
On the Synthesis of Optimal Schedulers in Discrete Event Control

Problems with Multiple Goals�

Herv�e Marchand� Olivier Boivineau and St�ephane Lafortune

Dept� of Electrical Eng� � Computer Science� Univ� of Michigan

���� Beal avenue� Ann Arbor� Michigan 	
����
�



e�mail� fmarchand� oboivine� stephaneg�eecs�umich�edu

July ���


Report No� CGR������
College of Engineering � Control Group Reports

University of Michigan
Ann Arbor

Abstract

This paper deals with a new type of optimal control for Discrete Event Systems� Our control
problem extends the theory of ����� that is characterized by the presence of uncontrollable events�
the notion of occurrence and control costs for events� and a worst�case objective function� A
signi	cant di
erence with the work in ���� is that our aim is to make the system evolve through
a set of multiple goals� one by one� with no order necessarily pre�speci	ed� whereas the previous
theory only deals with a single goal� Our solution approach is divided into two steps� In the
	rst step� we use the optimal control theory in ���� to synthesize individual controllers for each
goal� In the second step� we develop the solution of another optimal control problem� namely�
how to modify if necessary and piece together� or schedule� all of the controllers built in the 	rst
step in order to visit each of the goals with least total cost� We solve this problem by de	ning
the notion of a scheduler and then by mapping the problem of 	nding an optimal scheduler
to an instance of the well�known Traveling Salesman Problem �TSP� �
�� We 	nally suggest
various strategies to reduce the complexity of the TSP resolution while still preserving global
optimality�

Keywords

Discrete Event Systems� Optimal Control� Scheduler� Traveling Salesman Problem

�This research is supported in part by INRIA and by the Department of Defense Research � Engineering �DDR�E�
Multidisciplinary University Research Initiative �MURI� on Low Energy Electronics Design for Mobile Platforms and
managed by the Army Research O�ce �ARO� under grant DAAH���	
�����

�



� Introduction and Motivation

We are interested in a new class of optimal control problems for Discrete Event Systems 	DES
�
We adopt the formalism of supervisory control theory ���
 and model the system as the regular
language generated by a Finite State Machine 	FSM
� Our control problem follows the theory in
���� ��� ��
 and is characterized by the presence of uncontrollable events� the notion of occurrence
and control costs for events and a worst�case objective function� A signi�cant di�erence with the
work in ���
 and with the other works dealing with optimal control of DES ��� �� ��� ��
 is that we
wish to make the system evolve through a set of marked states 	or multiple goals
� one by one� with
no order necessarily speci�ed a priori� in contrast� the previous theories only deal with a single
marked state�
Our problem formulation is motivated by several application domains such as test objective gen�

eration in veri�cation and diagnostics� planning in environments with uncertain results of actions�
and routing in communication networks�

� In test objective generation� a given system has been designed to meet some speci�c require�
ments� However� it may happen that some of these requirements have been overlooked or
neglected� Failures can occur as a consequence of negligence� Test objective generation is
a way of 	ideally exhaustively
 checking for inconsistencies in the behavior of the system
��� �� ��
� The marked states 	the states of interest
 would be some particular states in which
the behavior of the system to be tested is suspected to be �awed� The method that we develop
generates a behavior for the system that allows it to reach all these states in an optimal way�
with respect to the given occurrence and control cost functions for the events� Each time a
state of interest is reached� a behavioral test can be performed on this particular state in order
to check if it meets the requirements and conforms to the designed or expected behavior�

� In Arti�cial Intelligence 	AI
� the behavior of an agent is often sought to be optimized with
respect to an optimality criterion ��
� Moreover� dealing with multiple goals is an active area
of research in AI ���
� The model and the methods that we develop in this work can easily
be applied to an agent evolving in an environment where the results of its actions are not
always the ones expected� Under certain restrictions� there is a mapping between partial
controllability in DES and the notion of a nondeterministic environment� in AI ���
� The
notion of an optimal scheduler that we de�ne and construct can be used to do planning with
multiple goals�

� Broadcasting and multicasting in a communication network is an instance of a multi�agent
system� Here� the marked states would represent the nodes of the network to which we would
want the information to be sent� The uncontrollability of certain events would be interpreted
as the uncertainty regarding the actual route that the information would take� since the entire
route is not up to the decision of the single sending agent� The solution that we generate
can be used to determine the number of duplicated messages that must be sent in parallel
through the network� in order for all the desired recipients to receive the piece of information�

Our solution approach consists of two steps� The starting point is a FSM which represents the
desired behavior of a given system� From this FSM� we can generate a controller that veri�es any

�The notion of a nondeterministic environment in AI is di�erent from the notion of a nondeterministic FSM in
control of DES� In AI� a nondeterministic environment is one where the actions undertaken by the agent might not
lead to the expected arrival state of the world� whereas in control of DES� a nondeterministic FSM is one in which
there are identically labeled transitions that lead from one state to di�erent states�

�



property that we would wish to associate to it� from the set of acceptable controllers� The desirable
property is often taken to minimize a quantitative performance measure� In our case� we generate
a controller which veri�es a range of properties� This is what has been called the DP�Optimality
property of a FSM ���
� DP�Optimality stands for Dynamic Programming Optimality� We use
back�propagation from the goal state to generate the controller� based on event cost functions� The
controller is represented as a FSM also� The theory of DP�Optimal controllers has been developed
in the restricted case of one unique marked state ���� ��� ��
� We use the theory in ���
 to synthesize
a set of optimal controllers corresponding to the di�erent marked states� each treated individually�
This yields a set of FSMs that are generated independently from each other� These controllers
are synthesized in a manner that gives them optimal sub�structure� consistent with the notion
of DP�Optimality of ���
� The objective function has a worst�case form� The total worst�case
computational complexity of the �rst step is cubic in the number of states in the system� At this
point� the notion of a DP�Optimal controller is replaced by the notion of a Stepwise DP�Optimal
scheduler� By scheduler� we mean a sequence of behaviors that are modeled by FSMs� We develop
the solution of a �higher�level� optimal control problem where we use all the controllers built in
the �rst step in order to visit each of the marked states with least total cost� we call this problem
that of �nding a �Stepwise DP�Optimal scheduler�� We solve this problem by de�ning the notion
of a scheduler and then by mapping the problem of �nding a Stepwise DP�Optimal scheduler to an
instance of the well�known Traveling Salesman Problem 	TSP
 ��
� We �nally suggest strategies to
reduce the computational complexity of this step while still preserving global optimality by taking
advantage of particular properties of the structure of Stepwise DP�Optimal schedulers�
One of the di�erences between DP�Optimality and Stepwise DP�Optimality resides in the con�

troller having a FSM structure� whereas the scheduler is a concatenation of FSMs� All the states
appear only once in a controller� whereas states can appear several times in a scheduler� but under d�
i�erent circumstances� i�e�� in di�erent submachines� Also� another di�erence between DP�Optimal
controllers and a Stepwise DP�Optimal scheduler for a FSM is the existence of a unique maxi�
mal DP�Optimal controller which contains all the other DP�Optimal controllers as submachines�
whereas there is no notion of a unique maximal Stepwise DP�Optimal scheduler�
This paper is organized as follows� In x�� the necessary notations are introduced� In x�� we

recall the basic de�nitions and properties of the optimal control theory of discrete event systems
of ���� ��� ��
� More precisely� we review the notion of a DP�Optimal submachine of a FSM G�
This de�nition is used as a springboard to x�� where we introduce the enlarged problem in the case
of multiple marked states� In x�� we de�ne the notion of an optimal scheduler� such a scheduler
ensures that the system will visit at least once each state in a given set of states while minimizing a
given cost function over the trajectories of the system� x� suggests possible simpli�cations that can
be made to reduce the overall complexity of the computation of a Stepwise DP�Optimal scheduler�
x� illustrates this new notion of optimality with an example� x� presents possible applications of
the theory that is developed throughout this paper� A conclusion and discussion on future works
are presented in x�� Finally� two appendices complete the paper� The �rst appendix presents a
new version of the DP�Optimal algorithm of ���
� used in section x� to construct the maximal
DP�Optimal submachine of a given FSM G� in the case where control costs are � for controllable
events� and � for uncontrollable events� The second appendix outlines the Branch and Bound
method� that is a general method for solving the TSP�

�



� Preliminaries

In this section� the main concepts and notations are de�ned� 	More de�nitions will be made when
necessary in the following sections�

The system to be controlled is a Finite State Machine 	FSM
 de�ned as follows�

De�nition ��� A Finite State Machine �FSM� is a ��tuple G � h�� Q� q�� Qm� �i� where � is the

set of events� Q is the ��nite� set of states� q� is the initial state� Qm is the set of marked states�

and � is the partial transition function de�ned over �� �Q� Q�

The notation �G	�� q
� means that �G	�� q
 is de�ned� i�e�� there is a transition labeled by event �
out of state q in machine G� Likewise� �G	s� q
 denotes the state reached by taking the sequence of
events de�ned by trace s from state q in machine G� The behavior of the system is described by
the pre�x�closed language L	G
 ���
� generated by G� L	G
 is a subset of ��� where �� denotes the
Kleene closure of the set � ��
� Similarly� the language Lm	G
 corresponds to the marked behavior
of the FSM G� i�e�� the set of trajectories of the system ending in one of the marked states of G�
Some of the events in � are uncontrollable� i�e�� their occurrence cannot be prevented by a

controller� while the others are controllable� In this regard� � is partitioned as � � �c��uc� where
�c represents the set of controllable events and �uc the set of uncontrollable events�
In the sequel� we will only be interested in trim FSMs 	i�e�� FSMs whose states are all accessible

from q� and coaccessible to Qm
� We also introduce the Trim Operation for particular states of a
FSM� It is de�ned as follows� Let G be a FSM and X� and X� be two states of this FSM� Then
GT � Trim	G�X��X�
 is a submachine of G� with X� as initial state and X� as marked state�
such that each state of GT is coaccessible to X� and accessible from X�� For explicit mathematical
de�nitions� the reader may refer to ���
�
We also de�ne for any FSM G and q � Q�

T 	G
 � f	�� q� q�
 � � � �� q � Q� �	�� q
 � q�g�
T 	G� q
 � f	�� q� q�
 � � � �� �	�� q
 � q�g�

These two functions represent the transitions in the machine G and the transitions de�ned at
each state of G� respectively� Similarly� we introduce Tc	G
 	resp� Tuc	G

 and Tc	G� q
 	resp�
Tuc	G� q

 as the set of controllable 	resp� uncontrollable
 transitions in the machine G and the set
of controllable 	resp� uncontrollable
 transitions de�ned at each state q of G� �	q
 will denote the
active event set at state q of machine G� The projection functions ��� ��� �� are used to represent
the �rst� second and third components of the ��tuple 	�� q� q�
 � T 	G
� respectively�

De�nition ��� A FSM A � h�� QA� q�A� QmA� �Ai is a submachine of G if

�A � �� QA � Q� QmA
� Qm� �� � �A� q � QA �A	�� q
�	 	�A	�� q
 � �	�� q

�

From de�nition 	���
� it is immediate that T 	A
 � T 	G
� The statement �A � G� denotes that A
is a submachine of G�We also say that A is a submachine of G at q whenever q�A � q � Q and A �
G� For any q � Q� we will useM	G� q�Qm
 � fA � G � A is trim with respect to QmA

and q�A �
qg to represent the set of trim submachines of G at q with respect to Qm� This set has a maximal
element in the sense that this maximal element contains all other elements as submachines� It is
denoted as M	G� q�Qm
� For convenience� we writeM	G� q
 and M	G� q
 when there is only one
marked state� i�e�� when Qm � fqmg�

�



As stated in ���
� to take into account the numerical aspect of the optimal control problem�
costs are associated with each event of �� To this e�ect� we introduce an occurrence cost function�

ce � �� R
� �f�g and a control cost function cc � �� R

� �f���g� Occurrence cost functions are
used to model the cost incurred in executing an event 	energy� time� etc�
� Control cost functions
are used to represent the fact that disabling a transition possibly incurs a cost� The control cost
function is in�nity for events of �uc� These cost functions are then used to introduce a cost on the
trajectories of a submachine A of G�
To this e�ect� we de�ne a projection pj that� when applied to a trace of events s � �s��

s
� � � � �

s
ksk�

returns the subtrace 	pre�x
 of s of length j starting from �s�� ksk denotes the length of s� Formally�

�s � �s��
s
� � � � �

s
ksk � L	G
� pj	s
 �

�
�s��

s
� � � � �

s
j if j 
 ksk�

unde�ned otherwise 	i�e�� when j � ksk
�

We also de�ne �Gd 	A� q
 as the set of disabled events at state q for the system to remain in subma�
chine A of G� �Gd 	A� q
 is then a subset of ��	T 	G� q

�

De�nition ��� Let A be a submachine of G and Lm	A
 be the marked language generated by A�

then	

� For any state q � QA and string s � �s��
s
� � � � �

s
ksk such that ��A	s� q
 exists� the cost of the

string s is given by	

cg	q�A� s
 �

kskX
j��

ce	�
s
j 
 �

kskX
j��

X
� � �G

d �A� q
��

q� � �A�pj�s�� q�

cc	�
 	�


� The objective function denoted as cgsup	�
 is given by	

cgsup	A
 � sup
s�Lm�A�

cg	q�A� A� s
� 	�


Basically� the cost of a trajectory is the sum of the occurrence costs of the events belonging
to this trajectory to which is added the cost of disabling events on the way to remain in A� If an
uncontrollable event is disabled� this renders the cost of a trajectory in�nite because the second term
of 	�
 becomes in�nity� The notation cgsup	A
 represents the worst�case behavior that is possible in
submachine A�

� Review of the DP�Optimal problem for one �nal state

In general� the purpose of optimal control is to study the behavioral properties of a system� to
take advantage of a particular structure� and to generate a controller which constrains the system
to a desired behavior according to quantitative and qualitative aspects� In the �eld of control of
DES� the supervisory control theory initiated by Ramadge and Wonham ���
 provides an appro�
priate theoretical environment for starting to reason about optimal control� In the basic setup of
supervisory control theory� optimality is with respect to set inclusion and thus all legal behaviors
are equally good 	zero cost
 and illegal behaviors are equally bad 	in�nite cost
� The work in ���


�This function is called �event cost function� in ����� we retain the same ce notation as in �����

�



enriches this setup by the addition of quantitative measures in the form of occurrence and control
cost functions� to capture the fact that some legal behaviors are better than others� The problem
is then to synthesize a controller that is not only legal� but also �good� in the sense of given quan�
titative measures� Some other studies appear in ��� �� ��� ��
� In this section� we present some
results of ���
 that are necessary for developing the solution procedure for optimal schedulers� the
problem of interest in this paper� Our aim here is not to describe in detail all the theory� which
can be found in ���� ��� ��
� but to present the principal notations and results that we use in the
sequel�

��� Principal Results

We �rst consider a FSM G � h�� Q� q�� qm� �i as de�ned in x�� but with a single marked state�
i�e�� Qm � fqmg� Before dealing with the optimal control problem� we recall the de�nition of
controllability for a submachine�

De�nition ��� A submachine A � G is said to be controllable if for all q � QA such that there

exists s � �� and �	s� qoA
 � q� the following proposition is satis�ed	

��		� � �uc
 � 	�	�� q
�

 	 �A	�� q
� 	�


In language terms ���
� the previous de�nition can be rephrased as follows� A submachine
A � G is said controllable if

Lm	A
 �uc � L	G
 � Lm	A
� 	�


Relation 	�
 says that for a desired language to be controllable� the occurrence of an uncontrollable
event must not generate a trace that is not in Lm	A
� or in other words� uncontrollable events
cannot be prevented from occurring when restricting the behavior of G to A�

De�nition ��� For all q � Q�Ao �M	G� q
 is an optimal submachine of G at q if

cgsup	Ao
 � min
A�M�G�q�

cgsup	A
 ��� 	�


In particular� an optimal solutionAo ofG at q is in the setM	G� q�
 	i�e�� the set of trim submachines
of G
� In the light of ���
 and ���
� the cost cgsup	Ao
 of Ao represents the minimum worst case cost
incurred to reach qm from q� when the behavior of G is restricted to a submachine of it� Under
the constraint that some events are not controllable 	have in�nite cost
� optimality is met when
there is no other control policy with lower worst�case cost that allows to reach the marked state qm
certainly� The following lemma 	lemma 	����
 in ���

 is stated to note that optimal solutions lie
within the class of controllable submachines� In general� there will be several optimal submachines
for a FSM�

Lemma ��� Let A �M	G� q�Qm
� If c
g
sup	A
 �� then A is controllable�

From lemma ���� uncontrollable submachines are not candidates for optimality since the cost
for restricting the system to those submachines is in�nite 	it is impossible to restrict the system to
such a behavior
�
Theorem 	���
 of ���
 gives necessary and su cient conditions for the existence of optimal

submachines and is recalled without proof�

�



Theorem ��� An optimal submachine of G exists if and only if there exists A � G such that A is

trim� controllable and for all s � L	G
 and q � Q such that �	s� q
 � q we have cg	q�A� s
 � ��

Intuitively� this theorem states that an optimal solution exists when there are controllable
submachines of G in which all cycles have zero cost� The controllability assumption ensures that
the positive cost cycles can be broken using controllable events alone�
We now introduce the notion of a DP�Optimal submachine� as it is stated in ���
� This kind of

submachine is used extensively in the following sections�

De�nition ��� A submachine ADO � M	G� q
 is DP�Optimal if it is optimal and for all q� �
QADO � M	ADO� q

�
 is an optimal submachine in M	G� q�
�

If a particular DP�Optimal FSM includes all other DP�Optimal FSMs as submachines of itself�
then we call it the maximal DP�Optimal submachine� The maximal DP�Optimal submachine of
a machine G at q with respect to qm will be denoted as M

o
D	G� q� qm
� Note that all DP�Optimal

submachines are acyclic� The existence of a DP�Optimal submachine of G is given by the following
theorem 	theorem ��� of ���

�

Theorem ��	 If an optimal submachine of G exists� then the unique maximal DP�Optimal sub�

machine Gm
des �Mo

D	G� q�� qm
 of G w�r�t� the �nal state qm also exists�

This section recalled the notions of controllability of a FSM G as well as of optimality of a FSM in
the case of a single marked state� This re�ects the fact that the marked state is always reachable
with a �nite and minimum worst�case cost� Finally� we have recalled the important de�nition of
DP�Optimality� which ensures a minimum worst�case cost from any state to the marked state�
Proofs and details can be found in ���� ��� ��
�

��� The cyclic DP�Optimal algorithm

In order to take full advantage of the DP�Optimal property of a submachine of G� we need to
generate such a DP�Optimal submachine�
Consider a FSM G � h�� Q� q�� qm� �i with a unique initial state q�� and a unique �nal state qm�

Assume that all occurrence costs are strictly positive� then there exists an algorithm with worst
case complexity O	jQj�j�jlog	j�j
 � jQj�j�j
 	theorem ���� of ���

� that constructs the maximal
	in the sense of the partial order relation of inclusion
 DP�Optimal submachine of the FSM G� An
outline of this algorithm can be found in x� of ���
� However we present� in Appendix A� a new
simpli�ed version of it� named DP
Opt� in the particular case where the control cost function is
equal to zero for all controllable events and in�nity for uncontrollable events� When a DP�Optimal
solution exists� the result of the DP
Opt program is an acyclic submachine Gm

des� The algorithm
also returns the worst inevitable cost cgsup	Gm

des
� Moreover� during the algorithm computation� we
can recover the submachines Mo

D	G� q� qm
 associated with c
g
sup	Mo

D	G� q� qm

� for all the states
visited during the computation� Of course we will only keep the submachines and the associated
costs that are relevant to our optimal control problem with multiple marked states� which we
formally present in x��

��� Example of the DP�Optimal problem

We conclude this section by �rst giving insight in the di�erence between optimality and DP�
Optimality� and then by illustrating the DP�Optimal problem through a more intricate example
that is reused in x��

�



����� Optimality versus DP
Optimality

In this part� we give a simple example 	�gure 	�

 that allows to grasp the notion of DP�Optimality
versus that of optimality� We have already seen that optimality actually exists when the worst�case
cost from the initial state q� is to qm is �nite once minimized� DP�Optimality is obtained when
the terminal path from any state of a submachine to the goal state qm is optimal in the previous
sense� This is illustrated by the following example�

oq u

a
b

c

q

q

m oq

a
b

u

q

qm Event ce Remarks

a�b � Controllable

c � Controllable

u � Uncontrollable

Figure �� A simple example giving the di�erence between Optimality and DP�Optimality

For simplicity� we have assumed that the control cost function was reduced to � for controllable
events and to � for uncontrollable events� We can observe that� in both submachines� the cost
for going from q� to qm is optimal since there exist no other controllable path with a lower cost�
However� in the �rst submachine� the worst�case cost to go from state q to state qm is � 	through
event c
� whereas the worst�case cost in the second submachine is optimized to be reduced to ��
Consequently� we can say that the second submachine is DP�Optimal 	thereby optimal
� but the
�rst submachine is not DP�Optimal� but is optimal 	since the optimality is obtained only regarding
the paths between the initial and �nal states and never the post�x paths between any state of the
corresponding FSM and the �nal state
�

����� A more intricate example

Let G be a FSM and � � fa� b� c� d� e� f� g� u� vg such that a� b� c� d� e� f � and g are controllable� u
and v are uncontrollable� G and the event cost function de�ned on � are as in �gure 	�
� Once
again� we assume cc � f���g� We assume that the initial state is q� and the �nal state is X	�

qo
a

a

a

a

aa

a

a

b
b

b

b

u

v

X

X

X

X

X

X1

X2

5

4

3

7

6

c

d
c

e

f

e

g

f

d Event ce Remarks

a�f � Controllable

b�c�d�e � Controllable

g � Controllable

u � Uncontrollable

v � Uncontrollable

Figure �� The initial system G and the event cost function

Using the DP
Opt program� we obtain the maximal DP�Optimal submachine of G� denoted
G	
des 	�gure 	�

� for which the worst inevitable cost is equal to c

g
sup	G	

des
 � ��
We can observe all the properties of the generated submachine� First� it is controllable� since

from any state� there exists a path that leads surely to the goal X	� Also� it is optimal� since all the
paths leading to X	 have a �nite and minimized worst�case cost 	notably� no uncontrollable event
at state X	 needs to be disabled
� Finally� the DP�Optimality property can be observed� From

�



qo

a

a

a

b

u

v

X

X1

X2

4

c

f

f

d

Figure �� The maximal DP�Optimal submachine G	
des

every state q of G	
des� the path from q to X	 which has the highest cost contains an uncontrollable

event u� that cannot be disabled�

We have reviewed the optimal control problem and the notion of DP�Optimal submachines
when only one marked state is present in the system� We now turn attention to the case of multiple
marked states and present our results for this new problem� This will require the introduction of a
new� more comprehensive� optimality criterion�

� The Optimal Control problem with multiple marked states

In the previous section� we were interested in �nding a DP�Optimal submachine of G that makes
the system evolve from an initial state q� to a �nal state qm by minimizing a cost function along
the various trajectories of the system� Here� our goal is di�erent� We consider a FSM G with a set
of multiple marked 	or �nal
 states� X � 	Xi
i�
������n�� Our aim is now to have the system reach
each and every one of the states of X � To account for the fact that it may not be possible to �nd
such a path� we assume in the following the possibility of resetting the system to its initial state
q�� when the system has evolved in one of the states of X � The Reset event that is added in this
section is much more than an artifact for developing the theory� Indeed� many interpretations can
be associated with it� First� there are physical systems that can actually be reset to their initial
state 	like a World Wide Web browser� for example
� Second� the Reset event can be seen as an
event whose occurrence signals the impossibility of visiting all the states of X without visiting the
initial state q� more than once� This apparent impossibility can be alleviated by having multiple
systems perform in parallel� This possibility is explored in x�� Also� we will give a method for
computing the minimum number of parallel systems needed to achieve the goal of visiting all the Xi

in X without re�visiting the initial state q�� For example� in the case of a communication network�
a message that is sent cannot be brought back to the initial state� However� it can be regenerated�
and then the number of Reset events can be regarded as an indicator of the number of copies of
the message that must be generated and sent in parallel in a broadcast or a multicast�

��� Stepwise DP�Optimality De�nition

Due to the Reset event� the system is now represented by the following FSM G � h� �
fResetg� Q� q��X � �i� with �	Reset�Xi
 � q� for all Xi � X � As in the previous section� we intro�
duce cost functions that take into account the particular Reset event� the occurrence cost function
ce � � � fResetg � R

� � f�g such that �� � �� ce	�
 
 � and ce	Reset
 � �� and the control cost
function cc � � � fResetg � R

� � f���g such that �� � �� cc	�
 
 � and cc	Reset
 � �� We
discuss these assumptions in x����

�



De�nition ��� Let s � Lm	G
� The trajectory s is said to be valid if there exists at least n pre�xes

of s� 	si
i�
������n�� such that �	q�� si
 � Xi � X �

In other words� a trajectory is valid if it makes the system evolve into each of the marked states
in X � Note that the de�nition does not require that the trajectory visit each marked state exactly
once� Besides� due to the Reset event� the system has the possibility of coming back in its initial
state along the trajectory� The set of valid trajectories of the FSM G will be denoted as S�

Given that our primary interest is in the states of X � we introduce the notion of a valid state

trajectory�

De�nition ��� Let s be a valid trajectory in S� such that s � ts� � � � t
s
l � with l � n and

�	q�� t
s
� � � � t

s
k
 � Xs

k � X � fq�g� We de�ne the function D from S into fq�g	X
�fq�g


�� such

that D	s
 � 	Xs
k
k�
������l�

�� Such a trajectory is called a valid state trajectory w�r�t� X � We

denote as D the set of valid state trajectories in G� w�r�t� the set of valid trajectories S	 D � D	S
�

A valid state trajectory d � D corresponds to a trajectory in fq�g	X
�fq�g


� that contains all the
states of X 	with possible repetitions
�

Since we must deal with a set of marked states rather than with a single marked state� we need
to introduce a model that comprises all the states of the set X and that accounts for the global
behavior of the system� It is not possible to use a classical merge operation 	�� de�nition 	���
 in
���

� because states might appear in di�erent submachines in di�erent contexts� i�e�� with di�erent
partial transition functions associated with them� An example of this con�ict is given below� in
�gure 	�
�

qo
a

b
v

X1

X2

c

�a� G�
des

a

b

X

X1

X2

3f

�b� Mo
D�G�X�� X��

qo

a

b

v
X

X1

X2

3
a

c fb

�c� G�
des�Mo

D�G�X�� X��

Figure �� Introduction of a cycle using the merge operation �

Consider the FSM G represented in �gure 	�
� We assume that the occurrence costs are the
same as the ones given in �gure 	�
� Let the �nal state be state X�� The DP�Optimal submachine
G�
des w�r�t� this state is given in �gure 	�	a

� From this state� our goal is to make the system

G evolve into the state X�� This is done by using the DP�Optimal submachine M
o
D	G�X�� X�


represented in �gure 	�	b

� Consider now G�
des � Mo

D	G�X�� X�
 	�gure 	�	c


� A cycle has
appeared in the graph� Therefore� state X� may not be reached during the evolution of the system�
Therefore� instead of using a merge that would 	basically
 perform the union of all the subma�

chines by overlapping them� we introduce the notion of a scheduler� A scheduler can be thought of
as a concatenation of 	DP�Optimal in our case
 submachines� The role of the scheduler is then to
make the system evolve according to one submachine at a time� and account for switching between
them at appropriate instants�

�This function allows the �extraction� of the state trajectory in G from the valid trajectory s�

��



In the sequel� the symbol ��� will denote the concatenation of two submachines A and A� of
G� It is de�ned is terms of languages� Let Lm	A
 and Lm	A

�
 be the marked languages of A and
A�� Then Lm	A � A�
 � fst � s � Lm	A
� t � Lm	A

�
g� Note that Lm	A � A�
 � Lm	G
 if and
only if QmA

� fq�A�g and QmA�
� QmG

� X � Also note that� due to possible cycles in the FSM
G� A � A� is in general no longer a submachine of G since some state q of G may be shared by the
two submachines A and A� but without the same transitions 	i�e�� T 	A� q
 �� T 	A�� q

�

De�nition ��� Let d � 	Xd
k�
k��
������l� � D be a valid state trajectory of X�fq�g and let 	Ak
k�
������l�

such that l 
 n and Ak � M	G�X
d
k��� X

d
k 
 for all k � ��� � � � � l
� then the structure A � A� � A� �

� � � �Al is called a scheduler w�r�t� G and X � The set of schedulers w�r�t� G and X is denoted as

Msc	G�X 
�

In this particular case� for each submachine of the scheduler� there is only one initial state and
one �nal state� Hence� for two consecutive submachines Ai and Ai��� we have qmAi

� q�Ai�� � Note
that for a scheduler A � A� �A� � � � � �Al� some Ak may be simply reduced to the simple transition

	Xd
k

Reset
�� q�
� This transition is clearly a DP�Optimal submachine from Xd

k to q�� Besides� in some
cases�Msc	G�X 
 can be reduced to ��

The cost associated with a scheduler A � A� � A� � � � � � Al� denoted as C
sc
sup	A
� is given by

Csc
sup	A
 �

lX
i��

cgsup	Ai
� 	�


The following de�nition extends the notion of DP�Optimality to the notion of Stepwise DP�

Optimality�

De�nition ��� Let A � Msc	G�X 
 be a scheduler� such that A makes the system evolve through

a valid state trajectory d � 	Xd
k�
k��
������l� of D� A � A� � A� � � � � � Al is said to be Stepwise

DP
Optimal if each of the submachines Ak �M	G�X
d
k��� X

d
k 
 is DP�Optimal with respect to its

initial state Xd
k�� and �nal state Xd

k � and if the following condition is satis�ed	

Csc
sup	Ao
 � min

A�Msc�G�X �
Csc
sup	A
 ���

We wish to draw attention to the following assumption�

Assumption ��� From now on� we assume that the DP�Optimal submachines under considera�

tion� with the exception of 	Xd
k

Reset
�� q�
� are maximal� This is done for two main reasons� First� the

algorithm DP
Opt referred to in section �
��� outputs exactly the maximal DP�Optimal subma�

chines� Second� taking the maximal DP�Optimal submachines allows the system greater freedom�

Indeed� it contains all the other DP�Optimal submachines� therefore� it has more possible paths

from the initial state to the �nal marked state� In most applications� it is desirable to lower the

probability of taking the worst�case cost path� which is the intent of taking the maximal DP�Optimal

submachine for 	Gi
des
i�
������n�� The more possible paths there are� the less likely it is for the system

to take the worst�case cost path� Note that the Reset machine 	Xd
k

Reset
�� q�
 need not be maximal �this

can only happen if occurrence costs cannot be equal to zero�� in this case however� given our earlier

interpretation of the role of the Reset event� we will include the single transition 	Xd
k

Reset
�� q�
 in the

scheduler�

��



Under this assumption� the following property is a direct consequence of de�nition 	���
�

Property ��	 Let G be a FSM and X be the set of marked states of G� Let A be a Stepwise

DP�Optimal scheduler� such that A � A� �A� � � � � �Al� Let d � 	X
d
k 
k�
������l� of D be the associated

valid state trajectory� Then �k � ��� � � � � l
� Ak � Mo
D	G�X

d
k��� X

d
k 
� Furthermore� the global cost

of the scheduler is

Csc
sup	A
 �

lX
k��

cgsup	M
o
D	G�X

d
k��� X

d
k 

 ��� 	�


This property states that if a Stepwise DP�Optimal scheduler exists� then all the submachines
constituting this scheduler are the respectiveMo

D	G�Xk���Xk
� Moreover the cost of the scheduler
is then simply equal to the sum of the costs of these DP�Optimal submachines� We will refer to this
important result as the additivity property of the Stepwise DP�Optimal scheduler� In the sequel�
the set of all schedulers A such that all the submachines of A are of the form Mo

D	G�Xi�Xj
� for
Xi�Xj � X � fq�g� is denotedM

sc
D	G�X 
�

Now that we have de�ned the notion of a Stepwise DP�Optimal scheduler and given some of its
properties� we need to give necessary and su cient conditions for its existence� The next subsection
gives these conditions and also proves desirable properties of such a scheduler�

��� Existence of a Stepwise DP�Optimal scheduler

Theorem 	���
 gives necessary and su cient conditions for the existence of a Stepwise DP�Optimal
scheduler� Before we prove the following lemma�

Lemma ��� If the DP�Optimal submachines Mo
D	G�Xi�Xj
 and Mo

D	G�Xj �Xk
 of G exist� then

there exists a DP�Optimal submachine Mo
D	G�Xi�Xk
�

Xi Xk

Xj

Mo
D�G�Xi� Xj� Mo

D�G�Xj � Xk�

Mo
D�G�Xi� Xk�

Moreover� we have the following triangular inequality	

cgsup	M
o
D	G�Xi�Xk

 
 cgsup	M

o
D	G�Xi�Xj

 � cgsup	M

o
D	G�Xj �Xk

� 	�


Proof� Assume the existence of Mo
D	G�Xi�Xj
 � h�ij � Qij � Xi� Xj � �iji and of M

o
D	G�Xj �Xk
 �

h�jk� Qjk�Xj � fXkg� �jki� Consider the intersection of the states of these two submachines as being
Qij �Qjk � fXj � q�� � � � � qng� Note that this intersection might be reduced to fXjg� We construct
a new submachine� Gik � h�ik� Qik� q�ik � Qmik

� �iki� from these submachines�

Gik �

����������
���������

�ik � �ij � �jk
Qik � Qij �Qjk

q�ik � Xi

Qmik
� fXkg

�ik	�� q
 �

��
�

�jk	�� q
 if it exists and q � Qjk

�ij	�� q
 if it exists and q � Qij � fXj � q�� � � � � qng
unde�ned otherwise�

��



This submachine Gik is well de�ned� Any possible ambiguity has been eliminated by sepa�
rately dealing with the states fXj � q�� � � � � qng in the de�nition of �ik� Gik is obtained by always
following the partial transition function of Mo

D	G�Xj �Xk
 as a default behavior� and following
the partial transition function of Mo

D	G�Xi�Xj
 otherwise whenever possible� First� the machines
Mo

D	G�Xi� Xj
 and M
o
D	G�Xj �Xk
 are trim� Second� Gik is constructed by forward propagation�

therefore� all the states of Gik are accessible with respect to the initial state Xi and are coaccessible
with respect to the marked state Xk� Therefore� Gik is trim�
Moreover� Gik is controllable� Indeed� the partial transition function �ik says that as long as the

system has not reached a state of the set fXj � q�� � � � � qng� it follows the partial transition function
of �ij � Due to the DP�Optimality of M

o
D	G�Xi�Xj
� the system will always reach a state of the set

fXj � q�� � � � � qng with a �nite cost� Indeed� if the system never visits a state in fq�� � � � � qng� it will
eventually reach Xj � Let us call q the �rst state of the set fXj � q�� � � � � qng that is visited by the
system as it evolves� At this point� the default partial transition function becomes �jk� therefore�
the system will eventually reach the marked state Xk with a �nite cost since the submachine
Mo

D	G�Xi� Xj
 is DP�Optimal� Since the cost of reaching Xk from q is �nite� the overall cost of
reaching Xk is necessarily �nite� From lemma 	���
� Gik is controllable�
Finally� Gik has no positive cost cycles� M

o
D	G�Xi�Xj
 andM

o
D	G�Xi� Xk
 do not have positive

cost cycles 	by de�nition of DP�Optimality
� As we have described previously� before the system
reaches a state of fXj � q�� � � � � qng for the �rst time� it will not complete a positive cost cycle 	from
the DP�Optimal nature of Mo

D	G�Xi�Xj

� After the system reaches a state of fXj � q�� � � � � qng
for the �rst time� it will not complete a positive cost cycle either 	from the DP�Optimal nature of
Mo

D	G�Xj �Xk

� Therefore� no new cycles have been introduced� The only cycles that may exist
in Gik are those of M

o
D	G�Xi�Xj
 and M

o
D	G�Xj �Xk
�

Given that Gik is trim� controllable� and contains no cycles of positive cost in G� FSM Gik sat�
is�es the preconditions of theorem 	���
� and there exists an optimal submachine of Gik� Following
theorem 	���
� there also exists a DP�Optimal submachine Mo

D	G�Xi�Xk
 of Gik�

The proof of the triangular inequality relies on what we have said previously� The cost of reaching
a state of the set fXj � q�� � � � � qng� from the initial state Xi� is less than c

g
sup	Mo

D	G�Xi�Xj

 	equal�
ity is possible but not necessary when Xj is reached
� Once one of the states fXj � q�� � � � � qng has
been reached� the cost for the system to reach the marked state Xk is less than c

g
sup	Mo

D	G�Xj �Xk


	equality is possible but not necessary when the system visits Xj
 because the corresponding ma�
chine is DP�Optimal� More formally� let us take a trace s of events that leads from the initial state
Xi to the �nal state Xk� i�e�� such that �ik	s�Xi
 � Xk� As seen earlier� s visits at least one state
of the set fXj � q�� � � � � qng� Let us call it q again� We can now subdivide s into s� and s� such that
s � s�s� and �ik	s�� Xi
 � q and �ik	s�� q
 � Xk� From the DP�Optimality of the two submachines
Mo

D	G�Xi� Xj
 and M
o
D	G�Xj �Xk
� for all s such that s � s�s�� �ik	s��Xi
 � q� �ik	s�� q
 � Xk�

we can compare�

�
cg	Xi�M

o
D	G�Xi�Xj
� s�
 
 c

g
sup	Mo

D	G�Xi� Xj

�
cg	q�Mo

D	G�Xj � Xk
� s�
 
 c
g
sup	Mo

D	G�Xj � Xk

�
	�


Since this is true for all traces leading from Xi to Xj � we can deduce the triangular inequality�

The following corollary uses the construction in the proof of the previous lemma 	���
 to intro�
duce a necessary condition for the existence of a Stepwise DP�Optimal scheduler�

Corollary ��
 If Gk
des does not exist� then there exists no subscheduler that makes the system

evolve from q� to Xk� should it be indirectly via states of X �

��



Proof� The proof is done by contradiction� Assume that Gk
des does not exist and that there exists

a scheduler that makes the system evolve from q� to the marked state Xk� through states of X �
From the construction used in the proof of lemma 	���
� we can generate a machine Gk that makes
the system evolve from the initial state q� to the marked state Xk� The existence 	by construction

of this submachine and its trim� acyclic and controllable nature indicate 	by theorem 	���

 the
existence of a DP�Optimal submachine Gk

des� which contradicts the �rst assumption�

As a consequence of these results� we can ensure that a state Xk is accessible in an optimal way
if and only if Gk

des exists� We are now able to give the necessary and su cient conditions of the
existence of a Stepwise DP�Optimal scheduler� This is stated by theorem 	���
�

Theorem ��� Let G be a FSM and X be the set of n marked states of G� then there exists a

corresponding Stepwise DP�Optimal scheduler A � Msc
D	G�X 
 if and only if the n DP�Optimal

submachines Gi
des of G exist for all Xi � X � i � ��� � � � � n
�

Proof� The necessary condition is given by corollary 	���
� which states that if there is a state Xi

of X such that there does not exist a DP�Optimal submachine Gi
des� then there is no way to reach

this state with a �nite cost 	thus in a DP�Optimal way
 and the goal cannot be achieved� All the
states of X cannot be visited� since one of them cannot be visited�
The condition is su cient since FSM A� such that

A � G�
des � �X�

Reset
�� q�� �G

�
des � �X�

Reset
�� q�� � � � � �G

i��
des � �Xi��

Reset
�� q�� �G

i
des � � � � �G

n
des � �Xn

Reset
�� q��

visits all the states of X � A is then a possible scheduler allowing the achievement of the goal�

This theorem implies that the Stepwise DP�Optimal problem has a solution when there exists
a DP�Optimal submachine for each of the Xi� Besides� if a Stepwise DP�Optimal solution exists� it
need not be unique in general� There is no notion of a maximal Stepwise DP�Optimal scheduler� as
in the DP�Optimal problem ���
� The problem of �nding one of the optimal schedulers is explored
in x��

� Determination of a Stepwise DP�Optimal scheduler

In this section� we need to assume that the occurrence costs are strictly positive� �� � � ce	�
 � ��
This assumption is necessary when we use the DP
Opt algorithm in order to ensure polynomial
complexity� We also assume that a DP�Optimal submachine exists for all the states Xi � X �
From here on� Gi

des will denote the maximal DP�Optimal submachine of the particular FSM Gi �
h�� Q� q��Xi� �i output by theDP
Opt algorithm� We take advantage of the DP�Optimal structure
of each of the Gi

des� We explore the possibility of starting the system at q�� reaching a state Xi� and
instead of doing a Reset� continuing the graph to a state Xj � To do so� we convert the problem to
a path�cost minimization problem on a graph equivalent to a Traveling Salesman Problem 	TSP
�

��� Modeling of the problem

In order to convert the Stepwise DP�Optimal problem into a path�cost minimization problem� we
use the DP
Opt algorithm introduced in x���� This algorithm computes� for each Xi � X � the
DP�Optimal submachine Gi

des� Moreover� during this computation� a state Xj belonging to X
can be reached� Due to the DP�Optimality de�nition� the algorithm also gives the DP�Optimal
submachine between Xj and Xi� The minimum worst inevitable cost between these two states can

��



be collected as well� The next algorithm computes the DP�Optimal submachines between each
states of X � fq�g� as well as the optimal costs from each state to another�

Matrix generation program�
������������������

�i� Input� G � h�� Q� q��X � �i� Output� C � Rn�� � R
n��

�ii� Initialize E � X

�iii� Initialize Matrix C� C�i� j� � �� j �� �� and C�i� �� � � �Reset�

�iv� If E � � then STOP else pick any Xi � E and update E 	 E � fXig

�v� Call Subprogram DP�Opt with G � h�� Q� q�� Xi� �i�

If Gi
des � h�� Qi� q�� Xi� �ii exists� update C� C��� i� � cgsup�G

i
des�

If Gi
des does not exist� the process terminates �Theorem ����

�vi� 
Xj � Qi� Update C� C�j� i� � cgsup�M
o
D�G�Xj � Xi��

�vii� GOTO �iv�

This algorithm performs the program DP
Opt once for each state of interest in X � Given that
there are n states in X � and that the algorithm DP
Opt is to the order of O	jQj�j�jlog	j�j
 �
jQj�j�j
� the algorithm that generates all the maximal DP�Optimal submachines 	Gi

des
i�
������n� is
to the order of O	njQj�j�jlog	j�j
 � njQj�j�j
� Note that point �vi� of the previous algorithm
can actually be performed during the computation of the algorithm DP
Opt with no signi�cant
increase in complexity 	point v
 in the DP
Opt program� refer to Appendix A�

From the previous algorithm� the matrix C � Rn�� � Rn�� has the following form�

� C�i� i
 � �� � C�i� �
 � �� i �� ��

� C��� i
 � c
g
sup	Gi

des
� i �� �� � C�k� i
 �

�
c
g
sup	Mo

D	G�Xk�Xi

 if it exists�
� otherwise�

From additivity property 	���
� the cost of a scheduler A � A� �A� � � � � �Al ofM
sc
D is equal to�

Csc
sup	A
 �

lX
k��

cgsup	Ak
 �
lX

k��

cgsup	M
o
D	G�Xdk��

�Xdk 

 �
lX

k��

C�dk��� dk
 	��


Considering equation 	��
� the new optimization problem is now reduced to �nding a path
with a minimal cost in the directed graph associated with the matrix C� This closely resem�
bles the TSP with the slight di�erence that multiple visits to states of X are possible� In this
new problem� the �cities� are represented by the set of nodes X � and the �streets� are represent�
ed by machines 	Gi

des
i�
������n� and Mo
D	G�Xi�Xj
 when these are available� The costs of these

paths are given by the maximum costs for each machine� i�e�� the 	cgsup	Gi
des

i�
������n� and the

	cgsup	Mo
D	G�Xi�Xj


i�j�
������n�� Figure 	���
 illustrates this conversion from the graph of the FSM

to the reachability graph�
Note that some elements of C might be equal to� after allGi

des have been computed� which does
not mean that the corresponding DP�Optimal submachines do not exist� This means that they have
not been computed in the algorithm DP
Opt� Indeed� let us suppose that some Mo

D	G�Xi�Xj


��



qo

X5
X6

X7

qo

X5

X7

X6
M D

o
(G,X5,X )7

Reset

Reset

Reset

Gdes
7

Gdes
6

Gdes
5

M D
o

(G,X5,X )6

M D
o

(G,X ,X )76

Figure �� Conversion from the FSM to a reachability graph on the marked states

has not been computed 	and that therefore C�i� j
 ��
� It means that it is less costly to perform
a Reset from state Xi to state q�� and to reach Xj through G

j
des� Another way of seeing this is

to look at what the DP
Opt algorithm does� It backtracks from the marked state� say Xj � If it
reaches Xi before q�� this means that the cost from Xi to Xj is less than the cost from q� to Xj �
in which case it is less costly to go directly from Xi to Xj than to reset the system� On the other
hand� if state Xi is not reached when the algorithm reaches q� during its backtracking� it means
that the cost to go from Xi to Xj is greater than the cost of reseting the system 	� in our case

	


and taking the DP�Optimal submachine Gj
des� This explains why these particular paths are not

taken into account as possible paths and are directly replaced in the matrix C by an in�nite cost
	the machine Mo

D	G�Xi� Xj
 never constitutes an optimal subscheduler allowing the visit of the
two states Xi and Xj
�

��� Generation of the Stepwise DP�Optimal scheduler

The problem of �nding a Stepwise DP�Optimal scheduler A� has been brought down to solving an
instance of the TSP� a classic combinatorial optimization problem� Many methods exist to solve
the problem in an acceptable amount of time ��
� We specify once more the conditions in which we
solve the TSP� The costs of the paths are all non�negative� The nodes of X must be visited at least
once� One requirement of the TSP is that the salesman come back to the city he started from� This
condition does not change anything to our problem since this maps to a Reset� which has null cost
in our model� Finally� note that the cost matrix C� given in x���� is not necessarily symmetric�

Transformation� The �rst step is to transform our modi�ed version of the TSP� where we can
visit a node more than once 	but at least once
� into an ordinary TSP where we must visit each
node exactly once� This is typically done by transforming the matrix C into a matrix C �� called the
all�pairs shortest�paths matrix ��
� Many techniques exist to perform such a computation� Among
them is the Floyd�Warshall algorithm ��
� which runs in a worst case of O	n�
 where n represents
the number of vertices� Once the all�pairs shortest�paths matrix C � is obtained� we can feed it to
a TSP solver�

C and C � have the same dimension� but represent di�erent features of the graph� C contains�
as non�in�nite elements� the costs of the links that actually exist in the graph of the TSP� C �

contains the minimum costs necessary to go from one marked state to another� along DP�Optimal
submachines� C � is a reachability matrix� whereas C is a connectivity matrix� Notably� C � shows

�See section ����� for a discussion on when the Reset event has a strictly positive occurrence cost�

��



if states can be reached by using the Reset event� Concretely� to obtain C � from C� one only needs
to replace any in�nite value in C by the value in the same column in the �rst line 	the cost of the
Gi
des associated with column i
�

Resolution of the TSP� The actual solving of the TSP from matrix C � can be done by using
several methods� The most common method is the Branch ! Bound method 	chapters � and �� of
��

� An outline of the method is given in Appendix B� The worst�case complexity for solving the
TSP is 	n� �
�� However the Branch ! Bound method is expected to give a solution to the TSP
in a tolerable amount of time��
The principle of the Branch ! Bound method is quite natural� A branching strategy and a

bounding strategy are used alternatively� The branching strategy consists of forcing a supplemen�
tary constraint on the system� usually done by forcing a set of subpaths in the graph� This allows
to �nd a solution that is suboptimal in general but that provides a good heuristic to narrow down
the search� The bounding strategy focuses on �nding a lower bound to the cost of the optimal
solution� by relaxing one of the constraints of the problem� usually done by relaxing the constraint
that the solution must be a tour� The branching yields a search tree� and the bounding yields a
way of quickly �nding a suboptimal solution which is close to the optimal solution of the problem�
The �nal solution is however optimal�
We also note that it is possible to obtain more than one solution to the TSP� by modifying the

algorithm� We can thus obtain all the possible solutions of minimum cost� The interest behind this
is to be able to have a choice in the nodes that we will be starting with� For example� in an FSM
test problem� we may want to start by checking the nodes which are less likely to be �awed�

Restitution of the Stepwise DP
Optimal scheduler� From a solution of the TSP� we now
build a corresponding Stepwise DP�Optimal scheduler�
The resolution of the TSP provides an optimal solution that gives the ordering in which the

states should be visited so as to minimize the worst�case cost� A solution is under the form of a
set of n � � pairs 	there are n � � � jX � fq�gj states
� in which each state appears exactly once
as an initial state and exactly once as a �nal state of a pair� For pairs 	Xi�Xj
 that represent a
physically existing submachine Mo

D	G�Xi�Xj
� i�e�� for which C�i� j
 � �� it is su cient to map
these pairs to their associated submachine� As for the pairs 	Xi� Xj
 that do not map to an existing
DP�Optimal submachine� i�e�� those for which C�i� j
 � � and C ��i� j
 � �� they are divided into
two pairs� namely� 	Xi� q�
 and 	q��Xj
� The �rst is mapped to a Reset to the initial state� and the

second is mapped to the DP�Optimal submachine Gj
des�

Theorem ��� Given a solution of the TSP� by adopting the previous mapping� the obtained sched�
uler is Stepwise DP�Optimal�

Proof� The initial solution of the TSP with respect to the matrix C � is given by a tour of
the form f	q��Xi�
� 	Xi� �Xi�
� � � � 	Xij �Xij��
� � � � � 	Xin � q�
g with a corresponding cost TSP 	C

�
 �
C ���� i�
 �C ��i�� i�
 � � � ��C ��ij � ij��
 � � � ��C ��in� �
� Consider now the transformation previously
adopted� If the pair 	Xi�Xj
 originally exists� i�e�� C�i� j
 � �� then the path is admissible in

�The solving of the TSP does not imply too much overhead� especially because all the processing described in this
paper is done o��line� To give a feel of the time complexity of this method� a ����� node fully�connected TSP can be
solved in about �� minutes on a standard workstation� We again emphasize that the number of nodes in the TSP�
n � �� is the number of marked states in the DES G of interest� not the number of states in G� which is denoted as
jQj�

��



the original problem and we replace the pair by the submachine Mo
D	G�Xi� Xj
� where the cor�

responding cost cgsup	Mo
D	G�Xi�Xj

 is equal to C�i� j
� If the pair 	Xi�Xj
 does not map to an

existing DP�Optimal submachine� i�e�� C�i� j
 ��� then we need to Reset the system before direct�
ly going to Xj through G

j
des� The triangular inequality of lemma 	���
 ensures that in this case�

C ��i� j
 � c
g
sup	G

j
des
� The pair is then replaced by the subscheduler 	Xi

Reset
�� q�
 � G

j
des� with the

corresponding cost equal to cgsup	G
j
des
�

We then obtain a new sequence of pairs� with a cost equal to TSP 	C �
 but for which all the
submachines actually exist in the original problem� The DP�Optimality of each submachine of the
scheduler is given by construction� since we only consider submachines of the form Mo

D	G�Xi�Xj


or Gj
des� The minimal cost of the scheduler is ensured by the optimality of the TSP solution and

by the fact that the mapping does not add new costs�

An interesting property is given next� It states that all the submachines that constitute a
Stepwise DP�Optimal scheduler are directly derived from all the DP�Optimal submachines built
during the computation of the matrix C 	section 	���

�

Proposition ��� A Stepwise DP�Optimal scheduler Ao obtained by the TSP solution is composed

of exactly n di
erent DP�Optimal submachines �not counting the possible Resets of the system��

Moreover� all these submachines are obtained from the DP�Optimal submachines 	Gi
des
i�
������n�

computed during the matrix generation step�

Proof� The general solution of the TSP for the matrix C � is a tour of the form
f	q�� Xi�
� 	Xi� �Xi�
� � � � � 	Xij �Xij 
� � � � � 	Xin � q�
g� Note that there are exactly n� � pairs in this
tour 	but the last pair is a trivial one� i�e�� a Reset
� If a pair 	Xi� Xj
 originally exists� i�e��
if C�i� j
 � �� then the path is in the original problem and it is replaced by the submachine
Mo

D	G�Xi� Xj
� If not� i�e�� if C�i� j
 � �� then the system is reseted before directly going to Xj

through G
j
des� The pair is then replaced by the subscheduler 	Xi

Reset
�� q�
 � G

j
des� The n pairs are

then replaced by either the DP�Optimal submachine Mo
D	G�Xi� Xj
 � Trim	Gj

des�Xi�Xj
� or by

the subscheduler 	Xi
Reset
�� q�
�G

j
des� The �nal solution of our problem has then exactly n non�trivial

submachines that can be obtained from the n DP�Optimal submachine 	Gi
des
i�
������n� of G� by a

trim operation�

Corollary ��� In a Stepwise DP�Optimal scheduler obtained by the TSP solution� the states of X
are visited exactly once by the Stepwise DP�Optimal scheduler�

Proof� From proposition 	���
� we know that there are n DP�Optimal submachines used in a
Stepwise DP�Optimal scheduler when there are n marked states� Each DP�Optimal submachine
has a unique marked state that is di�erent for all the submachines� Also� given a solution to the
TSP� we know that each marked state will appear exactly once in the right component of a pair
and exactly once in the left component of a pair� The solution is a tour� therefore� the marked
states are visited only once by the scheduler�

We wish to draw attention to the following fact� The Stepwise DP�Optimal scheduler visits each
marked state exactly once when it is obtained from the TSP solution� However� the system itself�
through its evolution described by the FSM G� may visit a marked state of G more than once� This
comes from the fact that the scheduler is constructed on C �� the all�pairs shortest�paths matrix�

��



whereas the behavior of the system modeled by the FSM G should be observed at a less abstract
level� namely at the level of the FSM� G�

Let us illustrate this fact with an example� Consider the following FSM given in �gure 	�	a

�

X1

X2

oq

Reset

Reset

Reset

X3

a
a

b
c

�a� FSM G

X1oq
a

�b� G�
des

X1

X2

oq
a

b
c

�c� G�
des

X1oq

X3

a
a

�d� G�
des

Figure �� Di�erence between the scheduler and the system

Assume the TSP solution is the set of pairs f	q�� X�
� 	X��X�
� 	X�� X�
� 	X�� q�
g� The asso�

ciated Stepwise DP�Optimal scheduler is Ao � G�
des � M

o
D	G�X��X�
 � 	X�

Reset
�� q�
 � G

�
des� The

scheduler does visit a marked state exactly once� However� when the system evolves to visit all
the marked states� it might perform the following ordered visit of states� q��X��X�� q��X�� X�� in
which case we can say that it visits X� twice� This distinguishes the scheduler from the system�
Moreover� there exists another Stepwise DP�Optimal scheduler that visits all the marked states�

A�o � G�
des �M

o
D	G�X��X�
 � 	X�

Reset
�� q�
 � G

�
des �M

o
D	G�X�� X�
� This scheduler does not visit

each state exactly once� since it visits X� twice� This scheduler has not been derived from the TSP
solution� This is why we specify that some of the properties hold only for schedulers derived from
the TSP solution� On the other hand� some results have been derived in the general case where
schedulers are not always derived from the TSP solution 	see lemma 	���
 for example
�

��� Case of a non�zero occurrence cost for the Reset event

In the framework of our theory� we have created and added a new event� namely the Reset event�
We have also assumed that its 	occurrence and disabling
 costs were zero� The assumption that it
is free to disable the Reset event is natural� On the other hand� its occurrence being cost�free may
appear restrictive� For that purpose� we here show how the theory could be modi�ed if we were to
consider a non�zero occurrence cost for the Reset event�
The only place in our theory where a non�zero occurrence cost would intervene is when we

recover the Stepwise DP�Optimal scheduler from the solution of the TSP� Indeed� we cannot map
a pair 	Xi� Xj
 for which C�i� j
 � � but C ��i� j
 � � to the concatenation of submachines

	Xi
Reset
�� q�
 �G

j
des� since it may be that we lose optimality when doing so� Let us give an example

where ce	Reset
 �� � 	�gure 	�

�
The costs that are given in �gure 	�
 are the occurrence costs� For simplicity� we assume that

the control costs are all �� If we run exactly the same computation as previously 	notably� if we
use the same algorithm and assume that ce	Reset
 � �
� we �nd that the Stepwise DP�Optimal
scheduler is

��



oq

X1

X2

a

b

c

a = 1

Reset

Reset

Reset = 2

b = 1
c = 2

Submachine c
g
sup

G�
des �

G�
des �

Mo
D	G�X��X�
 �

X�
Reset
�� q� �

X�
Reset
�� q� �

Figure �� Simple example when ce	Reset
 �� �

Ao � G�
des � 	X�

Reset
�� q�
 �G

�
des cscsup	Ao
 � � 	��


We do not show the �nal Reset which is optional� since we only want to reach all the marked
states� which has been achieved once arrived at X�� We observe that there is another scheduler
which achieves the goal of visiting all the marked states with a lower global cost�

Ao � G�
des �M

o
D	G�X��X�
 cscsup	Ao
 � � 	��


Therefore� the methodology that was �rst followed is not correct� The change that should be
made is to take into account the occurrence cost of the Reset event in the algorithm DP
Opt� so
that the triangular inequality still holds� The backtracking that is done from the marked states
	X� and X�
 should go further than the previous stopping condition of reaching the initial state
q�� The stopping condition should not be on the the initial state being reached� but on the cost
function� The algorithm should stop backtracking once the residual cost� after having reached q� in
the backtracking� is greater than the occurrence cost of the Reset event� Note that this occurrence
cost can possibly be di�erent for each of the marked states� This yields the Stepwise DP�Optimal
scheduler in the general case of a non�zero occurrence cost for the Reset event�

��� Case of acyclic system model

Let us assume that the only cycles allowed in G are induced by the Reset event� in other words� the
graph G without the Reset event is acyclic� The notations used are as de�ned in the prior sections�
Some consequences of this assumption are�

�� For each of the states of X � the maximal DP�Optimal submachine of G with respects to Xi

can now be computed in O	jQjj�jlog	j�j
� The complete algorithm in the acyclic case can
be found in x��� of ���
�

�� As the FSM G is no longer cyclic� the graph G is unidirectionally oriented� It follows that
if a DP�Optimal submachine Mo

D	G�Xi�Xj
 exists w�r�t� the states Xi and Xj � then the
DP�Optimal submachine Mo

D	G�Xj �Xi
 does not exist� Consequently� the matrix C is at
least half empty and the resolution of the corresponding TSP is easier� since fewer valid state
trajectories need to be considered�

��



�� Finally� if we now consider a Stepwise DP�Optimal scheduler of G� Ao� such that

Ao � A�
� � � � � �A

�
k�
� Reset � � � � �Ai

� � � � � � A
i
ki
� Reset � � � � � Al

� � � � � � A
l
kl
�Reset

then� �i � ��� � � � � l
��j � �i�� � � � � iki 
� the subscheduler A
i
j � A

i
j�� is a submachine of G� i�e��

the � operation is closed and well de�ned in the acyclic case� Consequently� the Stepwise
DP�Optimal scheduler� Ao� can be rewritten Ao � A� � Reset � � � � � Al � Reset� where the
	Ai
i�
������l� are submachines of G�

These observations illustrate various simpli�cations that can be performed in the particular
case where the system to be controlled is acyclic� Some further work should be performed in this
direction in order to fully take advantage of the acyclicity of G�

� Some simpli�cations of the TSP resolution

In order to solve the Stepwise DP�Optimal problem� we have to solve the corresponding TSP for
the matrix C� The TSP is an NP�complete problem� It is then greatly advantageous to �nd
some simpli�cation methods� taking advantage of the special structure of a Stepwise DP�Optimal
scheduler� in order to reduce the computational complexity of the corresponding TSP without loss
of global optimality�

	�� Divide and conquer

In some cases� it is possible to divide the matrix C into several smaller ones� In such cases� it su ces
to solve the TSP on each of these sub�matrices� The following proposition states the necessary and
su cient conditions for this simpli�cation�

Proposition 	�� Assume there exists a partition of X � �k�
������l�	Xk
 such that �k�� k� �
��� � � � � l
� and �Xi � Xk� and �Xj � Xk� � the submachine Mo

D	G�Xi�Xj
 is not de�ned�
If Ao is a Stepwise DP�Optimal scheduler with respect to X � then it is possible to �nd a set of

schedulers AXk � where each AXk is Stepwise DP�Optimal with respect to Xk with an optimal cost
cscsup	AXk
 to visit of all the states of Xk� and such that Ao � �

l
k��AXk with

cscsup	Ao
 �
lX

k��

cscsup	AXk
�

Proof� From the assumptions of proposition 	���
� there does not exist a submachine of the form
Mo

D	G�Xi� Xj
� when Xi and Xj belong to two di�erent subsets of the partition of X � There�
fore� after reordering the submachines according to the di�erent subsets 	Xk
k�
������l�� the Stepwise
DP�Optimal scheduler Ao is composed by subschedulers 	AXk
k�
������l�� each of them belonging to
Msc	G�Xk
� Moreover� each subscheduler AXk is actually a Stepwise DP�Optimal scheduler for
the particular subset Xk� Indeed� assume that there exists a subscheduler AXk that is not Stepwise
DP�Optimal� Consider Aok the Stepwise DP�Optimal scheduler for this particular set Xk 	such a
scheduler exists from theorem 	���

� The cost of this new scheduler is strictly lower than the one
of AXk � Therefore� by substituting AXk by the new Stepwise DP�Optimal scheduler Aok in Ao� we
obtain a new scheduler� visiting all the marked states at least once� with a cost strictly lower� There
is a contradiction with the fact that Ao is optimal and then each AXk is Stepwise DP�Optimal�

��



In view of proposition 	���
� the global problem can be solved on each sub�matrix Ck� k � ��� � � � � l
�
corresponding to the particular set of states Xk � fq�g� This is performed by the following algo�
rithm� Conn	X
 represents the one�step connectivity list associated with any state of the FSM G�
regardless of directionality of the transition linking X to another state� Formally� Conn is a state
to set function de�ned over X � �X � CC is a state to integer function de�ned over X � ��� � � � � n
�
giving� for each state X the index of the connectivity list it belongs to�

Div
Conq program�
�����������

�i� Input� X � Conn�X�X�X � Output� Partition �Xi�i��������k�

�ii� Initialize E � X � k � �

�iii� While E �� ��

Pick any X � E� Update E 	 E � fXg
k � k � �� CC�X� � k
Call subprogram DFS�Visit�k� X� E�

�iv� For j � �� k� Initialize Xj � �

�v� For i � �� n� XCC�Xi� 	 XCC�Xi� � fXig
DFS
Visit program�

�����

�i� Input� k� X� E

�ii� For all X � � Conn�X� � E�

CC�X �� � k� Update E 	 E � fXg
DFS�Visit�k� X �� E�

�iii� Return Div�Conq program

Let us explain the Div
Conq algorithm� The inputs are the set of marked states and the
connectivity lists associated with each marked state
� The output is a partition� Basically� we are
looking for the connected components of the set X � while cutting the node q� away� E is a global
variable containing the states of X that have not yet been processed� k is the incremented number
of subsets in the partition� Each time we pick a state in 	iii
� it means that we create a new subset
of the partition� DFS
Visit simply does a Depth�First Search to �nd states that are connected
	irrespective of the directionality� since we are only interested in �nding the connected components

to the processed states and marks these states with the current partition label CC	Xi
� Line 	iv

creates the empty subsets of the partition� whereas line 	v
 �lls the subsets with the states Xi that
have the same partition label CC	Xi
�
The update of E ensures that each state is treated exactly once� Moreover� the fact that we

only consider Conn	X
 �E as states actually connected to the current visited state ensures both
the convergence of DFS
Visit and the single treatment of each edge of the graph of the FSM
	regardless of transition directions
� Therefore� the complexity of the Div
Conq algorithm is
O	n�E
� where n is the number of states of the FSM� and E is the number of one�step connections
	or edges
 among the states of X �

	�� Terminal path simpli�cation

We address here a property of the scheduler� that can lead to a simpli�cation on the matrix C�
This property states that if there exists a kind of �dead�end� in the graph of the matrix� then it is

�The computation of these lists can be easily extracted from the main program DP�Opt� line �v��

��



always better to follow this path until the end than to perform a Reset and come back to visit the
end of this path later�

Lemma 	�� Assume that there exists a subset Xi � 	Xik
k�
������m� of X � with m � n and such that

�� �k � ��� � � � �m� �
� Mo
D	G�Xik �Xik�j 
 exists for j � ��� � � � �m� k
�

�� �k � ��� � � � �m
� Mo
D	G�Xik � Xik�j 
 does not exist for j � ��� � � � � k � �
�


� �k � ��� � � � �m
 and �Xl � X � Xi� M
o
D	G�Xik �Xl
 is not de�ned�

Let Ao be a Stepwise DP�Optimal solution� Then all the states of Xi are only visited once by Ao�

Proof� From the assumptions� we can deduce that for a particular Xij � Xi� the only accessible
states from Xij 	without the Reset
 which belong to X are Xik � Xi� with j � k 
 m� Note that
Xm is automatically followed by q� since there exists no state in X that can be reached from Xm

without performing a Reset� From now on� Xji � Xjk will denote the existence of a DP�Optimal
submachine between these two states� In the sequel� we assume that the states of Xi 	and of all
the subsets of Xi
 are ordered according to assumptions 	�
 and 	�
 	i�e�� Xik � Xij for j � k� and

Xik � Xij for j � k 
� This total order relation over the state of Xi is denoted
�
��� Figure �	���

sums up the assumptions and represents possible connections between the states of X � Dashed lines
constitute possible transitions from a state to another 	depending of the behavior of the system
�
whereas solid lines represent the actual connections between states that exist in view of condition
�� in lemma 	���
�

q�

Gi�
des Xi�

Xij

Xim��

Mo
D�G�Xim��

� Xim�
Xim

G
im��

des

G
ij
des

Gi�
des

Mo
D�G�Xi� � Xij �

Gim
des

Xi�

Figure �� Example of terminal path in the graph associated with the matrix C

The proof proceeds by contradiction� Assume that there is at least one state X which is visited
twice� Without loss of generality� we can assume that X is the last state of Xi visited twice by the
Stepwise DP�Optimal scheduler Ao with respect to the ordering� The associated state trajectory
d� is then given by�

d� �

d�z 	
 �
d�� � Xj � X � Xj� � � � �� Xjl �

d�z 	
 �
q� � d�� � X �

j � X � Xj�
�
� � � �� Xj�

l�
� q� � d��

where d��� d
�
� and d� represent particular sub�paths associated with the scheduler� fXj� � � � � �Xjlg

and fXj�
�
� � � � �Xj�

l�
g are states contained in Xi� Also� we have the following relations� �ji �

��



�j�� � � � � jl
X
�
��Xji and �j

�
i � �j

�
�� � � � � j

�
l 
X

�
��Xj�i

� By the additivity property given in ���� the
cost associated with this trajectory is equal to�

c�d�� � c�d�� � cgsup�M
o
D�Xj � X�� �

cgsup�M
o
D�X�Xj��� � cgsup�M

o
D�Xj� � Xj��� � � � �� cgsup�M

o
D�Xjl��

� Xjl�� �

c�d�� � cgsup�M
o
D�X

�
j � X�� �

cgsup�M
o
D�X�Xj�

�
�� � cgsup�M

o
D�Xj�

�
� Xj�

�
�� � � � �� cgsup�M

o
D�Xj�

l���

� Xj�
l�
�� �

c�d	�

Consider now the set fXj��
�
� � � Xj��

l��
g � fXj�

�
� � � Xj�

l�
g � fXj� � � � Xjlg 	note that these three sets are

ordered according to the order relation over the states of Xi �
�
��
� As X is the last element of

Xi to be present twice� fXj� � � � Xjl�
g and fXj�

�
� � � Xj�

l�
g form a partition of fXj��

�
� � � Xj��

l��
g� with

l�� � l � l�� Consider now the path d� such that�

d �

d�z 	
 �
d�� � Xj � X � Xj��

�
� � � �� Xj��

l��
�

d�z 	
 �
q� � d�� � X �

j � q� � d�� 	��


The scheduler corresponding to this path constitutes a valid scheduler since it allows the visit of
all the states of X and all the submachines of this scheduler exist� Its associated cost is equal to�

c�d� � c�d�� � cgsup�M
o
D�Xj � X�� � cgsup�M

o
D�X�Xj��

�
�� �

cgsup�M
o
D�Xj��

�
� Xj��

�
�� � � � �� cgsup�M

o
D�Xj��

l����

� Xj��
l��
�� �

c�d�� � c�d	�

The di�erence between the cost associated with do and the one associated with d is�

����
���

cgsup�M
o
D�X�Xj��� �

cgsup�M
o
D�Xj� � Xj��� � � � �� cgsup�M

o
D�Xjl��

� Xjl���
cgsup�M

o
D�X

�
j � X�� �

cgsup�M
o
D�X�Xj�

�
�� � cgsup�M

o
D�Xj�

�
� Xj�

�
�� � � � �� cgsup�M

o
D�Xj�

l���

� Xj�
l�
��

����
���

���

c�d��� c�d� �

�
n

cgsup�M
o
D�X�Xj��

�
�� � cgsup�M

o
D�Xj��

�
� Xj��

�
�� � � � �� cgsup�M

o
D�Xj��

l��
� Xj��

l��
��
o

���

To obtain the contradiction� we want to prove that c	d�
 � c	d
 � �� To do that� we show
that each term in 		
 can be compared with a corresponding term in 	

 and prove that the terms
of 		
 are either strictly greater� or greater than the terms of 	

� As l�� � l� � l� 		
 contains
one term more than 	

 	in fact it is cgsup	Mo

D	X
�
j �X


� Moreover each state of fXj��

�
� � � Xj��

l��
g

appears only once in the right of the sub�expression in 	

 as in 		
� Consequently� for each term
of the form c

g
sup	Mo

D	Xji��
� Xji

 in 		
� there exists a term in 	

� c

g
sup	Mo

D	Xj��k��
�Xj��k

� Xji

�

As fXj� � � � Xjlg � fXj��
�
� � � Xj��

l��
g� we can say that Xji��

� Xj��
k��

� Xj��
k
� Xji 	note that Xji��

and Xj��
k��

can be equal
� and consequently c
g
sup	Mo

D	Xji��
�Xji

 
 c

g
sup	Mo

D	Xj��
k��

�Xj��
k


� As

c
g
sup	Mo

D	X
�
j �X

 � �� we can say that c	d�
 � c	d
 � �� The scheduler corresponding to the

trajectory d has then a cost strictly lower that Ao� which contradicts the assumed optimality of
Ao� As Ao has been constructed according to the fact that the state X was visited at least twice�
we can conclude that X is present only once in any Stepwise DP�Optimal solution�

Following lemma 	���
� for the next property� we assume that each state of Xi is visited only
once by the scheduler�

��



Proposition 	�� Under assumptions ���� ��� and �
� of lemma ������ the submachines

	Gik
des
k�
������m� do not belong to the Stepwise DP�Optimal scheduler Ao�

Proof� The proof proceeds by induction on the elements of Xi�

� The base case is argued as follows� Assume that Gim
des belongs to the scheduler Ao� Consider

the particular state Xim��
� As the continuation of Xim��

is either q� or Xim and that G
im
des is

in the scheduler� using the lemma 	���
� we can deduce that the corresponding state trajectory
d� has the following form� d� � d� � Xim��

� q� � d�� � q� � Xim � q� � d��� Consider
now the state trajectory d � d� � Xim��

� Xim � q� � d�� � q� � d��� The di�erence
between the cost associated with do and the one associated with d is �

c	d�
� c	d
 � cgsup	G
im
des
� cgsup	M

o
D	Xim��

� Xim

 � ��

The scheduler corresponding to the state trajectory constitutes a valid scheduler since it allows
the visit of all the states of X and all the submachines of this scheduler exist� Moreover its
global cost is lower than that of the Ao scheduler� which contradicts the assumed optimality
of Ao� Then G

im
des does not belong to the scheduler Ao�

� We now consider the general case�

Assume 	by induction
 that for the 	m� k
th last states� the G
im�k�

des for k� 
 k do not belong

to a Stepwise DP�Optimal scheduler Ao� Assume that G
ik��

des belongs to Ao and consider the
state Xik��

� The state trajectory associated with the scheduler Ao can have various forms�

� If d� � d� � Xik��
� q� � d� � q� � Xik��

� d�� then it is obvious that the state
trajectory d composed by d� � d� � Xik��

� Xik��
� q� � d� � q� � d� as a lower cost

than d�� which leads to a contradiction 	same arguments as the ones used in the base case
�

� If d� � d� � Xik��
� Xj� � � � �� Xjl � q� � d� � q� � Xik��

� Xj�
�
� � � �� Xj�

l�
� q� � d	�

with fXj� � � � Xjlg and fXj�
�
� � � Xj�

l�
g included in fXik � � � Ximg� As in lemma 	���
� we consider

the set fXj��
�
� � � Xj��

l��
g � fXj�

�
� � � Xj�

l�
g � fXik � � � Ximg 	note that these three sets are ordered

according to the order relation over the state of Xi �
�
��
� From lemma 	���
� l�� � l � l��

Consider now the state trajectory d � d� � Xik��
� Xik��

� Xj��
�
� � � Xj��

l��
� q� � d� �

q� � d�� Using lemma 	���
 and the same kind of arguments as the ones in lemma 	���
�
we can easily prove that c	d�
 � c	d
 � �� Therefore� the scheduler corresponding to the
trajectory d has then a cost strictly lower that Ao� which leads to a contradiction� Therefore
G
ik��

des does not belong Ao�

Proposition 	���
 deals with situations where a dead�end occurs� By dead�end� we mean a set of
states fq�� � � � � qng in which �i � ��� � � � � n
� 	qj
j�i are the only states coaccessible from qi� If there
exists a dead�end in the graph of marked states� the system will never enter that dead�end directly
through one of the Gi

des� but will only enter indirectly from the initial state q�� This means that
no direct submachine of the type Gi

des will be used by a scheduler to enter a dead�end� Any visit
to a state of the dead�end is done via a visit to a state that does not belong to the dead�end�
Due to the previous proposition 	���
� this simpli�cation can be performed on the matrix C

through the following algorithm

��



Term
Path program�
�������

�i� Input� X � C� �Pre�X��X�X � �Post�X��X�X � Output� matrix C Updated

�ii� Initialize CS � �� E � X � A � fXi � 
j C�i� j� ��g

�iii� For all Xi � A

Di � fXig
Call Subprogram DFS�Path�Xi� Di�

�iv� 
Xi � CS� Update matrix� C��� i� ��
DFS
Path program�

�������

�i� Input� X� D

�ii� Initialize Ind � �

�iii� For all Y � Pre�X� �E

If Post�Y � � D Then DFS�Path�Y� D � fY g�
Else E 	 E � fY g� Ind	 Ind� fY g

�iv� If Ind � Pre�X�� CS � CS � fD �DkDkg

Let us describe the above Term
Path algorithm� The input is the set of marked states� the
matrix C� the connectivity lists Pre	X
 and Post	X
 for all X de�ned as follows� Pre	Xi
 � fXj �
C�j� i
 �� �g� and Post	Xi
 � fXj � C�i� j
 �� �g�� These can easily be obtained by extracting
them from the main program DP
Opt� The variable A is initialized to be the set of states X
for which Post	X
 is empty� These states of A are candidate states to be at the termination of
terminal paths� Di represents the possible terminal paths that are constructed by back�propagation
from the elements of A� DFS
Path is a subprogram which performs a Depth First Search to �nd
states that are connected to the current states according to assumptions 	�
� 	�
 and 	�
 of lemma
	���
 and the conditions of lines �iii� and �iii��a� of the program� If any one is not satis�ed� the
node is erased from the global variable E� Otherwise� it is added to the current terminal path and
DFS
Path is called recursively on that node�

With this simpli�cation� the paths of the form q� � Xik do not constitute valid paths any
longer and consequently� will not be taken into account as possible solutions in the corresponding
TSP solution� This terminal path simpli�cation can narrow down the search space when solving
the TSP� since it adds ��� in matrix C�

	�� Pre�de�ned partial order for the visit of X

Throughout x	�
� we have assumed that we had no pre�speci�ed order in which to visit the marked
states in X � This may be the case in several applications� However� in other applications� such as
test�generation� we may be interested in the path taken by a system more than in the �nal state
it reaches� The designer may want to enforce the system to follow a given path� The path would
be characterized by the states it traverses� which would be marked� This would yield an ordering�
not on the marked states� but on the subpaths themselves�
Let us take a simple example� Assume that we have the marked states fX�� � � � �X��g to visit

in an optimal way� If we do not pre�specify the order in which they should be visited� the TSP
will be solved on a �� � �� matrix� The designer may want to observe the behavior of the system
when it visits states X� through X� in that order� X	 through X� in that order� and X� through
X�� in that order� This would reduce the TSP to a � � � matrix� abstracting away from the ten
states to four macro�states� fq�g� fX��X��X�g� fX	�X�� X
�X�gandfX�� X��X��g� The solution

�Note that Pre�X� � Post�X� � Conn�X��

��



thus obtained will not be Stepwise DP�Optimal per se� It will be optimal given the additional
constraints imposed by the designer�

We suspect that more particular cases and simpli�cations could be found to take greater advan�
tage of the structure of a scheduler�

	 Example

The following example is constructed to illustrate the essential stages of the optimal control problem
for multiple marked states to visit� For the sake of simplicity� we have assumed that all control
costs have zero cost for controllable events and in�nite costs for uncontrollable events� This allows
the use of the simpli�ed version of the DP
Opt algorithm presented in Appendix A� We here
consider a system modeled by the FSM G� which represents its legal behavior� In this example�
there are � states denoted 	Xi
i�
�������� � X to visit in no particular order� Some costs are allocated
to each of the events of the FSM G� The event costs and their status 	controllable or not
 are as
depicted in �gure 	�
�

qo
a

a

a

a

aa

a

a

b
b

b

b

u

v

X

X

X

X

X

X1

X2

5

4

3

7

6

f

c

d

e

c

e

g

f

d Event ce Remarks

a�f � Controllable

b�c�d�e � Controllable

g � Controllable

Reset � Controllable

u � Uncontrollable

v � Uncontrollable

Figure �� The initial system G and the event cost function

Note that in �gure �� the Reset events are not represented� but exist between each of the
	Xi
i�
�������� and the initial state q�� The �rst phase of the algorithm consists in computing the
various DP�Optimal submachines 	Gi

des
i�
�������� for each of the �nal states of X � This part is

performed using the DP
Opt algorithm brie�y described in x��� and Appendix A� The seven
�gures given next 	�gure 	��

 correspond to the DP�Optimal submachines for each of the �nal
states 	Xi
i�
��������� We also give the worst inevitable cost for each submachine 	G

i
des
i�
���������

By applying the algorithm described in x���� we obtain the matrix C� encoding the worst
inevitable cost between two states Xi and Xj �

q� X� X� X� X	 X� X
 X�

q� � 	 � � � � � 	

X� � � � � � � � �
X� � � � � � � � �
X	 � � � � � � � �

X� � � � � � � � �

X
 � � � � � � � �

X� � � � � � � � �

Following proposition 	���
� we can see that X� � fX��X��X��X	g and X� � fX��X
�X�g
form a partition of the set of states X � 	Xi
i�
��������� Moreover� the states of X� satisfy proposition

��



qo
a

b
v

X1

X2

c

�a� cgsup�G
�
des� � 


qo
a

v

X1

X2

c f

�b� cgsup�G
�
des� � �

qo

a

b

v
X

X1

X2

3
a

c f

�c� cgsup�G
�
des� � �

qo

a

a

a

b

u

v

X

X1

X2

4

c

f

f

d

�d� cgsup�G
�
des� � 


qo

a

ab

b

X5

e

�e� cgsup�G
�
des� � �

qo

a

a

ab

b

X

X
5

6

e

�f� cgsup�G
�
des� � �

qo

aa

a

ab

b

X

X

X

5

7

6

e

�g� cgsup�G
�
des� � 


Figure ��� The DP�Optimal FSMs for the di�erent state of X

	���
� Thus� in order to solve the TSP� we can now consider the two following matrices� Note that
in the second one� we have replaced C��� �
 and C��� �
 by � as stated by proposition 	���
� A full
derivation of the �rst matrix is given in Appendix B� Appendix B shows the all�pairs shortest�paths
matrix and traces the Branch ! Bound method�

q� X� X� X� X	

q� � 	 � � �

X� � � � � �

X� � � � � �

X� � � � � �
X	 � � � � �

q� X� X
 X�

q� � � � �
X� � � � �

X
 � � � �

X� � � � �

One solution 	there are several
 of the TSP for each sub�matrix is�

f	q��X	
� 	X	�X�
� 	X��X�
� 	X��X�
� 	X�� q�
g 	��


f	q��X�
� 	X��X

� 	X
�X�
� 	X�� q�
g 	��


This is the output of the TSP resolution method run on each of the subproblems� The optimal
worst�case costs are �� and �� respectively� From theorem 	���
� there exist � Stepwise DP�Optimal
schedulers A�� and A�� � We need to retrieve them from the output of the resolution of the TSP
and build a global Stepwise DP�Optimal scheduler A��
We look at each one of the pairs and see if they correspond to a DP�Optimal submachine� In this

case 	q��X	
� 	X�� X�
� 	X��X�
� and 	X�� q�
 correspond to G
	
des� M

o
D	G�X��X�
� M

o
D	G�X�� X�
�

and X�
Reset
�� q�� respectively� 	X	�X�
 does not have any associated DP�Optimal submachine� We

decompose it� 	X	� X�
 becomes 	X	
Reset
�� q�
 concatenated with G�

des� An optimal DP�Optimal

��



scheduler Ao� is the following�

Ao� � G	
des � 	X	

Reset
�� q�
 �G

�
des �M

o
D	G�X��X�
 �M

o
D	G�X��X�
 � 	X�

Reset
�� q�
 	��


For the second subproblem of the divide and conquer method� we also map the pairs to original
DP�Optimal submachines� yielding scheduler Ao� �

Ao� � G�
des �M

o
D	G�X��X

 �M

o
D	G�X
�X�
 � 	X�

Reset
�� q�
 	��


Note that we use exactly � DP�Optimal submachines for the �rst subproblem and � for the
second� as expected from Proposition 	���
�� We �nally generate the global Stepwise DP�Optimal
scheduler Ao as the concatenation of the two subschedulers Ao� and Ao� � yielding the following
scheduler� Ao�

Ao � Ao� �Ao�

� G	
des � 	X	

Reset
�� q�
 �G

�
des �M

o
D	G�X��X�
 �M

o
D	G�X��X�
 � 	X�

Reset
�� q�
�

G�
des �M

o
D	G�X��X

 �M

o
D	G�X
�X�
 � 	X�

Reset
�� q�


	��


In fact� this scheduler is actually composed of three di�erent non�trivial subschedulers� The
Stepwise DP�Optimal Ao can be rewritten as�

Ao � G	
des � 	X	

Reset
�� q�
 �A� � 	X�

Reset
�� q�
 �A� � 	X�

Reset
�� q�


where

�
A� � Mo

D	G�X��X�
 �M
o
D	G�X�� X�


A� � G�
des �M

o
D	G�X��X

 �M

o
D	G�X
� X�


This last expression shows the minimum number of Resets that are necessary to visit all the Xi

in an optimal way 	�� in this case
�
This form also highlights the manner in which the information would need to be sent through

a communication network� Given that there are exactly � Reset events� the sender should generate
exactly � messages and send them in parallel� For each message� the sender can specify 	in each
header for example
 the desired route that each one of the messages should take� according to the
sender�s view of the network and calculations 	this routing is actually given by the corresponding
Stepwise DP�Optimal subscheduler
� However� the uncontrollability is represented by the fact that
other intermediate routing nodes may have a view of the network that is di�erent from that of the
sender� in which case� the former might decide on a new route�


 Potential applications of the theory

Applications of the theory that we have elaborated cover various �elds of engineering� One applica�
tion that can be developed from the theory is test objective generation� In test objective generation�
the goal is to check whether a particular system meets the expectations or the requirements that
are associated with it� In this framework� the states of interest may be states in which the system is
suspected to behave incoherently or incorrectly� or states in which misbehavior could be dramatic
or dangerous� These would be the states that would be marked� The theory that we developed

	We have indeed stated that the scheduler requires exactly n di�erent DP�Optimal submachines to be constructed
�not counting the possible Resets of the system��

��



allows to visit all these states and to test the behavior of the system in each one� Once the system
has reached one of the marked states� all the known events can be disabled to check if the system
stops or enters a forbidden state� A timeout can be set� for example� If the system has not behaved
incoherently after that timeout� we can decide to pursue the visit of the marked states� Other more
involved strategies can be applied to determine whether a state is faulty or not� For each state�
either the behavior of the system is acceptable� or it is not� In the �rst case where the state is
�awless� the next submachine of the scheduler is activated in order to make the system evolve in
the next state of interest to be tested� In the case where a failure has been detected in the states�
either we stop since the system is faulty and does not correspond to the awaited speci�cations� or
we pursue to determine other possible faults� To do so� we reset the system to its initial state q��
and go directly to the next state� say Xi� through its direct DP�Optimal submachine� namely G

i
des�

and the process continues�
Another application area is planning in the case of multiple goals in Arti�cial Intelligence�

Several search algorithms exist when one unique goal is sought 	see part II of ���

� Planning in
the case of multiple goals remains challenging and interesting� The framework in which we have
developed the theory allows goals to be independent or related� Once again� the Reset event has
an interesting interpretation in AI� It represents the impossibility to meet all the goals without
returning to the initial state� It may represent the possibility of using several agents to achieve
the goals� each running in parallel� The number of Reset events gives the necessary and su cient
number of agents that are needed to perform the goal of reaching all the subgoals in parallel�
without any con�icts� These applications constitute interesting further work�
We give a last potential application example of our theory� routing in a communication network�

In the same way that several agents can perform in parallel to achieve di�erent tasks� in a commu�
nication network a message can be broadcast by generating multiple copies of it� and sending these
copies in parallel� along the Stepwise DP�Optimal paths� These paths are actually the Stepwise
DP�Optimal Schedulers seen as Stepwise DP�Optimal subnetworks� The marked states represent
the agents to whom the messages are destined� The costs may be the energy consumed for each
transmission between nodes� The uncontrollability of certain events may re�ect the possibility of
other agents changing the terminal path to certain nodes� based on their own view of the network�

� Conclusion

In this paper� we have introduced a new type of optimal control for Discrete Event Systems�
Previous work in optimal control deals with numerical performances in supervisory control theory
when the goal to achieve is a unique state of interest� In contrast� our goal was to make the system
evolve through a set of goals� one by one� with no order necessarily speci�ed a priori� The order in
which the states are visited was part of the optimization problem since it had an in�uence on the
cost of visiting all the goal states�
The system to be controlled is represented by a FSM with a set of multiple marked states

X � 	Xi
i�
������n� representing the states of interest� Our aim was to have the system reach each
and every one of the 	Xi
i�
������n�� To do so� we have introduced the notion of a scheduler� A
scheduler can be thought of as a concatenation of submachines� The role of the scheduler is to
make the system evolve according to one submachine at a time� and account for switching between
them at appropriate instants� i�e�� when one of the states of interest has been reached� We have
then introduced the notion of a Stepwise DP�Optimal scheduler of a FSM G w�r�t� the set X � This
particular type of scheduler is custom made given the system on which the optimization is to be
run� It has the particularity of being composed of DP�Optimal submachines which allow optimality

��



from state of interest to state of interest 	stepwise
� Moreover� the ordering of these DP�Optimal
submachines allows global optimality in the sense that the total worst�case cost of visiting all the
states of X is minimized�
We gave a necessary and su cient condition for the existence of a Stepwise DP�Optimal sched�

uler� namely� the existence of n DP�Optimal submachines between the initial state q� and each state
of the n states of X � This condition is not very restrictive� since if it does not hold� that means
that one of the states is not reachable in a controllable manner� i�e�� not surely reachable from the
initial state q�� In such a case� it is obvious that the state in question will never be reachable with
a surely �nite cost�
From a computational point of view� we showed that our optimal problem could be brought

down to an instance of the TSP� The solution of this particular TSP gives a direct access to
both the structure of a Stepwise DP�Optimal scheduler and the worst�case cost for visiting all
the states of interest� Considering the high computational complexity of this step� we also gave
ways of taking advantage of some particular properties of the structure of a Stepwise DP�Optimal
scheduler� leading to the reduction of the computational complexity of the corresponding TSP
without loss of global optimality� We have given a modi�ed version of the algorithm returning
DP�Optimal submachines� in the case where the control costs were � for controllable events and
� for uncontrollable events� This modeling of control costs can be useful in several applications
where the emphasis is on the cost of events to occur� more than on the cost of disabling events�
Finally� besides the possible applications brie�y presented in x�� future work will most probably

extend the theory to the case of a system where the events are partially observable�

��



A The cyclic DP�Optimal algorithm

We recall in this section the algorithm for the construction of a submachine of the FSM G which
solves the optimal control problem in the particular case where the control cost function is equal
to zero for all controllable events and in�nity for all uncontrollable events� To obtain a polynomial
computability� two assumptions are required� They are

�� �� � �� ce	�
 � �

�� jQmj � �

In other words� all event costs are strictly positive and there only exists one marked state� The
following notations will be used in the various algorithms in the sequel� We �rst need to introduce
an object called a one�step submachine� de�ned as follows�

De�nition A�� A is a one�step submachine of G at q � Q if A � h�� QA� q�A� QmA� �Ai satis�es	

�i� q�A � q

�ii� T 	A
 � T 	G� q

�iii� T 	A
 � � 	 q�A � Qm

�iv� QA � fq
� � Q � �� � T 	A
� 	��	�
 � q�
g � fqg

�v� QmA � Qm �QA�

The set of all one�step submachines of G at q is noted M�	G� q
� This set also has a maximal
element denoted by M�	G� q
� Moreover� for convenience� we write M

o
D	G� q�Qm
 � Mo

D	G� q
�
The notations used in the algorithm are the followings�

	i
 SL � Solved list of states 	also sometimes called the closed list
�

	ii
 Topt	q
 � The set of transitions of M�	M
o
D	G� q
� q
� the maximal one�step submachine of

Mo
D	G� q
 rooted at q�

	iii
 CL � f	q� cgsup	Mo
D	G� q


 � q � QGg� This is the cost list maintained by the algorithm for

the recursive computation of the cost associated with a particular submachine� The variables
CLtemp and T temp

opt 	�
 are also used for temporary storage of the same quantities�

	iv
 C � Set of states to be processed in the current iteration�

	v
 Pf 	C
 � fq � Q � �� � T 	G
� 	��	�
 � q
 � 	��	�
 � C
g�

In other words Pf 	C
 is the set of parent states of set C� A function denoted by cmax	E
� where E
is some set of transitions of a one�step submachine will also be used in the algorithm�

The following algorithm is a direct adaptation of the one described in ���
� section �� In
this particular case� we assume that the control costs are equal to �� This assumption leads to
simpli�cations in the algorithm� As in ���
� we choose to split the program into � sub�programs�
TheDP
Opt program� theOptimize subprogram and theOne
step optimize subprogram�
The DP�Opt program primarily orders the backward recursive search and updates C and SL based
on data provided by the subprogram Optimize� The optimization at each state is described in the
subprogram Optimize� which in turn calls the subprogram One
step optimize�

��



The DP
Opt program �

�i� Input� �� Q� qo� qm� �� ce� Output Gdes

�ii� Initialize� C � fqmg� SL � �� CL � �� CLtemp � �� If there exists � � �uc and q � Q such that
��� qm� q� � T �G� then STOP since no optimal solution exists� Otherwise set �E��qm� � E��qm� � ��

�iii� Optimize� Call subprogram Optimize with argument C�

�iv� Compute
A � fqd � C � cmax�T

temp
opt �qd�� � min

q�C
cmax�T

temp
opt �q��g�

�v� 
q � A�

Topt�q� � T temp
opt �q�

CL 	 CL � f�q� cmax�Topt�q��g
SL 	 SL � A
CLtemp � ��

�vi� Termination Condition� Is qo � SL � If yes then STOP� Otherwise continue�

�vii� Computation of the states to be optimized in the next iteration� Compute the following Pf �SL� and
A � Pf �SL�� SL


q � A� �E��q� � f� � T �G� q� � �	��� 	� SLg

E��q� � T �G� q�� �E��q�

B � fq � A � 
� � �E��q�� ����� � �ucg
C � A�B

If C � � then STOP since no optimal solution exists�

�viii� GOTO �iii��

The Optimize subprogram �

�i� Input� C� fE��q� � q � Cg�

�ii� Cl � C� n � kE��q�k

�iii� Pick any qd � Cl and update Cl� Cl � Cl � fqdg�

�iv� If n 
 � order E��qd� such that

i � j � ce�����i�� � cgsup�M
o
D�G� �	��i��� � ce�����j�� � cgsup�M

o
D�G� �	��j��

�v� If n � � then set cmax�E��qd�� � �� Else set

cmax�E��qd�� � ce�����n�� � cgsup�M
o
D�G� �	��n����

�vi� Call subprogram One�step optimize�

�vii� Termination condition� Is Cl � �� If yes then return to the main program� Otherwise GOTO �iii��

The One
step optimize subprogram �

�i� Input� qd� E��qd� �ordered�

�ii� For i � n� � in E� � f��i�� i � � � � � ng do

if ����i� � �uc then E � f��j�� j � � � � � ig� GOTO �iii�

�iii� if i � � then

E � f� 	 ce������� � cgsup�M
o
D�G� �	���� � min

�i�E�

�ce�����i�� � cgsup�M
o
D�G� �	��i���g

��



�iv� set

T temp
opt �qd� 	 E�
CLtemp 	 CLtemp � f�qd� cmax�E��g

where cmax�E� � ce�����i�� � cgsup�M
o
D�G� �	��i��� and return to Optimize�

It is important to note that the algorithm as stated will generally produce a submachine that
is not trim� In particular it will have states not accessible from q�� However� this particularity
is taken into account to generate the submachines of the form Mo

D	G�Xi� Xj
� Indeed it could

happen that the Xi does not belong to the �nal DP�Optimal submachine G
j
des� even if a DP�

Optimal submachine exists between this two states� Note that Xj is added in the solved list SL

if and only if cgsup	Mo
D	G�Xi�Xj

 � c

g
sup	G

j
des
� In the other case� even if a submachine exists

between these two states� this path does not have to be considered� because it is better to perform
a Reset and to directly use the DP�Optimal submachine Gj

des� A consequence of the one�step
optimize sub�program is given by�

Property A�� �q � Qi�

�� when Tuc	Gdes� q
 �� ��

max
�uc�Tuc�Gdes�q�

��
�

ce	��	�uc


�

c
g
sup	Mo

D	G���	�uc
� qm



�

� 
 max

�c�Tc�Gdes�q�

��
�

ce	��	�c


�

c
g
sup	Mo

D	G���	�uc
� qm



�

�

and

cgsup	M
o
D	G� q� qm

 � max

�uc�Tuc�Gdes
�q�
	ce	��	�uc

 � cgsup	M

o
D	G���	�uc
� qm


�

�� otherwise� �� � T 	Gdes� q
�

cgsup	M
o
D	G� q� qm

 � ce	��	�

 � cgsup	M

o
D	G���	�
� qm



In other words� the worst case cost to go from any state q � Qi to a state qm is given by a trace
all of whose pre�xes contain an uncontrollable event 	when it exists
� Otherwise� the worst case
cost is independent of the transition taken at q�

B Finding a minimum cost path visiting all the Xi

We have brought down the minimization of the worse inevitable cost of a path visiting all the
	Xi
i�
������n� in the original FSM G to a modi�ed Traveling Salesman Problem� We can represent
this problem by a graph 	V�E
 on which we wish to �nd a minimum cost path that visits all
the nodes in V � The vertices in V are the 	Xi
i�
������n�� and the costs of the edges in E are the
	cgsup	Gi

des

i�
������n� and the 	c
g
sup	Mo

D	G�Xi�Xj


�i�j��
������n� when the latter are de�ned� In this

��



section we show� in the particular context of this problem� how the TSP can be solved by the
Branch and Bound method 	B!B
�
Before we explain the actual method� we must put the problem in canonical form� The start

point is the cost matrix C� de�ned in x���� From this matrix� we generate the all�pairs shortest�
paths matrix D� Several methods exist to achieve this transformation� Dijkstra on every node
and Floyd�Warshall are the most common ones� Both run in a worst�case complexity of the order
O	kV k�
 in the number kV k of nodes� From this point� general methods can be used to solve the
TSP�

B�� Solving the TSP

The strategy used here to solve the TSP is similar to a divide and conquer approach� It is the
Branch and Bound method �B�B�� We will not formally describe it� A thorough description
of the underlying theory can be found in ��� �� �
� Instead� we will explain its principle� borrowed
from ��
� and directly apply the method to our problem�

B���� De�nitions and notations

We will call a general solution of the TSP any set of cardinality kV k� containing pairs of the type
	Xi�Xj
�i�j��
������n� such that each Xk appears exactly once in the left component of a pair and
exactly once in the right component of a pair� In other words� a general solution is a path that
visits all the nodes 	Xi
i�
������n� exactly once� but is not necessarily a tour 	i�e�� a cycle
� For
that purpose� we will call a tour solution a general solution which is a tour� Finally� we will call
an optimal tour solution a tour solution with minimum cost� We call z� the cost of any optimal
tour solution� We will represent the fact that a given pair 	Xi�Xj
 appears in a general solution
for a problem P by the equation xPij � �� Likewise� we will represent the fact that a given pair

	Xi�Xj
 does not appear in a general solution for a problem P by the equation xPij � �� We call
the incumbent the best tour solution found so far�

B���� The Branch and Bound Method

The B!B method allows to give both lower and upper bounds for the minimum cost z� of an
optimal solution� The bounding method consists of relaxing a constraint of a problem and solving
the relaxed problem� yielding a relaxed optimum� and thereby a lower bound for the minimum cost z�
of an optimal solution� In our particular application� the condition that is relaxed is the condition of
a solution being a tour 	i�e�� a cycle
� The branching operation consists of imposing a supplementary
constraint to a given problem� In our particular application this is done by imposing a pair of the
type 	Xi�Xj
 to be in the solution that we wish to �nd� We impose x

P
ij � � in the problem we

are dealing with� When a solution to the hardened problem 	the problem with a supplementary
constraint
 is found� its cost will constitute an upper bound for the cost z� of an optimal solution
to the original problem�

The bounding strategy We present an algorithm for �nding a general solution for a TSP� that
is� a solution to the relaxed TSP� This is called the Hungarian Method�
The Hungarian Method runs systematically on a matrix� independently of what it represents�

The input to the algorithm is a matrix over which we wish to �nd a general solution� The output
of the algorithm is a set of n pairs of the type 	Xi�Xj
�i�j��
������n�� Let us call this matrix D since it

��



is that matrix that will be processed at the �rst application of the Hungarian Method� We suppose
that D � �dij 
�i�j��
������n��

Step ��� 
 Initialization De�ne �i � ��� � � � � n
� ui � min	di�� � � � � diN 
� For all i � ��� � � � � n
�
update D by subtracting ui to every element in row i� De�ne �j � ��� � � � � n
� vj �
min	d�j � � � � � dnj
� For all j � ��� � � � � n
� update the resulting matrix by subtracting vj to
every element in column j� In other words� we subtract from each row its minimum� and on
the resulting matrix� we subtract from each column its minimum� The resulting matrix is
assured to have at least one null element in each row and in each column�

Step ��� 
 Generating an initial Assignment Look for a row or column which has a single
null element� If there is one� mark it� and cross out all the cells dij in the same row and all
the cells in the same column� We will say that a row or a column is marked if one of its cells
is marked� Repeat the process until all non crossed out cells are non zero� or until a row or
column has more than one null cell� If there is such a row or column� randomly pick one of
the null cells and mark it� cross out all the cells in the same row and all the cells in the same
column� Continue until all rows and columns are marked or until all null cells are crossed
out�

If each row and each column has a marked cell� this means we have found a general solution
to the underlying problem� The method terminates� Otherwise� go to Step ����

Step ��� 
 Labeling the unmarked rows For each i such that row i is unmarked at this stage�
label it 	s��
� This label simply says that this row needs to be marked� We say at this stage
that the rows are now labeled but not scanned� Put them in a list of labeled but unscanned
rows�

Step ��� 
 Scanning Unmarked Rows and Columns If the list of marked but unscanned 	the
de�nition of scanning has not yet been given on the �rst loop
 rows and columns is empty� the
labeling stage is over� This means that the present assignment of marked cells is maximal� In
this case� we say that non�breakthrough has occurred� and go to Step �� Otherwise� select a
marked row or column that needs to be scanned� remove it from the list� If it is a row� apply
the forward labeling� if it is a column apply the reverse labeling� at Step ����

Step ��� 
 Scanning The following two labeling processes di�erentiate the scanning process when
applied to rows and columns� Scanning a row or column is simply processing it� as de�ned
next�

Forward labeling For each labeled row i� if a cell dij is �� label column j with 	rowi��

unless it is already labeled� This simply says that this cell can possibly be marked
later in the process� During the process of forward labeling� if a column is labeled and
not marked� we say that we have a situation of breakthrough� This means that there
is a way of �nding another marking of the matrix cells with one more marked cell� If
breakthrough occurs� go to step ��

Reverse labeling Any column j to be scanned will be marked� If the row containing the
corresponding marked cell is unlabeled yet� label it with 	colj ��
�

If breakthrough has not occurred� include all the newly labeled rows and columns in the list
of labeled but unscanned rows and columns� and go back to Step ����

��



Step � 
 Changing the marking We process a labeled column j which is not marked� Suppose
it is labeled with 	rowi��
� Mark cell dij� If the label of row i is 	colj� ��
� remove the mark
of cell dij� 	this removes the former mark of that row
� Continue along the path� guided by
the labels� When a row labeled 	s��
 is marked� stop� If at this stage all columns and all
rows are marked� the process terminates� If not� erase all the labels and go back to step ����
with the new cost matrix� the new markings� and u and v as they are now�

Step � 
 Updating the cost matrix Compute � which is the minimum value of the cells in
labeled rows and unlabeled columns� The way the computation is organized� � will be strictly
positive� If � � �� this means that no solution to the problem exists� and the process
terminates� If � is �nite� update ui � ui� � where i is a labeled row� and update vj � vj � �

where j is a labeled column� Update the matrix by the following operations�

� dij stays unchanged when row i and column j are both labeled or both unlabeled�

� dij � dij � � when row i is labeled and column j is unlabeled�

� dij � dij � � when row i is unlabeled and column j is labeled�

All the new values of the matrix are still positive at this point� but new ��valued cells have
been created thereby allowing di�erent marking con�gurations� At this point� retain all the
labels on the rows and columns� but include all the labeled rows in the list of unscanned rows�
Go back to the labeling process where it was left� i�e�� in step ����

The cost of the general solution obtained can be read by summing the values in the vector u
and adding this sum to the sum of the values of the vector v�
We have presented a method for solving a general problem by relaxing the condition that the

solution must be a tour� Let us go through the �rst steps of the process� We have a matrix D
representing the original problem P�� First� we apply the lower bounding strategy by relaxing
the constraint that the optimal tour solution must be a tour� To do so� we use the Hungarian
Method described above� We thereby obtain a relaxed solution which is a general solution to
the original problem P�� If this general solution happens to be a tour solution� it becomes the
incumbent� it is an optimal tour solution� and the process terminates� Otherwise� we retain the
cost L� of that solution as a lower bound for the cost of the optimal solution� We then apply the
branching strategy on P��

The branching strategy The branching strategy simply relies on the fact that for a given pair
	Xk�Xl
 of the set 	Xm�Xn
xP
mn��

of the general solution�

�� Either it does not appears in an optimal tour solution�

�� Or it does appear in an optimal tour solution of the original problem P� and its inverse
	Xl� Xk
 does not�

Using the notations de�ned above� this means that

�� Either 	�
 xP
kl � � �

�� Or xP
kl � � and x
P

lk � ��

��



x 1
021

2

P
L0

0

LL
P1 kl P0= xkl

xlk =
=

Figure ��� Branching the initial problem into two subproblems

This last supplementary conditions avoids an otherwise possible tour of length � 	�gure 	��

�
Before applying the branching strategy� we wish to determine which of the pairs 	Xi� Xj
xP
ij ��

of

the general solution should be branched�
The following computation gives a heuristic to choose such a pair� On the new cost matrix that

results from the Hungarian Method� compute the following quantity for each pair 	Xi�Xj
xP
ij ��
of

the relaxed optimum�


ij � min
m��j
	dim
 � min

n��i
	dnj
 	��


Note that although 
 is doubly indexed� it represents only N values� one for each pair of the
general solution� Pick the pair 	Xi� Xj
 for which 
ij is the greatest�
If a tie occurs� pick a pair at random� This is the pair on which branching should be applied

because it is the one for which the next lower bound obtained will be closest to z�� the cost of an
optimal tour solution�
Now that we have the �best� pair to base our branching upon� we branch the original problem

into subproblems P� and P� 	see �gure 	��

� We apply the lower bounding strategy on both
children of the parent problem� yielding L� and L�� Several cases appear�

� L� 
 L�� If the general solution 	Xm�Xn
xP�mn��
found for P� is a tour� then it veri�es P�

with the additional constraint that 	Xk�Xl
 occurs in an optimal solution� Therefore� L� is
a current upper bound of z�� In this case� we can prune the branch corresponding to P��
because it will never yield a better upper bound� since its lower bound is higher than the
upper bound L�� The process terminates� The solution for the original problem P� is the
relaxed optimum for P��

� L� � L�� If the general solution 	Xm�Xn
xP�mn��
found for P� is a tour� then it veri�es P�

with the additional constraint that xkl � �� i�e�� that 	Xk� Xl
 does not occur in an optimal
solution 	not meaning that 	Xl�Xk
 does
� If the general solution 	Xm�Xn
xP�mn��

found for

the relaxed problem of P� is not a tour� then we cannot prune P� because it may yield a better
solution� i�e�� with a cost lower than the current upper bound given by L�� P� is entered in a
queue� and will be processed next�

� L� � L�� If neither the relaxed optimum for P� nor the relaxed optimum for P� are tours�
then both problems may later give a tour solution which has cost less than L� 	if so� it will
constitute an optimal tour solution
� therefore� both problems are put in the queue� Due

��



to its looser lower bound� P� will be branched before P�� P� will be branched after only if
necessary�

When a problem is branched� it is removed from the list� and will never enter it again� The
children of the branched problem 	P�� and P�� if P� is branched
 are generated with an additional
branching constraint and join the queue of subproblems to be treated�
At any stage during the algorithm� the branching constraints for a problem Q will be given by

a set of equations of the type�

�
xi�j� � xi�j� � � � � � xirjr � �
xp�q� � xp�q� � � � � � xpuqu � �

	��


These equations result from the successive branchings� Since our goal is to �nd a tour solution�
we can remove all rows ik such that xikjk � �� and also remove all columns jl such that xiljl � ��
Overall� for a subproblem with the above supplementary constraints� the relaxed assignment prob�
lem is of size 	N � r
� 	N � r
� Then all the dp�q� � dp�q� � � � � � dpuqu are set to �� i�e�� we force the
corresponding pairs not to appear in a general solution to the relaxed subproblem�
The process repeats� i�e�� the search tree is expanded� Note that any subproblem inherits all

the constraints of its parent� therefore� the lower bound found for a subproblem is higher than that
of its parent� The queuing strategy is to branch the subproblem with lowest lower bound� When
solving the relaxed versions of the problems� we always keep the solution which 	�
 satis�es the
constraints of its parent and 	�
 which has the highest cost� This tour solution is the incumbent�
Any problem in the queue that has a lower bound higher than the current cost of the incumbent is
pruned and removed from the queue at each update of the incumbent� The stopping condition is
when the queue is empty� At termination� if an incumbent is available� it is an optimal tour solution
for the original problem P�� Otherwise� if there is no available incumbent� the initial problem P�
has no optimal tour solution� therefore no tour solution�

B�� Example

Now that the method to solve the TSP has been given� in order to �nd the minimum cost path
visiting all the 	Xi
i�I � we can apply it to the example that is followed throughout the paper� The
initial cost matrix C is given below�By transforming it into the all�pairs shortest�path cost matrix
D 	by applying the Floyd�Warshall algorithm for example
� we obtain the second matrix�

q� X� X� X	 X


q� � � � � �

X� � � � � 	

X� � � � � �

X	 � � � � �
X
 � � � � �

q� X� X� X	 X


q� � � � � �

X� � � � � 	

X� � � � � �

X	 � � � � �

X
 � � � � �

The �rst step is to apply the Hungarian method on this matrix� We go through step ����
compute the initial ui for this matrix D and update it by subtracting ui to each row i� We compute
likewise the vj for the newly obtained matrix� and update it once more by subtracting vj to each
column j�

��



q� X� X� X	 X
 ui
q� � � � � � �
X� � � � � 	 �
X� � � � � � �
X	 � � � � � �
X
 � � � � � �

q� X� X� X	 X
 ui
q� � � � � � �
X� � � � � � �
X� � � � � � �
X	 � � � � � �
X
 � � � � � �

vj � � � � �

At this point� we mark the null cells in each row� starting from the ones that are alone in their
row� yielding the following marking� We now label the rows that are not yet marked with a label
s� 	short for 	s��

� We then propagate the labels to column � which shares a null cell will row ��
Labels of the type 	rowi��
 will be abbreviated r

�
i in the tables� Likewise� the labels of the type

	colj ��
 will be abbreviated c
�
j �

q� X� X� X	 X
 ui
q� � � �� � � �
X� �� � � � � �

X� � �� � � � �
X	 � � � � � �
X
 � � � � � �

vj � � � � �

q� X� X� X	 X
 ui
q� � � �� � � �

X� �� � � � � � c��
X� � �� � � � �
X	 � � � � � � s�

X
 � � � � � � s�

vj � � � � �
r�


After another run through the scanning step of the Hungarian method� the list of labeled
but unscanned rows becomes empty� therefore� we have non�breakthrough� We go to step �� and
compute � by taking the minimum of the values of the cells that are in a marked row but in an
unmarked column� yielding � � �� We update the matrix D according to the cases described in
step � of the algorithm� The matrix becomes the following� and the ui and the vj are also updated
accordingly� This yields the �rst matrix below� We go back to the labeling process where it was
left and update the labels on the columns as follows�

q� X� X� X	 X
 ui
q� � � �� � � �

X� �� � � � � � c��
X� � �� � � � �
X	 � 	 	 � 	 � s�

X
 � 	 	 	 � � s�

vj �� � � � �
r�


q� X� X� X	 X
 ui
q� � � �� � � �

X� �� � � � � � c��
X� � �� � � � �
X	 � 	 	 � 	 � s�

X
 � 	 	 	 � � s�

vj �� � � � �
r�
 r�� r��

We here arrive at a breakthrough situation� because column � is labeled but unmarked� We go
to step � to obtain a new arrangement of the markings� Starting from column � which is labeled
but unmarked� we follow the labels to obtain the new marking of the matrix 	shown below� left
�
We now restart the labeling process from the beginning by erasing the old labels� Relabeling the
matrix yields the matrix shown below� right�

��



q� X� X� X	 X
 ui
q� � � �� � � �

X� � � � �� � � c��
X� � �� � � � �

X	 �� 	 	 � 	 � s�

X
 � 	 	 	 � � s�

vj �� � � � �
r�
 r�� r��

q� X� X� X	 X
 ui
q� � � �� � � �
X� � � � �� � �

X� � �� � � � �

X	 �� 	 	 � 	 � c��

X
 � 	 	 	 � � s�

vj �� � � � �
r��

Again� we arrive at a non�breakthrough situation� We go to step � and compute �� the minimum
of the values of the cells in a marked row and unmarked column� We obtain � � �� We then update
the matrix and update the labels according to the usual procedure 	we have put two steps into one
to yield the matrix below� right
� We continue the labeling process where it was left 	matrix to the
left
�

q� X� X� X	 X
 ui
q� � � �� � � �
X� � � � �� � �

X� � �� � � � �

X	 �� � � � � � c��
X
 � � � � � � s�

vj �� � � � �
r��

q� X� X� X	 X
 ui
q� � � �� � � �
X� � � � �� � �

X� � �� � � � �

X	 �� � � � � � c��
X
 � � � � � � s�

vj �� � � � �
r�� r�� r�� r�� r�


At this stage� there is a column that is labeled but unmarked 	column �
� Therefore� we have
a breakthrough and we go to step �� At this step� we follow the labels and assign a new marking
to the cells� yielding�

q� X� X� X	 X
 ui
q� � � �� � � �

X� � � � �� � �

X� � �� � � � �

X	 � � � � �� � c��
X
 �� � � � � � s�

vj �� � � � �
r�� r�� r�� r�� r�


We can see at this point that all rows and columns have a marked cell� which means that the
process terminates� We have found a general solution to the general problem represented by the
original matrix D� This solution can be read o� the marked cells of the matrix directly�

	q��X�
� 	X��X�
� 	X��X�
� 	X��X	
� 	X	� q�
 	��


We obtain a general solution that is a tour� Therefore� we can say that this solution is an
optimal tour solution to the general problem� We need to interpret the output of the TSP solution�
To do so� we take each pair and see if it exists in reality in our original problem 	the one described
by the matrix C
� If a pair 	Xi�Xj
 originally exists� i�e�� if cij ��� then the path is admissible in
the original problem� If not� i�e�� if cij ��� then we need to reset the system before directly going

��



to Xj through G
i
des� In our example� the paths 	q��X	
� 	X�� X�
� 	X�� X�
 and 	X�� qo
 exist� As

for the path 	X	�X�
� it is decomposed into the set of pairs 	X	� q�
 and 	q��X�
 that both exist�
The fact that we did not need to branch is due to the small dimension of our example� On the

other hand� taking a larger example would lead to a very tedious description and tracing of the
algorithm�
Nevertheless� we give a description of several particular cases one might encounter in the B !

B algorithm�

� In the case where a solution is found that is not a tour� we must branch the problem as
described earlier� The heuristic described in 	��
 is used to determine which is the best a
priori pair to branch� The algorithm repeats the branching process as long as the list of
subproblems to be treated is not empty� The list becomes empty when all the lower bounds
of the relaxed optimums that are not tours are higher than the current best upper bound
	i�e�� the cost of the current incumbent
�

� It may occur that 
ij � � for all the pairs 	Xi�Xj
xQij��
for a problem Q� In this case� we

are sure to have hit the cost z� of an optimal solution� It now su ces for the algorithm to
get the pairs in an order that gives a tour� This may take several steps� however� these will
be of very little overhead� Indeed� this situation means that the reduced 	by the Hungarian
Method
 matrix has at least two ��s in each row and in each column�

This concludes the appendix� which described the Branch and Bound method and applied it to
the example that we have been working with throughout the paper�

��



References

��� E� Brinskma� A theory for the derivation of tests� Protocol Speci�cation� Testing and veri�cation�

����
�� �����

��� J�C� Fernandez� C� Jard� T� J�eron� L� Nedelka� and C� Viho� An experiment in automatic generation of
test suites for protocols with veri	cation methodology� Technical Report ����� IRISA� June �����

��� J� E� Hopcroft and J� D� Ullman� Introduction to automata theory� Languages� and computation�
Addison�wesley� Reading� MA�� ��
��

��� Leslie Pack Kaelbling� Michael L� Littman� and Anthony R� Cassandra� Planning and acting in partially
observable stochastic domains� Technical Report CS������� Department of Computer Science� Brown
University� February �����

��� R� Kumar and V� K� Garg� Optimal control of discrete event dynamical systems using network �ow
techniques� In Proc� of ��th Allerton Conf� on Communication� Control and Computing� Champaign�
IL� USA� October �����

��� Vipin Kumar and Laveen N� Kanal� A general branch and bound formulation for and�or graph and
game tree search� In search�ai� New York� NY� ����� Springer�Verlag�

�
� E� L� Lawler and D� E� Wood� Branch�and�bound methods� A survey� Operations Research� ����������

��� �����

��� H� Marchand and M� Le Borgne� On the optimal control of polynomial dynamical systems over z�pz�
In �th International Workshop on Discrete Event Systems� pages �������� Cagliari� Italy� August �����

��� K� Murty� Operations research 	 deterministic optimization models� Upper Saddle River� N�J� � Prentice
Hall� �����

���� David John Musliner� Circa� The cooperative intelligent real�time control architecture� Technical
Report CS�TR����
� University of Maryland� College Park� October �����

���� K� M� Passino and P� J� Antsaklis� On the optimal control of discrete event systems� In Proc� of �
th

Conf� Decision and Control� pages �
����
��� Tampa� Floride� December �����

���� P� J� Ramadge and W� M� Wonham� Supervisory control of a class of discrete event processes� SIAM
J� Control Optim�� �������������� January ���
�

���� P� J� Ramadge and W� M� Wonham� The control of discrete event systems� Proceedings of the IEEE�

Special issue on Dynamics of Discrete Event Systems� 

���������� �����

���� A� Rouger and M� Phalippou� Test cases generation from formal speci	cations� Proc� ISS���� Oct�

�
���� ����� ��C����� �����

���� S� Russel and P� Norvig� Arti�cial Intelligence	 A Modern Approach� Prentice Hall� �����

���� R� Sengupta and S� Lafortune� A deterministic optimal control theory for discrete event systems� Com�
putational results� Technical Report n� CGR������� Control Group� College of Engineering� University
of Michigan� USA� December �����

��
� R� Sengupta and S� Lafortune� A deterministic optimal control theory for discrete event systems� For�
mulation and existence theory� Technical Report n� CGR����
� Control Group� College of Engineering�
University of Michigan� USA� March ����� Revised Dec� �����

���� R� Sengupta and S� Lafortune� An optimal control theory for discrete event systems� SIAM Journal on

Control and Optimization� ������ March �����

���� E� Tronci� Optimal state supervisory control� In Proc� of ��th IEEE conf� on Decision and Control�
Kobe� Japon� December �����

���� W� M� Wonham and P� J� Ramadge� Supervision of discrete event systems� In ��
� Proc� of the

International Conference on Systems� Man and Cybernetics� page ��� Bombay and New Delhi� India�
January ����� New York� NY� USA� IEEE�

��



Contents

� Introduction and Motivation �

� Preliminaries �

� Review of the DP
Optimal problem for one �nal state �

��� Principal Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The cyclic DP�Optimal algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Example of the DP�Optimal problem � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Optimality versus DP�Optimality � � � � � � � � � � � � � � � � � � � � � � � � � �
����� A more intricate example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The Optimal Control problem with multiple marked states �

��� Stepwise DP�Optimality De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Existence of a Stepwise DP�Optimal scheduler � � � � � � � � � � � � � � � � � � � � � ��

� Determination of a Stepwise DP
Optimal scheduler ��

��� Modeling of the problem � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Generation of the Stepwise DP�Optimal scheduler � � � � � � � � � � � � � � � � � � � ��
��� Case of a non�zero occurrence cost for the Reset event � � � � � � � � � � � � � � � � � ��
��� Case of acyclic system model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Some simpli�cations of the TSP resolution ��

��� Divide and conquer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Terminal path simpli�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Pre�de�ned partial order for the visit of X � � � � � � � � � � � � � � � � � � � � � � � � ��

� Example ��


 Potential applications of the theory ��

� Conclusion ��

A The cyclic DP
Optimal algorithm ��

B Finding a minimum cost path visiting all the Xi ��

B�� Solving the TSP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B���� De�nitions and notations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B���� The Branch and Bound Method � � � � � � � � � � � � � � � � � � � � � � � � � ��

B�� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��


