parallel procedures based on randomly gene- 
rated messages. 

Number of programs 
1 1  procedures 1 1  p = 4  I p = 8  I p = 1 6  
Proc. 1- CS 11 8210583 I 33650795 I 137259828 
Proc. 2- IS 
Proc. 3- RD 

TABLE I 
AVERAGE DIVERSITY OF THE CONFIGURATIONS 

GENERATED BY 4, 8 AND 16 SEARCH PROGRAMS 

A. Diversity of SIMlg and SIM22 proce- 
dures 

The structuring process taking place in the 
states of a CA such as the one depicted in Fi- 
gure 1, corresponds according to Equation ( 2 )  to 
a decreases in the entropy of the set of states that 
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can be reached by the CA at each iteration. As 
the entropy decreases, this translates according 
to Proposition (1) into a exclusion of some sub- 
configurations (blocks of length I) from the states 
reached by the CA. (For example, in the last 
configuration of Figure 1, the patterns [1101011], 
[110001011] and [llOlOOl] are excluded, and they 
will never appear again in any state visited by 
this CA.) 

The cellular automata of SIMls and SIM22 
return configurations to the tabu search pro- 
grams similar to those appearing in Figure 1. 
The process of excluding sub-configuration pat- 
terns from occurring in the vector M is sym- 
metric to a process repeating the same sub- 
configuration patterns (as more patterns are ex- 
cluded, the likelihood that similar patterns will 
appear is increased). Consequently, as an in- 
creasingly larger number of sub-configuration 
patterns are excluded from the vector M ge- 
nerated by the CA, different search programs re- 
ceive similar configurations from the CA. This is 
the way that the dynamics of the complex non- 
periodic attractors of rules 18 and 22 reduce the 
diversity of the parallel procedures SIM18 and 
SIM22. 

B. Diversity of the cooperative search 
procedures 

In the cooperative search procedures, pro- 
grams interact by swapping a configuration mi 
between two programs pi  and p j .  Once mi has 
been swapped from pi  to p j ,  it becomes the cur- 
rent configuration of program p j  from which this 
program resumes the execution. At some point, 
program p j  will interact with a program pk to 
which it will send a configuration mj. The inter- 
actions based on configurations mi and mj are 
said to be correlated to each other and are part 
of a same diffusion process. Figure 2 shows a cor- 
related sequence of interactions which interfere 
with the search method of the sequential pro- 
grams. As we can see from this figure, once the 
configuration mo has been swapped in program 
p l ,  the state of only a few variables (those with 
value "2" in the figure) will be changed by the 

Fig. 2. Diffusion process among search programs 

transition moves of program p l .  When configu- 
ration ml is swapped from p l  to p2, only a few 
variables have a different state in the two configu- 
rations m0 and ml. This means that the swap- 
ping of ml from p l  to p2 is equivalent to copying 
the state of several variables from program po to 
pa. The state of variables in a same diffusion 
process which are not changed by the transition 
moves of the programs are copied across several 
search programs. For example, in Figure 2 the 
first sub-configuration 010 between 3 and 2 in 
program pa has been copied from program PO,  
to pl ,p2 and p3. The occurrence of the same 
blocks (like 010) in the configurations of several 
programs is the main factor contributing to the 
reduction of the diversity of cooperative search 
procedures. 

C. Interpretation of the results 

Attributes of good solutions are sent to other 
programs such that they can be reused to im- 
prove the performance of cooperating programs. 
This is the main objective in the design of 
cooperation among search programs. The re- 
sults of the present study show that similar to 
the propagation of symbolic information (such 
as configurations selected according to the cost 
function), another type of information, the sub- 
configurations, are repeatedly copied across seve- 
ral search programs. Those sub-configurations 
are never evaluated by the cost function, they 
are just sent from one program to another using 
as medium the configurations selected by the cost 
function. Although they are not evaluated, the 
repeated occurrence of the sub-configurations 
has a strong impact on the search behavior of 
cooperating programs, as it shows-up in the 
diversity values of these parallel procedures. 
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The similarity of the diversity between coopera- 
tive search procedures and parallel procedures 
based on non-periodic dynamics of cellular au- 
tomata, indicates that coordination among the 
cooperating programs is emerging from their in- 
teractions through the sharing of information. 
This coordination occurs spontaneously without 
being specifically introduced in the design of the 
cooperative algorithms, therefore we refer to this 
global behavior of cooperative procedures as a 
form of self-organization process. This global 
behavior is clearly not subordinated to the opti- 
mization logic of the search programs. Rather it 
is a second order phenomenon based on the cor- 
related interactions (diffusion dynamics) among 
the search programs. Although self-organization 
is shaping the search behavior of cooperating 
programs, our study brings no evidence that it 
should be credited for automatically improving 
the performance of cooperative algorithms. 

V. CONCLUSION 

Memory based local search methods use the 
history of the solution process to determine the 
choice of the configurations while exploring the 
solution space of a problem instance. Many 
cooperative algorithms share the histories of the 
solution processes among search programs with 
the hope to find better solutions to the optimiza- 
tion problem. In this paper we have shown that 
the sharing of gathered data has a global im- 
pact of reducing the diversity of the configura- 
tions visited in the solution space by a popula- 
tion of search programs. We have also shown 
that this global behavior is independent of the 
optimization properties of the data exchanged. 
This kind of global phenomena plays a role in 
the performance of cooperating algorithms. We 
believe that by addressing this aspect of coope- 
rative search algorithms, future designs can im- 
prove in an important manner their performance. 
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