
Self-Organization in Cooperative Tabu Search Algorithms

Michel Toulouse
School of Computer Science, University of Oklahoma

Email: toulouse@cs.ou.edu
Teodor Gabriel Crainic

Centre de Recherche sur les Transports, Universitb de Montreal
Email: theo@crt .umontreal.ca

Brunilde Sans6
Ecole Polytechnique, Universitk de Montreal

Email: bruni@crt .umontreal.ca
K. Thulasiraman

School of Computer Science, University of Oklahoma
Email: t hulasi@cs. ou. edu

Abstract- The search history of memory
based heuristics like tabu search can be used to
design a category of parallel algorithms called
cooperative search. These algorithms execute in
parallel several search programs on the same op-
timization problem instance. At run time, the
data gathered in the memory by one sequen-
tial search program need not be used only by
this program, but it can be recycled and shared
with other concurrently executing tabu search
programs for the same purpose. Several such
cooperative search algorithms have already been
proposed in the literature, but yet, very little is
known about how they work as problem solving
methods, particularly about their optimization
properties. In this paper we compare the global
behavior of cooperating and non-cooperating
tabu search programs. We show that cooperating
programs tend to have a search pattern whichis
less diversified than non-cooperating programs.
Our findings also indicate that this second or-
der impact of the sharing of gathered data on
the search behaviors of cooperating programs is
not related to the optimization properties of the
individual tabu programs.

I. INTRODUCTION

Memory based local search methods such as
the tabu search method use data gathered from
previously visited regions of the solution space
as input of their acceptance criteria to select
new configurations. In a parallel programming
environment, there seems to be an obvious be-
nefit for a population of concurrently executing
tabu search programs to reuse the data which
have being gathered in the tabu memories of a
program to improve the acceptance criteria of
the other concurrently executing tabu programs.
For the past 10 years, several cooperative al-
gorit hms have been designed and implemented
based on the sharing of gathered information,
using tabu search [4] or other search methods
[2], [6], [8], [9], [lo], [12]. Most empirical studies
conclude that a population of search programs
exchanging gathered data obtains better perfor-
mance compared with the same population of
non-interacting programs. But still, according
to several researchers [l], [5] , [ll], we lack a the-
ory that could explain and predict how the ex-
change of information improves the performance
of cooperating programs. In the present paper
we address a particular aspect of this problem

0-7803-4778-1 /98 $10.00 0 1998 IEEE 2379

mailto:toulouse@cs.ou.edu

by showing that some of the modifications oc-
curring in the search pattern of cooperating tabu
programs are not related to the content of the
messages which are exchanged.

Our demonstration is based on an experiment
where data gathered in the tabu memories are
replaced by data provided by the state of a cellu-
lar automaton (CA) evolving in a complex non-
periodic attractor. Such data are meaningless
in terms of information that can be used by the
tabu search programs, but these data modify the
sequence of configurations visited by the “coope-
rating” tabu search programs. By comparing
the diversity of the configurations generated by
a population of programs exchanging data from
their tabu memories and the same population of
programs interacting through the data provided
by a cellular automaton, we show that the di-
versity of the configurations of these two popu-
lations is very similar, but much lower than the
same population of programs which do not in-
teract with each other in any manner. Other
tests which are based on randomly generated
data show diversity values which are higher than
cooperating programs using (reusing) attributes
of previously visited configurations. We conclude
that, besides being useful as input to the accep-
ting criteria of the local search methods, the in-
teractions among search programs create a se-
cond order phenomenon which is a kind of self-
organization of the search patterns of these pro-
grams. This self-organization behavior is not re-
lated to the optimization properties of the search
programs since it can be achieved by sharing
data which are totally insignificant for the search
met hods.

This paper is organized as follows. In the next
Section we describe the issues related to local
search methods and to the design of our coope-
rative tabu search method. In Section 3 we in-
troduce the parallel procedures and a few results
from the cellular automata theory on which de-
pends the experimental part of this study. In
Section 4, we present and analyze the numerical

conclude.
results from our experiments and in & & ~ Q Q 5 we

11. COOPERATIVE TABU SEARCH
METHOD

Local search methods are among the appro-
ximation methods most often used to find near
optimal solutions to NP-hard combinatorial op-
timization problems. A local search starts with
an initial configuration and generates a sequence
of configurations by perturbing the current con-
figuration with a transition move. New confi-
gurations are generated with the application of
transition moves, they are accepted as configu-
rations in the sequence of configurations if they
meet some acceptance criteria. Acceptance crite-
ria are essential components of local search me-
thods. We can used them to characterize search
methods. For example, tabu search methods [7]
are based on sophisticated acceptance criteria
which depend on the history of the exploration
in the solution space. Attributes of previously
generated configurations are stored in a multi-
layered time related memory structure. Accep-
tance criteria then select configurations accor-
ding to some correlations that attributes of these
configurations have with attributes of configura-
tions stored in the “tabu memories”.

As the acceptance criteria become more so-
phisticated, the calibration of these criteria
reaches a point where their impact on the per-
formance of the search methods becomes a chal-
lenging issue. This is the case for search methods
such tabu search, simulated annealing and ge-
netic algorithms. In tabu search methods, search
parameters such as which attributes to use, how
much of the history should be stored, when a rule
should overwrite another, etc., have to be Cali-
brated before-hand or to evolve during the com-
putation. Each of these parameters affects the
precise sequence of configurations accepted for a
given problem instance. On the other hand, the
different configuration sequences resulting from
different calibrations provide quite an opportu-
nity for using parallel computers to enhance the
performance of a method like tabu search. Given
that each calibration is suxeptible to generate a
different sequence of configurations, calibration

*.

2380

can then be used to induce different explorations
of the solution space, each exploration becoming
a task that can be executed concurrently with
the others. Cooperative tabu search algorithms
are based on this implicit decomposition of the
solution space using different search parameters
to obtain parallel tasks. Cooperation is then ob-
tained by exchanging at run time some of the
attributes stored in the tabu memories of the
concurrent programs.

111. PARALLEL PROCEDURES

Let PO, PI , . . . , Pp-l be a population of p tabu
search programs (the tabu search programs are
similar to the one described in [3]), each pro-
gram using a different calibration of the search
parameters. Based on this population of search
programs, we have designed five types of paral-
lel procedures. The first one, cooperative search
([Proc. 1- CS] in Table I), consist of programs
interacting by asynchronous exchanges of good
configurations in their sequence. The second one,
independent searches ([Proc. 2- IS] in Table I),
is a parallel procedure where each search pro-
gram generates a configuration sequence based
only on its own set of search parameters, with-
out interacting in any manner with the other
programs. The third parallel procedure, ran-
dom data ([Proc. 3- RD] in Table I), is based
on randomly generated configurations which are
synchronously sent to each program every time
they have completed the generation of 6 config-
urat ions.

The fourth and fifth parallel procedures,
SIM,, and SIM22 ([Proc. 4- SIMI~] and [Proc.
5- SIM22] in Table I), are synchronous coope-
rative algorithms which use cellular automata to
create interactions among the programs. Each
time a program has generated S configurations,
it sends one of these 6 configurations to the CA.
The configuration sent by a program Pi to the
CA is a binary vector mi of length n (the number
of decision variables in the optimization prob-
lem). Once the CA has received p configura-
tions (one from each program), it concatenates
them into a single binary vector M of length

1 Ill 111 1111 1 I Ill 1 1 1 1 1111111111

I 1 I 1 I I 1 1 1 1 1 1
11 11 11 11 11 11 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 I 1 1 1 1 1 1 1 1 1 1 1 1
I I I1 I l l 1 1 1 1 1 1 I

1 1 1 1 1 1 1 1 1 I1 I

I 1 11 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 I

Fig. 1. Rule 18 from an initial state generated with
p=1/2

p x n representting a state in the state space
of the CA. The vector M is used as the initial
state of the CA. Once initialized, the CA per-
forms t iterations using a particular transition
rule. Once the CA has entered its t-th state, the
binary vector of this state is partitioned into p
configurations, each one being returned to a dif-
ferent program. Each program then resumes its
exploration of the solution space from the con-
figuration received from the CA. This outer loop
is repeated until the tabu search programs reach
their respective stopping criteria.

The parallel procedures SIMl, and S1M22 are
based on a cellular automaton which evolved ac-
cording to transition rules 18 and 22 respectively
(see [13]). The time evolution of both rules is
known to induce complex non-periodic attractors
in the state space of one dimensional cellular au-
tomata. In Figure 1 for example, the structures
(triangles) show that the state of each cell de-
pends increasingly on a larger number of cells
relatively to the number of iterations of the cel-
lular automaton. Assume that 4 stands for either
rule 18 or 22. We deduce a global transition rule
@ between the set of configurations:

@ : C + C (1)

where C is the set of possible configurations of
the cellular automaton. (Equation 1 means that
the transition rule q5 is applied to each configu-
ration in E.) Let flT = @‘E be the set of con-
figurations generated after T iterations of @. For
cellular automata transition rules which genera-
te complex non-periodic attractors, the following

238 1

holds [14]:

V+l = @a' E QT (2)

i.e. the application of the rule CP to all confi-
gurations of the set 0' at iteration T results in
a set fir+' at iteration T + 1 where the number
of configurations is lower or equal to the set R'.
This evolution towards a lower number of con-
figurations in the set R means that the entropy
associated with the set R' decreases or stays the
same as the number of iterations increases. Such
decreases in the entropy is a typical manifesta-
tion of a self-organized behavior.

It can also be shown that the decrease in the
number of configurations in the set R occurs be-
cause blocks of sub-configurations get excluded
from the configurations generated by the rule 4
of the cellular automaton:

Proposition 1: A sub-configuration of length
1 is excluded after r iterations of a rule 4 if
there is no sub-configuration from a one dimen-
sional cellular automaton initial configuration of
length (1 + 2) x T which evolves toward the sub-
configuration of length 1.
(see [14] for details).

IV. EXPERIMENTAL RESULTS
Each of these five parallel procedures has been

run on twelve instances of the location-allocation
combinatorial optimization problem as intro-
duced in [3]. Each problem instance is searched
using 4, 8 and 16 sequential tabu search pro-
grams which are slightly different versions of the
sequential TS method described in [3]. Each pro-
gram executes 300 TS iterations in parallel on
a network of Sparc workstations. The location-
allocation problem has two types of decision
variables: design variables, which are boolean
(O / l) ; and flow variables, which are continuous.
The tabu search method runs in the space de-
fined by the design variables, therefore the solu-
tion space is given by X n C Bn.

We have compared these five parallel proce-
dures in term of the diversity of the sequence
of configurations generated by the search pro-
grams. Let p be the number of search programs,

t the number of iterations executed by each pro-
gram. In terms of the number of configurations
visited, a parallel procedure can reach p x t con-
figurations with p sequential programs. The di-
versity is measured using the Hamming distance
between the configurations in the following way:

H(mi , mj) is the Hamming distance between
two configurations mi and m3 from any pro-
grams in the population;
Hz+ = c,=o '=(txp ' - lH(mz ,mj) is the Ham-
ming distance between a configuration mi
and the (t x p) - 1 configurations of the p
programs;
diu = cf~~"" ' - ' Hi+ is the global Hamming
distance, i.e. the Hamming distance between
all the configurations of all the p programs.

Assuming that div(Prob,) is the diversity of a
given parallel procedure for the problem instance
P~obi , then Table I shows the average diversity
((Ciz:2 d iu (Prob i)) / l 2) . The diversity of the
cooperative search is substantially lower than for
the independent searches, the diversity of paral-
lel procedures based on self-organized cellular au-
tomata is closer to cooperative search compared
to parallel procedures based on randomly gene-
rated messages.

Number of programs
1 1 procedures 1 1 p = 4 I p = 8 I p = 1 6
Proc. 1- CS 11 8210583 I 33650795 I 137259828
Proc. 2- IS
Proc. 3- RD

TABLE I
AVERAGE DIVERSITY OF THE CONFIGURATIONS

GENERATED BY 4, 8 AND 16 SEARCH PROGRAMS

A. Diversity of SIMlg and SIM22 proce-
dures

The structuring process taking place in the
states of a CA such as the one depicted in Fi-
gure 1, corresponds according to Equation (2) to
a decreases in the entropy of the set of states that

2382

can be reached by the CA at each iteration. As
the entropy decreases, this translates according
to Proposition (1) into a exclusion of some sub-
configurations (blocks of length I) from the states
reached by the CA. (For example, in the last
configuration of Figure 1, the patterns [1101011],
[110001011] and [llOlOOl] are excluded, and they
will never appear again in any state visited by
this CA.)

The cellular automata of SIMls and SIM22
return configurations to the tabu search pro-
grams similar to those appearing in Figure 1.
The process of excluding sub-configuration pat-
terns from occurring in the vector M is sym-
metric to a process repeating the same sub-
configuration patterns (as more patterns are ex-
cluded, the likelihood that similar patterns will
appear is increased). Consequently, as an in-
creasingly larger number of sub-configuration
patterns are excluded from the vector M ge-
nerated by the CA, different search programs re-
ceive similar configurations from the CA. This is
the way that the dynamics of the complex non-
periodic attractors of rules 18 and 22 reduce the
diversity of the parallel procedures SIM18 and
SIM22.

B. Diversity of the cooperative search
procedures

In the cooperative search procedures, pro-
grams interact by swapping a configuration mi
between two programs pi and p j . Once mi has
been swapped from pi to p j , it becomes the cur-
rent configuration of program p j from which this
program resumes the execution. At some point,
program p j will interact with a program pk to
which it will send a configuration mj. The inter-
actions based on configurations mi and mj are
said to be correlated to each other and are part
of a same diffusion process. Figure 2 shows a cor-
related sequence of interactions which interfere
with the search method of the sequential pro-
grams. As we can see from this figure, once the
configuration mo has been swapped in program
p l , the state of only a few variables (those with
value "2" in the figure) will be changed by the

Fig. 2. Diffusion process among search programs

transition moves of program p l . When configu-
ration ml is swapped from p l to p2, only a few
variables have a different state in the two configu-
rations m0 and ml. This means that the swap-
ping of ml from p l to p2 is equivalent to copying
the state of several variables from program po to
pa. The state of variables in a same diffusion
process which are not changed by the transition
moves of the programs are copied across several
search programs. For example, in Figure 2 the
first sub-configuration 010 between 3 and 2 in
program pa has been copied from program PO,
to pl ,p2 and p3. The occurrence of the same
blocks (like 010) in the configurations of several
programs is the main factor contributing to the
reduction of the diversity of cooperative search
procedures.

C. Interpretation of the results

Attributes of good solutions are sent to other
programs such that they can be reused to im-
prove the performance of cooperating programs.
This is the main objective in the design of
cooperation among search programs. The re-
sults of the present study show that similar to
the propagation of symbolic information (such
as configurations selected according to the cost
function), another type of information, the sub-
configurations, are repeatedly copied across seve-
ral search programs. Those sub-configurations
are never evaluated by the cost function, they
are just sent from one program to another using
as medium the configurations selected by the cost
function. Although they are not evaluated, the
repeated occurrence of the sub-configurations
has a strong impact on the search behavior of
cooperating programs, as it shows-up in the
diversity values of these parallel procedures.

2383

The similarity of the diversity between coopera-
tive search procedures and parallel procedures
based on non-periodic dynamics of cellular au-
tomata, indicates that coordination among the
cooperating programs is emerging from their in-
teractions through the sharing of information.
This coordination occurs spontaneously without
being specifically introduced in the design of the
cooperative algorithms, therefore we refer to this
global behavior of cooperative procedures as a
form of self-organization process. This global
behavior is clearly not subordinated to the opti-
mization logic of the search programs. Rather it
is a second order phenomenon based on the cor-
related interactions (diffusion dynamics) among
the search programs. Although self-organization
is shaping the search behavior of cooperating
programs, our study brings no evidence that it
should be credited for automatically improving
the performance of cooperative algorithms.

V. CONCLUSION

Memory based local search methods use the
history of the solution process to determine the
choice of the configurations while exploring the
solution space of a problem instance. Many
cooperative algorithms share the histories of the
solution processes among search programs with
the hope to find better solutions to the optimiza-
tion problem. In this paper we have shown that
the sharing of gathered data has a global im-
pact of reducing the diversity of the configura-
tions visited in the solution space by a popula-
tion of search programs. We have also shown
that this global behavior is independent of the
optimization properties of the data exchanged.
This kind of global phenomena plays a role in
the performance of cooperating algorithms. We
believe that by addressing this aspect of coope-
rative search algorithms, future designs can im-
prove in an important manner their performance.

itor, Computation: The Mzcro and the Macro View,
pages 33-70. World Scientific, 1992.
S.H. Clearwater, B.A. Huberman, and T. Hogg. Co-
operative Solution of Constraint Satisfaction Prob-
lems. Sczence, 254:1181-1183, 1991.
T.G. Crainic, M. Gendreau, P. Soriano, and
M. Toulouse. A Tabu Search Procedure for Multi-
commodity Location/Allocation with Balancing Re-
quirements. Annals of Operations Research, 41:359-
383, 1993.
T.G. Crainic, M. Toulouse, and M. Gendreau. To-
wards a Taxonomy of Parallel Tabu Search Algo-
rithms. INFORMS Journal of Computzng, 9(1):61-
72, 1997.
I.R. East and 3. Rowe. Effects of Isolation in a
Distributed Population Genetic Algorithm. Lecture
Notes in Computer Science, 1141:408-419, 1996.
B. Gendron and T.G. Crainic. Parallel Branch-and-
Bound Algorithms: Survey and Synthesis. Opera-
tions Research, 42 (6): 1042-1066, 1994.
F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, 1997.
P. S. Laursen. Problem-Independent Parallel Simu-
lated Annealing Using Selection and Migration. Lec-
ture Notes in Computer Sczence, 866:408-417, 1994.
B. Manderick and P. Spiessens. Fine-Grained Paral-
lel Genetic Algorithm. In J. Schaffer, editor, Proceed-
ings of the Third Internatzonal Conference on Ge-
netzc Algorzthms, pages 416-421. Morgan Kaufmann
Publishers, 1989.
P. Moscato and M.G. Norman. A ‘Memetic’ Ap-
proach for the Traveling Salesman Problem. Imple-
mentation of a Computational Ecology for Combi-
natorial Optimization on Message-Passing Systems,.
In M. Valero, E. Onate, M. Jane, J.L. Larriba and
B. Suarez, editors, Parallel Computzng and !l?rans-
puter Applzcatzons, pages 187-194. 10s Press, Ams-
terdam, 1992.
C. Pettey and M. Leuze. A Theoretical Investigation
of a Parallel Genetic Algorithm. In J . D. Schaffer,
editor, Proc. Thzrd Int. Conference on Genetic Algo-
rzthms and thezr Applzcations, pages 398-405. Mor-
gan Kaufmann Publishers, 1989.
C. Pettey, M. Leuze, and J. Grefenstette. A Paral-
lel Genetic Algorithm. In J.J. Grefenstette, editor,
Proc. Second Int. Conference on Genetic Algorzthms
and their Applzcatzons, pages 155-161. Lawrence Erl-

I

baum Associates Publishers, 1987.
[13] S. Wolfram. Statistical Mechanics of Cellular Au-

tomata. Revzews of Modern Physzcs, 55(3):601-644,
1983.

[14] S. Wolfram. Computation Theory of Cellular Au-
tomata. Comm. Math. Phys, 96:15-57, 1984.

REFERENCES

[l] S.H. Clearwater, T. Hogg, and B.A. Huberman. Co-
operative Problem Solving. In B.A. Huberman, ed-

2384

