
Coordinating Multi-agent Systems by Scripts

Fang-Chang Lin
Department of Information Management

Chaoyang University of Technology
Wufeng, Taichung Country

Taiwan, R. 0. C.
fclin@cyut.edu.tw

ABSTRACT

This paper proposes a methodology for developing
multi-agent systems. Several design considerations for
robotic agents are discussed. A script specifies a multi-
agent system by defining the behavior of each agent. An
agent is modeled by an extended Finite State Automaton.
By using the state transition rules as the building blocks,
an agent as well as a multi-agent system can be
developed efficiently. This methodology is further
applied to multi-agent robotic systems in which
reactivity and interaction are important issues. A script-
based architecture is developed to implement the agents
in multi-agent rootic systems. This architecture
considers not only the control architecture of a single
agent, but also the interactions among multiple agents
and their environments. A script for the Object-Sorting
Task problem is utilized for demonstration.

1. INTRODUCTION

There are many situations that a group of people should
work together for achieving tasks, such as the staff in a
regular office environment or a software project. A
project manager must manage the project members so
that the project can follow the schedule to reach the
goals. In order to accomplish tasks, a group of people
may be asked to follow some rules defined by the
managers.

Multi-agent systems employ several software
agents or hardware agents as the working members to
deal with tasks and to solve problems. Most multi-agent
tasks require cooperation among agents through coordi-
nating the actions of each agent. If agents are self-
centered and work independently, the task achievement
would be accidental. Hence, there should be protocols
(via negotiation, coordination, or social rules) among
agents such that agents coordinate their behaviors to
reach their goals.

In this paper, we provide a framework for
coordinating agents to achieving tasks that require the
agents working together. This framework includes the
definition of cooperation, the agent architecture, and the
implementation for cooperation -- called the scripts.
Various agent models or interaction mechanisms can be

0-7803-4778-1 198 S 10.00 0 1998 IEEE 3442

Jane Yung-jen Hsu
Department of Computer Science and

Information Engineering
National Taiwan University

Taipei, Taiwan, R. 0. C.
yjhsu@csie.ntu.edu.tw

systematically implemented and evaluated on the
framework. A script specifies a multi-agent system by
defining each agent as a Finite State Automata (FSA).
By using the state transition rules as the building blocks,
an agent as well as a multi-agent system can be
developed efficiently. A set of transition rules composes
a protocol set that represents some agent's behavior.
Various protocol sets can be developed for different
agent models.

There are many approaches concerning the
interactions among agents. Some research models
agents based on the architecture of actions, beliefs, and
desires[5]. Negotiation [10,131, contracts [IS], planning
[4], or social rules [7,8,14] are employed for solving
conflicts or inconsistency. The agents in distributed
sensor network [6] communicate local plans and
eventually converge their solutions. Each of the
approaches is under agent model which can be rational,
cooperative, benevolent, self-interested, or rule-abiding.

Regardless of the agent model adopted, we need a
good methodology to systematically develop multi-
agent systems and test the underlying interactions. This
paper proposes a generic multi-agent framework that
has the following characteristics:

Flexibilio: Various models or assumptions for
agents can be implemented. In addition, various
interaction mechanisms can be developed
systematically.
Conciseness: A framework should be concise. For
example, the description of world can be reduced
to the description of an agent rather than the
description of all the agents if the agents are
homogeneous. .

0 Realization: Any interaction mechanism should
can be realized. An simulation environment is
provided for implementation, experiment and
evaluation.

When the framework is applied to the domain of
multiple robots, several issues should be addressed:

Reactivity: In a dynamic environment, each agent
interacts with its environment including other
agents. Hence, it is impossible to deliberate every
actions in real-time. Reactive behavior is necessary
for quick response to the environment.
Interaction: Due to the uncertainty of sensors, the

*

changing environment, and the complex interac-
tions, it is impractical to pre-plan a complete
sequence of actions in advance. In addition, the
world model may not be sufficient for planning.
Rather than trying to find a complete plan that may
fail, it is more important to focus on the interac-
tions between an agent and its environment or
other agents.
Availability: ‘ne robots are distributed in the
work space. Any movement between two locations
takes time. Hence, any algorithm or mechanism
must consider this issue rather than assuming the
agents are always available.
Interference: Since robots are physical entities,
they are more likely to interfere with one another
when they are dose together than far away.
Achievement: Although we would like a robot to
be autonomous, performing tasks specified by
human are the most important mission of the robot.
It is necessary to have an interface for a human
supervisor to assign tasks, monitor and control task
execution, as well as for the robot to request help
from the supervisor.

In general, a centrally controlled robot architecture can-
not satisfy all the above requirements. An architecture
consisting of several. control levels should be used for
multi-agent robotic systems. The reacriviry level con-
tains basic capabilities reacting with the environment by
controlling physical units. The interaction level
includes functional modules performing interaction
mechanisms by controlling the reactivity level. The
interface level interacts with the human supervisor,
manages interaction mechanisms, and controls
functional modules. All active modules or capabilities
can execute simultaneously.

Reactive control is motivated from the stimulate-
reaction mechanism studied in ethology and sociology.
Many behavior-basecl architectures have been utilized in
the robot control because of its reactivity, robustness,
and flexibility. Brooks [2] proposed and utilized the
subsumption architelcture to control their robots on
applications. Arkin [I] motivated from schema theory
and proposed schema-based navigation for reactive
robot systems. These architectures were demonstrated
only on basic behaviors such as avoidance, escape, and
navigation, etc. To achieve a goal requiring planning or
world modeling, some research intended to incorporate
deliberate planing and reactive control. Connell [3]
proposed a hybrid architecture combining a servo-
control layer, a subsu.mption layer, and a symbolic layer.
The architecture was illustrated by an indoor navigation
example. Watanabe et at. [161 used an adaptive level on
the behavior-based architecture to recover from failure
during executing a sequence of motions.

Some other research proposed the architecture for
multi-agent robotic systems. Noreils [1 11 proposed a
cooperative architecture for mobile robots, which fo-

cused on task decomposition. Agents negotiated for
decomposing a global task and resolved conflicts in
their plans represented by a sequence of actions, then
each agent executed its plan. Pape [121 utilized a central
task planner and scheduler for multiple robot coordina-
tion. Individual robots determined their contribution for
a global task, then the central planner decided the final
task allocation. Since deliberate planning and reasoning
are embedded into the complex architectures, the reac-
tivity of agents decreases. Furthermore, most of the pro-
posed architectures focus on task decomposition and
negotiation for task assignment. Nevertheless, the reac-
tivity of performing tasks is an important issue to
exploit.

The following section introduces the Object-Sorting
Task (OST) which will be utilized to illustrate the
proposed framework in the other sections. Next, the
framework are described. Finally, the help-based
cooperation protocol of the OST is demonstrated for the
framework.

2. THE OB JECT-SORTING TASK (OST)

Let O=(o,, oM) be a set of stationary objects that is
randomly distributed in a bounded area. Every object,
o!=(li,di,ni), is associated with an initial location li, a
destination location di, and the number ni of agents for
movement. An object oi can be moved if and only if
there are at least ni agents available to move it. Let
R=(r, ,... rN) be the set of agents and nmx be the
maximal number of agents to move any single object, an
object-sorting task can be completed only if N is not
less than nmM. Agents search for objects and move
them to their destinations. When all the objects have
been moved to their destinations, the task is finished.

For the OST, the functional modules can be search,
movement, and cooperation. The search module
searches for objects. The movement module moves
objects alone or together with the other agents. The
cooperation module exchanges messages with the other
agents for cooperation.

A formal definition of the OST as well as a genetic
algorithm for approximating the optimal solutions can
be found in [9]. Two cooperation protocols for the OST
were developed in [7,8].

3. SCRIPT

A multi-agent system includes the agents, the environ-
ment, and their interactions. This paper proposes an
approach to design a multi-agent system based on the
design of individual agent. Starting from the design of
each agent as well as its interactions with the environ-
ment and other agents, a multi-agent system is created
by combining the involved agents.

A script specifies a kind of multi-agent system in
which one or more interaction mechanisms are em-

3443

ployed. Implementations of diverse interaction mecha-
nisms result in different scripts. For example, a system
may use negotiation in self-interested agents, or employ
social rules in cooperative agents, etc. Since there are a
wide variety of multi-agent systems, it is useful to have
a general framework in which different scripts can be
developed, implemented, and evaluated.

First, we need a representation from which various
scripts can be generated. Each agent is modeled by an
extended Finite State Automaton (FSA). Furthennore, it
is modularized through function and capability. Finally,
an architecture is needed to realize the model.

3.1 Script representation

In the world of multi-agent systems, each agent
performs its own task as well as interacts with the
environment and the other agents. Status or change of
the world may be sensed by an agent. The sensed result
is an input event to the agent and may effect the internal
state of the agent. An a result, the agent may take some
actions reacting to the event and change its internal state.
Hence, the concept of FSA is extended to model an
agent.

Definition 1. An agent R is a 5-tuple (S , E, A, T, M)
defined as follows.

S is a finite set of symbols representing the internal
state of the agent. In each state, the agent may
perform some tasks as well as handle input events.
M is a finite set of symbols representing the
messages used in communication among agents.
E is a finite set of symbols representing the input
events to the agent. An event may be:
Cl a result sensed: e.g. finding an object,
CI a message received: e.g. receiving a help-

request message from another agent, or
0 a condition satisfied: e.g. staying in a state

for more than a specified period of time.
A is a finite set of symbols representing the actions
of the agent. Each action may:
CI control physical units: e.g. issuing a motor

command,
U send messages: e.g. broadcasting a help

message,
Cl make decisions: e.g. choosing the nearest

partner from a group of candidates to send a
message, or

C l take no actions, which is denoted by nuN.
Tis a finite set of rules, called prorocol set, which
specifies the state transitions and actions taken by
the agent. Each rule is a 4-tuple (s, e, a , t) where
0 s E S: the agent's current state
0 eE E anevent
0 a E A: anaction
U t E S: the next state

*

*

It is possible for a rule (s, e, a, t) to specify a state

remains unchanged, i.e. s = t . For all s and e, if there
does not exist a and t such that (s, e, a, 1) E T, the
behavior of the agent is defined as (s, e. null, s). In
addition, there is a constraint concerning the rules:

For any two rules (SI, e l , a l . t i) and (9, e2, a2,t2)
E T, tl = t2 if SI = s2 and e l = e2.

A protocol set defines the actions an agent should
take when events occur. Different protocol sets may be
utilized for agents to manage different situations. Based
on the definition of agents and the concept of connected
graph, a script defines a multi-agent system in which the
agents can work together either through communication
or without communication.

Definition 2. Script.
Given a set W of n agents (R I , R2. ..., Rn } where
Rf-(Si,Ei,Ai,Ti,Mi) for each i, 1s i S n, let G=(W,
B) be a graph where W is the set of vertices and B
is the set of edges defined as ((Q I 15 i j 2 R, ifj,
Mi n M, # 0). A script P=(RI. R2, ..., R,)
defines a multi-agent system if either condition
below is satisfied.
1.
2. G is connected.

For all i. l l i l n , M i = 0; or

The protocol sets employed in a script control the
behaviors of the underlying multi-agent system. In a
homogeneous multi-agent system, the same protocol set
is utilized for all the agents. Nevertheless, it is possible
to merge several protocol sets into a new protocol set in
which the utilized protocols can change over time for
adapting to different situations.

3.2 Agent architecture

The architecture of each agent consists of physical units,
basic capabilities, functional modules, and the protocol
manager, as depicted in Fig. 1. The protocol manager
interacts with human, governs all protocol sets, and
controls the behavior of each functional module by
changing the module rules of each module. It adds,
deletes, performs protocol sets under the control of an
outside supervisor which may be a human or another
agent.

A protocol set defines the transition of a FSA, i.e.
the behavior of an agent. The FSA is realized by several
functional modules which perform functions in parallel.
They share the global state information and change the
state information according to their partial state
transition functions. A module's transition function is
represented by a working module set which defines the
underlining behavior of the module.

When an agent starts a specified protocol, the
protocol manager will retrieve the underlining protocol
set cp and load its module sets (m,, m2, ..., mh) for each

3444

associated functional module (FM,, FM2, ..., FM,,).
Then the manager activates the h functional modules.
Under this situation, the protocol set cp, the h functional
modules, and the h inodule sets are all active.

7

fe... \--]

I motors communication I effectors Phvsical Units

Fig. 1: Generic agent architecture

Each functional module controls several basic
capabilities of the agent. Reactive behavior-based
design is utilized for the basic capabilities. Each basic
capability reacts with the environment by managing the
related physical units such as end effectors, sensors,
motors, and communication systems.

An event may come from the basic capabilities or
the functional modoles. For example, if the object
detection behavior fiinds a large object, it will issue a
"large object found" event. When the communication
system receive a help message, it issues a "received
help" event. When an agent have waited for a specified
duration, the motion module issues an "timeout" event.

The advantages of the proposed architecture are
summarized as follows:

The architectunt is reactive and modularized in
low level basic behaviors.
Each module performs a part of the global FSA, i.e.
only focus on ihe rules in its active module set
rather than the global FSA. In addition, modules
can execute simultaneously.
Both rules and module sets can be shared by
different protocol sets.
A cooperation protocols can be represented by a
set of cooperaticm rules.
Multiple protoclds can be implemented into the
architecture. Moreover, different protocol sets can
be activated or inactivated dynamically in
changing environment.

4. DEMONSTRATION

The help-based cooperation protocol [7] for the Object-
Sorting Task is illustrated to demonstrate the framework.
Several assumptions were made in our research. The
agents are homogeneous mobile robots with the basic
capabilities for navigation, obstacle awoidnnce, object
recognition, and object handling. The agents are
cooperative and follow cooperation protocols. Finally,
the communication system is reliable, and the agents
communicate with the others by broadcast or point-to-
point messages.

4.1 Problems of the OST

The OST consists of two kinds of work. One is the
search work: searching for objects, another is the object
processing work carrying objects to destinations. The
former has search problem while the latter has
coordination and deadlocks problems. To solve the
OST, these problems need to be addressed .
1. Search. All the objects must be found in order to

' attack the task. How do they search efficiently ?
2. Coordination. How do the agents coordinate for

assigning themselves to a found object ? That is,
for a given object, which agents should work
together to move it ? and who makes the
decision ?

3. Deadlocks. When each agent autonomously selects
an object and none of the selected object has
enough agents for movement, a deadlock occurs.

4.2 Help-based script

The working area is equally partitioned into disjoint N
subareas, and each subarea is assigned to an agent.
Advantages of the equally partition are load balancing
and parallel performance of the search work. Each
agent exhaustively searches its subarea, requests help
from the others once it has found a large object, and
selects its partners. After there are enough agents
amving at the found object, they carry the object to its
destination. The cooperation protocol defines how and
when an agent requests help, how and when the other
agents offer help, and deadlock handling in order to
coordinate the agents for accomplishing the task.

Three functional modules are required: the search
module, the motion module and the cooperation module.
The search module searches and identifies objects. The
motion module performs navigation and object move-
ment (alone or coordinated with other agents). The
cooperation module cooperates with the other agents by
communication messages. Fig. 2 shows the agent archi-
tecture designed for the OST.

The help-based script defines the protocol set of
each agent. The state diagram for each agent is showed
in Fig. 3. The rules is presented in the following

3445

subsection. Furthermore, the protocol set is functionally
decomposed into three module sets which are handled
by each module 171.

Entemal Supervise - <e- Protocoi Manager

Fig. 2: Agent architecture for the Object-Sorting Task

A-

Fig. 3: State transition diagram

4.3 The protocol set

Several strategies are used to illustrate the protocol. The
request-help strategy specifies when an agent request
help from the others. The offer-help strategy defines
when to offer help. The select-help strategy determines
an agent to offer help. The select-partner strategy
selects the partners to work together. The deadlock-free
strategy is to detect or prevent the system from
deadlocks. The following notations are used for
abbreviation.

D-s: sensing events
R-m: receiving message m
C-c: satisfying condition c
S-m: to send a message m
M-d: to make decision d
'I-": the null action, or state unchanged

Request-help:
When an agent finds a large object, it sends a help

message to request help and enters the WAITING state.
(SEARCHING, D-large-object, S-help, WAITING)

Offer-help:
Let AVAIL be the set of these states (SEARCHING,

-AVAIL represent the states not in AVAIL, and R-
AVAIL={ S-REPLY, R-REPLY, I-REPLY]. When an
agent in AVAIL and there exist any help requests, it
selects a request based on the offer-help strategy and
replies it. Then it enters one of the reply states. After
that, when it receives an accept message, it enters
HELPING state. On the other hand, it retums to its
previous state when it receives a reject message.

(SEARCHING, R-help, M-ofler-help, S-REPLY)
(RETURNING, R-help, M-offer-help, R-REPLY)
(I-RETURNING, R-help, M-ofer-help), I-REPLY)
(SUB-FIN, R-help, M-ofler-help, I-REPLY)
(IDLE, R-help, M-offer-help, I-REPLY)
(-AVAIL, R-help, enqueue help, -)
(R-AVAIL, R-accept, - , HELPING)
(S-REPLY, R-reject, - , SEARCHING)
(R-REPLY, R-reject, - , RETURNING)
(I-REPLY, R-reject, - , IDLE)

RETURNING, I-RETURNING, SUB-FIN, IDLE},

"M-offer-help" is to perform the offer-help strategy. For
example,

M-ofleer-help: Send a reply message to the near-
est agent among the received help-requests.

Select-partner:
When an agent in WAITING state and there exist

any received reply messages, it select its partners by the
select-partner strategy.

(WAITING, R-reply, M-select-partner, -)
M-select-partner: Let n be the required number of

agents, i be the current number of selected partners,
and h be the number of reply messages. S-accept to
the nearest n-i agents and S-reject to the other h-(n-i)
agents if h > n-i. Otherwise, S-accept to the h agents.

Deadloc k-free:
When an agent stays in WAITING for a duration of

the "wait timeout", it will broadcast an isblocked
message and enter the BLOCKED state, The other
agents not in WAITING will reply a norblocked
message if it receives an isblocked message. If an agent
stays in BLOCKED for the duration of "blocked
timeout", the agent will broadcast a blocked message to
state that the system IS deadlocked. The agents will use
the specified deadlock resolution to break the
deadlocked state. One of the resolution states that the
agents will help the highest priority agent to move its
object.

(WAITING, C-wait-rimeour, S-isblocked,
BLOCKED)
(-WAITING, R-isblocked, S-norblocked, -)
(BLOCKED, R-norblocked, - , WAITING)
(BLOCKED, C-blocked-rimeour, S-blocked, -)

3446

(BLOCKED, R-blocked, M-resolution, -)
(BLOCKED, R-accept, - , HELPING)
(BLOCKED, R-reject, - , WAITING)

M-resolution: If I am the highest priority agent, keep
state in WAITING, else S-reply to the highest
priority agent.

5. CONCLUSION

In this paper, a script-based framework for designing
multi-agent robotic: system is proposed. A script
specifies a kind of multi-agent system by defining each
agent's behavior as well as its interaction with the
environment and other agents. An agent is modeled by
the concept of Finite State Automata. A reactive and
modularized architecture is utilized to realize the agent
model for multi-agent robotic systems. In addition, the
Object-Sorting T a d is employed to illustrate the
framework.

By the representation of transition rules, a protocol
set can be decomposed into several module sets so that
they can perform in parallel. Furthermore, a module set
can be shared by different protocol sets. Advantages of
the agent architecture are summarized as follows:

0 The architecture is reactive, modularized.
Each module performs a part of the global FSA.
And all modules can execute simultaneously.
A cooperation protocols can be represented by a
set of cooperation rules.
Multiple protocols can be implemented into the
architecture.]Moreover, different protocol sets
can be activated or inactivated dynamically.

The simulation environment described in [7]
provides an experiment environment for the proposed
framework, and can be modified to generalize the
environment. In addition, a language can be developed
for the specification of protocol sets.

'

6. REFERENCES

R.C. Arkin, "Motor Schema-Based Mobile Robot
Navigation", International Journal of Robotics
Research, 8(4):92- 1 12, 1989.
R.A. Brooks, " A Robust Layered Control System
For A Mobile Robot", IEEE Journal of Robotics
and Automation, RA-2(1): 14-23, 1986.
J.H. Connell, "SSS: A Hybrid Architecture
Applied to Robot Navigation", Proc. of the I992
IEEE Internatioraal Conference on Robotics and
Auromation, Nice, France, May 1992, pp. 2719-
2724.
E.H. Durfee, and V. R. Lesser, "Using Partial
Global Plans to Coordinate Distributed Problem
Solvers", Alan B. Bond and Les Gasser (Eds.),
Readings in Dfrtributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988.

M.R. Genesereth, M.L. Ginsberg, and J.S.
Rosenchein, "Cooperation Without Communica-
tion", Proc. of the National Conference on
Arti'jicial Intelligence, 1986, pp. 51-57.
V.R. Lesser and D. D. Corkill, "The Distributed
Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving
Networks", Robert Engelmore and Tony Morgan
(Eds.), Blackboard Systems, Addison-Wesley
Publishing Company, 1988.
F.C. Lin and J.Y.-j. Hsu, "Cooperation and Dead-
lock-Handling for an Object-Sorting Task in a
Multi-agent Robotic System", Proc. of the IEEE
International Conference on Robotics and
Automation, Nagoya, Japan, May 1995, pp. 2580-
2585.
F.C. Lin and J.Y.-j. Hsu, "Coordination-based
Cooperation Protocols in a Multi-agent Robotic
System", Proc. of the IEEE International
Conference on Robotics and Automation,
Minneapolis, Minnesota, April 1996.
F.C. Lin, "Genetic Algorithms for Coordinating
Multi-Agent Robotic Systems", Proc. of the 1997
IEEE International Conference on Systems, Man,
and cybernetics, Orlando, Florida, Oct. 1997.

[lo] K. Matsubayashi and M. Tokoro, "A
Collaboration Mechanism on Positive Interactions
in Multi-agent Environments", Proc. of IJCAI 93,

[I I] F.R. Noreils, "An Architecture for Cooperative
and Autonomous Mobile Robots", Proc. of the
1992 IEEE International Conference on Robotics
and Automation, Nice, France, May 1992, pp.

1121 C. Le Pape, "A Combination of Centralized and

1993, pp. 346-35 1.

2703-27 10.

Distributed Methods for Multi-Agent Planning and
Scheduling", Proc. of the IEEE International
Corlference on Robotics and Automation, 1990, pp.

J.S. Rosenschein and M. R. Genesereth, "Deals
Among Rational Agents", Proc. of NCAI 85, Los
Angles, California, Aug. 1985, pp. 91-99.
Y. Shoham and M. Tennenholtz, "On the
Synthesis of Useful Social Laws for Artificial
Agent Societies (Preliminary Report)", Proc. of

R.G. Smith, "The Contract Net Protocol: High-
Level Communication and Control in a Distributed
Problem Solver", IEEE Transactions on
Computers, Vol. C-29, No. 12, Dec. 1980,

M. Watanabe, K. Onoguchi, I. Kweon, and Y.
Kuno, "Architecture of Behavior-based Mobile
Robot in Dynamic Environment", Proc. of the
1992 IEEE International Conference on Robotics
arid Automarion, Nice, France, May 1992, pp.

488-493.

AAAI 92, 1992, pp. 276-281.

pp.1104-1113.

171 1-2718.

3447

