
IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 1998); San Diego, California, 11-14 October 1998, pp-232-237.

Copyright c© 1998 IEEE (DOI 10.1109/ICSMC.1998.725414).

Performance Bounds for Distributed Memory

Multithreaded Architectures

W.M. Zuberek R. Govindarajan

Department of Computer Science Supercomputer Education and Research

Memorial University of Newfoundland Center, Indian Institute of Science

St. John’s, Canada A1B 3X5 Bangalore 560 012, India

Abstract

In distributed memory multithreaded systems, the
long memory latencies and unpredictable synchroniza-
tion delays are tolerated by context switching, i.e., by
suspending the current thread and switching the pro-
cessor to another thread waiting for execution. Simple
analytical upper bounds on performance measures are
derived using throughput analysis and extreme values
of some model parameters. These derived bounds are
compared with performance results obtained by simu-
lation of a detailed model of the analyzed architecture.

1. INTRODUCTION

Multithreading provides a means of tolerating long,
unpredictable communication latency and synchroniza-
tion delays in distributed memory multiprocessor sys-
tems. Its basic idea is quite straightforward. In a tra-
ditional architecture, when a processor accesses a lo-
cation in memory, it waits for the result, possibly af-
ter executing a few instructions that are independent
of the memory operation. In a large multiprocessor,
this wait may involve more than one hundred proces-
sor cycles [6] since the memory request may need to
be transmitted across the communication network to a
remote memory module, serviced, and then the result
returned. Not surprisingly, the utilization of proces-
sors in such systems tends to be low. Alternatively, if
the processor maintains multiple threads of execution,
and can quickly switch from one thread to another, in-
stead of waiting for completion of memory requests, the
processor can switch to another thread and continue is
execution. Thus the processor can overlap some com-
putation during memory access, effectively ‘hiding’ the
large memory latency of distributed memory architec-
tures. With multithreading, the processor utilization
can be largely independent of the latency in complet-
ing remote memory accesses.
Traditional multithreaded architectures [1, 4, 6, 16]

issue instructions from only one thread each cycle. The
available instruction-level parallelism exploited by a
single thread in the multithreaded execution is limited.

Consequently, the utilization of processor resources is
lower for multithreaded execution. To exploit greater
instruction-level parallelism supported by modern su-
perscalar processors which feature aggressive multiple
instruction issue and execution, recent multithreaded
architectures propose to extract instruction-level paral-
lelism by grouping instructions from multiple instruc-
tion streams or threads. We generically refer to these
architectures as simultaneous multithreading. Several
simultaneous multithreaded architectures have been re-
ported in the literature [12, 10, 8, 17].

Designing a multithreaded processor is an intricate
process since each design decision impacts upon others.
For example, a single–instruction thread size may be
desirable (e.g., HEP [16]) because instruction depen-
dencies in pipelined execution can be eliminated (con-
secutive instruction are fetched from different threads).
However, such a small thread size forces at least one
scheduling decision per CPU clock cycle. Since careful
allocation of the CPU resource is vital for efficient ex-
ecution of many applications, a larger thread size has
to be tolerated so that suitable scheduling decision can
be made.

Several multithreaded architectures have been pro-
posed which differ in the implementation of multi-
threading [1, 4, 5, 6, 8, 10, 12]. They differ in two ba-
sic aspects, in the number of instructions executed be-
fore switching to another thread (one, several, as many
as possible), and the cause of context switching (every
load, remote load).

It is assumed in this paper that context switching can
be performed very efficiently (in one processor cycle);
consequently, context switching on every load is con-
sidered in greater detail. Other approaches to context
switching require some modifications of the proposed
approach.

An interconnection network links the nodes of dis-
tributed memory multiprocessor architecture. Inter-
connection networks can have different topologies and
different properties depending upon the topology. It
is assumed that all messages in the system are routed
along the shortest paths, but in a non–deterministic



Performance bounds for distributed memory multithreaded architectures 233

manner. That is, whenever there are multiple (short-
est) paths between the source and destination, any of
the paths is equally likely to be used. The delay of each
message is proportional to the number of hops between
the source and destination nodes, and it also depends
upon the traffic in the chosen path. The interface be-
tween the network switch and processor node is through
a pair of outbound and inbound network interfaces.
Analyzing the performance of such architectures is

rather involved as it depends on a number of param-
eters related to the architecture — memory latency
time, context switching time, switch delay in the in-
terconnection network — and a number of application
parameters — number of parallel threads, runlengths of
threads, remote memory access pattern and so on. A
number of analytical performance evaluation studies of
multithreaded architectures have been reported in the
literature [2, 3, 14, 11, 15, 18].
The steady–state behavior of systems can be char-

acterized by ‘flows’ of activities (such as requests for
service and results of these requests) between differ-
ent components of the system. The basic property of
the steady–state is that these flows must be balanced,
i.e., the total flow incoming into each component must
be equal to the total flow outgoing from it. This bal-
ance of flows can be used for analysis of throughputs
[7] of system’s components. Intuitively, the throughput
of a component is equal to the average number of ser-
vice requests (or service completions) in a unit of time.
Utilizations of components can be derived very easily
from throughputs [7]. Some other performance mea-
sures can also be obtained by applying general rules of
operational analysis [13].
This paper describes simple models of distributed

memory multithreaded architectures, derives upper
bounds on some performance results, and and compares
these bounds with results obtained by simulation of a
detailed model. The influence of architectural and ap-
plication parameters on the performance of the system
is also discussed.

2. MODEL OF THE SYSTEM

In distributed memory architectures, each node has
local (non–shared) memory, and is connected to a num-
ber of neighboring nodes, usually in a regular pattern.
A two–dimensional torus network for a 16–processor
systems is shown in Fig.2.1; such a 16–processor sys-
tem is used as a running example in this paper, but
the results can easily be extended to higher number of
processors and other types of interconnection networks.
Each node in this system contains a (multithreaded)

processor and two switches which connect the processor
with the network and forward the messages to/from the
four adjacent nodes (one switch handles node outgoing
traffic, and the other handles incoming messages as well
as those messages that are forwarded to other nodes).

Fig.2.1. An outline of a 16–processor system.

In the multithreaded execution model, a program is
a collection of partially ordered threads, and a thread
consists of a sequence of instructions which are executed
in the conventional von Neumann model. It is assumed
that switching from one tread to another is performed
on every load [4, 9]. If the currently executed instruc-
tion issues an operation of accessing either a local or a
remote memory location, the execution of the current
thread suspends, and another ready thread is selected
from a pool of ready threads. When the long–latency
operation for which the thread was suspended is fin-
ished, the thread becomes ready and joins the pool of
threads waiting for execution.
The average number of instructions executed by a

thread before issuing a load operation (and switching
to another thread) is called thread runlength, and is one
of important model parameters.
Fig.2.2 outlines the architecture of a single proces-

sor. The ready threads wait for execution in the Ready
Queue. When the thread executing in the Processor
issues a (long–latency) memory operation, the thread
becomes suspended, context switching initiates execu-
tion of another thread from the Ready Queue, and
the memory operation request is directed to either lo-
cal or remote memory. For local memory operations,
the request enters the Memory Queue, and, when the
memory becomes available, is serviced, after which the
suspended thread becomes ready and joins the Ready
Queue.
For remote memory accesses, the request joins the

Outbound Queue and is forwarded (by the Outbound
Switch) to one of neighboring nodes. It is assumed that
all messages in the system are routed to their desti-
nations along the shortest paths, and whenever there
are multiple (shortest) paths between the source and
destination, any one of these paths is equally likely to
be taken (so the traffic is distributed uniformly in the
interconnecting network).
Requests (or messages) sent into the interconnect-

ing network enter nodes through Inbound Queue and
Inbound Switch. If the request is to be forwarded to
yet another node (another ‘hop’), it is sent from the
Inbound Switch directly to another node. If the re-
quest has reached its target node, it enters the Mem-



Performance bounds for distributed memory multithreaded architectures 234

Processor

Ready
Queue

Outbound
Queue

Outbound
Switch

Inbound
Queue

Inbound
Switch

Interconnecting
Network

Memory
Queue

Memory

Fig.2.2. Model of a single multithreaded processor.

ory Queue, and after accessing the Memory, the result
is sent back to the request’s source through Outbound
Queue and Outbound Switch. When the result returns
to the source node, it changes the status of the sus-
pended thread to ready, and the thread joins the Ready
Queue.
The most important parameters which affect the per-

formance of the architecture shown in Fig.2.2 include
thread runlength (or the average service time of Pro-
cessor), the Memory cycle time (i.e., the service time
of Memory), the delay of Inbound Switch and Outbound
Switch, and the probability of local (or remote) memory
accesses (which somehow characterizes the ‘locality’ of
memory references).
It is assumed that thread execution time is expo-

nentially distributed with the mean value equal to the
thread runlength. All other service times (for Memory,
Inbound Switch and Outbound Switch servers) are con-
stant. The context switching time is not represented
explicitly but is included in the thread runlength (it
appears that this simplifies the model without affect-
ing the performance results in any significant way [9]).
Similarly, a geometric distribution of the execution time
(with the same mean value) would be a more realistic
representation of the runlength than the exponential
one, as it would represent the execution of consecutive
instructions of the thread. However, the model with
exponential distribution is simpler, and was found to
be practically as accurate as the one with geometric
distribution [9].
The delay of remote memory accesses is proportional

to the number of hops in the interconnecting network;
it also depends upon the traffic in the chosen path. The
average number of hops can be estimated assuming that
the accesses are uniformly distributed over the nodes of
the system. For a 16–processor system with a torus–
like network, the average number of hops, nh, is ap-

proximately equal to 2 [9].
It should be observed that the original distribution

of the number of hops (as discussed above) is not pre-
served in the model shown in Fig.2.2. In order to
make the model simple, the geometric distribution of
the number of hops is used with the same mean value
as the original distribution (i.e., 2 for the 16–processor
system). However, simulation results indicate that this
simplification affects the results only insignificantly [9].

The main parameters used in the model are:

parameter symbol

thread runlength ℓt
processor cycle time tp
memory cycle time tm
switch delay ts
average number of hops (one direction) nh

probability to access local memory pℓ
probability to access remote memory pr

In most cases, only relative values of temporal param-
eters (e.g., the processors cycle time, the switch delay)
are needed, so it is convenient to express the values of
other parameters in terms of a selected one; it is as-
sumed that the processor cycle time is one unit, and all
other temporal parameters are relative to the processor
cycle time. For example, the memory cycle time is 10
(processor cycle times), and the switch delays are 5 or
10 (again, processor cycle times).

3. PERFORMANCE BOUNDS

If the probability of accessing local memory, pℓ, is
close to 1.0, the model can be simplified by neglecting
the interconnection network and its influence; in fact,
in such a case each node can be considered in isolation,
as shown in Fig.3.1.



Performance bounds for distributed memory multithreaded architectures 235

Processor

Ready
Queue

Memory
Queue

Memory

Fig.3.1. Simplified model for local memory accesses.

For this simple cyclic model, if the number of threads,
nt, is small, there is practically no queueing, so the
throughput (the same for processor and the memory in
this case) can be expressed as:

nt

ℓt + tm

so the utilization of the processor is:

u′

p = nt ∗
ℓt

ℓt + tm

and the utilization of the memory is:

u′

m = nt ∗
tm

ℓt + tm

(the utilization of switches is zero in this case).
If the number of threads is large, the system en-

ters its saturation, and the throughput is limited by
the element with the maximum service demand (the so
called bottleneck). Since the visit rates for processor
and memory are the same (both equal to 1), the bot-
tleneck is determined by the (average) service time of
elements; if ℓt > tm, the processor is the bottleneck,
its utilization is close to 100%, and the utilization of
memory is:

u′′

m =
tm
ℓt

.

On the other hand, if ℓt < tm, the memory is the bot-
tleneck, its queue contains most of the requests waiting
for service, memory utilization is close to 100%, while
the utilization of the processor is:

u′′

p =
ℓt
tm

.

If ℓt = tm, both the processor and memory are uti-
lized approximately 100%.

If the probability of accessing local memory, pℓ, is
close to 0.0, only remote memory accesses should be
considered, and then the simplified model can be as
shown in Fig.3.2.
A very straightforward expansion of the loops on the

inbound switches, taking into account that the average

Processor

Ready
Queue

Memory
Queue

Memory

Outbound 
Switch SwitchQueue

Outbound Inbound Inbound
Queue

Outbound 
QueueSwitch

Outbound
Switch
Inbound Inbound

Queue

Fig.3.2. Simplified model for remote memory accesses.

Memory
Queue

Memory

Switch Switch Switch
Outbound 

Queue

Switch Switch

Processor

Switch

Ready
Queue

Outbound Inbound Inbound

Outbound InboundInbound Outbound 
Queue

Fig.3.3. Expanded model for remote memory accesses.

number of hops (for a 16–processor system) is equal to
2, results in the model shown in Fig.3.3.
If the number of threads, nt, is small, the queueing

can be ignored, so the throughput is:

nt

ℓt + tm + 2 ∗ (1 + nh) ∗ ts

and then the utilization of the processor is:

u′

p = nt ∗
ℓt

ℓt + tm + 2 ∗ (1 + nh) ∗ ts

while the utilization of the memory is:

u′

m = nt ∗
tm

ℓt + tm + 2 ∗ (1 + nh) ∗ ts

If the number of threads, nt, is sufficiently large, the
system enters the saturation region, in which the per-
formance of the whole system is limited by the bottle-
neck. As before, the bottleneck is the system’s compo-
nent with the maximum service demand. In Fig.3.3, the
visit ratios for the inbound and outbound switches are
4 and 2, respectively (in general case, these visit ratios
are 2 ∗ nh and 2 for inbound and outbound switches,
respectively).

The three possibilities for a bottleneck are:



Performance bounds for distributed memory multithreaded architectures 236

• the inbound switch (if 2 ∗ nh ∗ ts > max(ℓt, tm)):
the utilizations of the processor and the memory
are ℓt/(2∗nh ∗ ts) and tm/(2∗nh ∗ ts), respectively;

• the processor (if ℓt > max(2∗nh ∗ ts, tm)): the uti-
lizations of the memory and the (inbound) switch
are tm/ℓt and 2 ∗ nh ∗ ts/ℓt, respectively;

• the memory (if tm > max(ℓt, 2 ∗ nh ∗ ts)): the uti-
lizations of the processor and the (inbound) switch
are ℓt/tm and ts/tm, respectively.

An illustration of these bounds is shown in Fig.3.4
for local and remote memory accesses. Let ℓt = tm =
10, ts = 5, and nh = 2. If the number of threads is
small and pℓ → 1, the bound on processor utilization is
0.5 ∗ nt, which is represented (in Fig.3.4) by a straight
line with slope 0.5; if pℓ = 0, the bound is a straight
line with slope 0.2. If the number of threads, nt, is
large, the bound on processor utilization is constant
(i.e., does not depend upon the number of threads, nt);
this bound is at the level of 1 for pℓ = 1, and at the
level of 0.5 for pℓ = 0.

n t

1.0

0.5

utilization

lp =1

pl=0

Fig.3.4. Example performance bounds.

The two hypothetical utilization curves (as function
of nt), for pℓ = 0 and for pℓ = 1, are shown in Fig.3.4
by dashed lines.

The derived performance bounds can be compared
with the results obtained by simulation of the detailed
model of distributed memory multiprocessor architec-
ture [9, 18]. Fig.3.5 shows the utilization of the pro-
cessor as a function of two variables, the probability of
accessing local memory, pℓ, and the number of threads,
nt, for ℓt = tm = ts = 10.
The derived upper bounds on processor utilization

are as follows:

case bound

pℓ = 1, nt → 0 0.5 ∗ nt

pℓ = 1, nt → ∞ 1.0
pℓ = 0, nt → 0 0.125 ∗ nt

pℓ = 0, nt → ∞ 0.25
For small values of pℓ and large numbers of threads,

the processor’s utilization is limited by the inbound
switch, which is the bottleneck (2∗nh∗ts > max(ℓt, tm).

0
5

10
15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Processor utilization

number of threadsprob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units

Runlength: 10 units

Fig.3.5. Processor utilization (ts = 10).

0
5

10
15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Processor utilization

number of threadsprob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 5 units

Runlength: 10 units

Fig.3.6. Processor utilization (ts = 5).

Fig.3.6 also shows the processor utilization as a func-
tion of pℓ and nt, but in this case the delay of switches
is 5 while ℓt = mt = 10. For this case, the derived
upper bounds on processor utilization are:

case bound

pℓ = 1, nt → 0 0.5 ∗ nt

pℓ = 1, nt → ∞ 1.0
pℓ = 0, nt → 0 0.2 ∗ nt

pℓ = 0, nt → ∞ 0.5

Fig.3.5 and Fig.3.6 show that the derived bounds are
quite tight. Moreover, the utilization surface shown in
Fig.3.6 contains a characteristic ‘ridge’ at pℓ = 0.5; it
appears [18] that pℓ = 0.5 is the condition at which
the bottleneck in this system changes – for pℓ < 0.5,
the inbound switch is the bottleneck, so the processor
utilization is actually limited by the throughput of the
inbound switch; for pℓ > 0.5, the processor becomes
the bottleneck, and its utilization (for large numbers of



Performance bounds for distributed memory multithreaded architectures 237

threads) is close to 100%. The same effect occurs in
Fig.3.5 at pℓ = 0.75 [18].

4. CONCLUDING REMARKS

Simple formulas for upper bounds on utilization of
the components of distributed memory multithreaded
architectures are obtained by throughput analysis for
extreme values of some model parameters. The bounds
are verified by comparison with results obtained by sim-
ulation of a detailed model. The derived bounds can
easily be generalized. For example, it should be no-
ticed that for small number of threads (when queueing
can be neglected), the bound on the utilization, for any
value of pℓ between 0 and 1, can be obtained as a linear
combination of bounds for pℓ = 0 and pℓ = 1; this is
clearly illustrated in Fig.3.5 and Fig.3.6 by a practically
straight–line boundary of the utilization surface along
the pℓ axis.
The proposed approach can easily be adapted to

other models of multithreading. For example, context
switching on remote loads (typically used in systems
with ‘slow’ context switching), requires only a few mod-
ifications of the presented approach (in fact, the bounds
for pℓ = 0 remain the same; the bounds for pℓ = 1 need
to be revised).
Finally, the upper bounds on component utilizations

must be invariant under performance–preserving model
transformations. An example of model simplification
was proposed in [9], and it can easily be checked that
the proposed simplification preserves the upper bounds
discussed in this paper. Consequently, the simplified
model may provide slightly different results for some
combinations of model parameters, but its asymptotic
behavior is consistent with the original model.

References

[1] Agrawal, A., Lim, B-H., Kranz, D., Kubiatowicz,
J., “April: a processor architecture for multipro-
cessing”; Proc. 17-th Annual Int. Symp. on Com-
puter Architecture, pp.104-114, 1990.

[2] Agrawal, A., “Limits on interconnection network
performance”; IEEE Trans. on Parallel and Dis-
tributed Systems, vol.2, no.4, pp.398-412, 1991.

[3] Alkalaj, L., Boppana, R.V., “Performance of a
multithreaded execution in a shared–memory mul-
tiprocessor”; Proc. 3-rd Annual IEEE Symp. on
Parallel and Distributed Processing, Dallas, TX,
pp.330-333, 1991.

[4] Alverson, R., Callahan, D., Cummings, D.,
Koblenz, B., Posterfield, A., Smith, B., “The Tera
computer system”; Proc. Int. Conf. on Super-
computing, Amsterdam, The Netherlands, pp.1-6,
1990.

[5] Boothe, B. and Ranade, A., “Improved multi-
threading techniques for hiding communication

latency in multiprocessors”; Proc. 19-th Annual
Int. Symp. on Computer Architecture, pp.214-223,
1992.

[6] Culler, D.E., et al., “Fine–grain parallelism with
minimal hardware support: a compiler controlled
threaded abstract machine”; Proc. 4-th Int. Conf.
on Architectural Support of Programming Lan-
guages and Operating Systems, Santa Clara, CA,
pp.164-175, 1991.

[7] Ferrari, D., “Computer systems performance eval-
uation”; Prentice–Hall 1978.

[8] Govindarajan, R., Nemawarkar, S.S., LeNir,
P., “Design and performance evaluation of a
multithreaded architecture”; Proc. First IEEE
Symp. on High–Performance Computer Architec-
ture, Raleigh, NC, pp.298-307, 1995.

[9] Govindarajan, R., Suciu, F., Zuberek, W.M.,
“Timed Petri net models of multithreaded mul-
tiprocessor architectures”; Proc. 7-th Int. Work-
shop on Petri Nets and Performance Models
(PNPM’97), St. Malo, France, 1997.

[10] Hirata, H., et al., “An elementary processor archi-
tecture with simultaneous instruction issuing from
multiple threads”; Proc. 19-th Int. Symp. on Com-
puter Architecture, pp.136-145, 1992.

[11] Johnson, K., “The impact of communication lo-
cality on large–scale multiprocessor performance”;
Proc. 19-th Annual Int. Symp. on Computer Ar-
chitecture, pp.392-402, 1992.

[12] Keckler, S.W., Dally, W.J., “Processor coupling:
integration of compile-time and run-time schedul-
ing for parallelism”; Proc. 19-th Annual Int. Symp.
on Computer Architecture, pp.202-213, 1992.

[13] King, P.J.B., “Computer and communication sys-
tems performance modelling”; Prentice–Hall 1990.

[14] Nemawarkar, S.S., Govindarajan, R., Gao, G.R.,
Agarwal, V.K., “Analysis of multithreaded multi-
processors with distributed shared memory”; Mi-
cronet Report, Department of Electrical Engineer-
ing, McGill University, Montreal, Canada H3A
2A7, 1993.

[15] Saavedra–Bareera, R.H., Culler, D.E., von Eicken,
T., “Analysis of multithreaded architectures for
parallel computing”; Proc. 2-nd Annual Symp.
on Parallel Algorithms and Architectures, Crete,
Greece, 1990.

[16] Smith, B.J., “Architecture and applications of
the HEP multiprocessor computer System”; Proc.
SPIE – Real-Time Signal Processing IV, vol. 298,
pp. 241–248, San Diego, CA, 1981.

[17] Tullsen, D.M., Eggers, S.J., Levy, H.M., “Simulta-
neous multithreading: maximizing on-chip paral-
lelism”; Proc. 22-nd Annual Int. Symp. on Com-
puter Architecture, pp.392-403, 1995.

[18] Zuberek, W.M., Govindarajan, R., “Performance
balancing in multithreaded multiprocessor archi-
tectures”; Proc. 4-th Australasian Conf. on Paral-
lel and Real–Time Systems (PART’97), Newcastle,
Australia, pp.15-26, 1997.


