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ABSTRACT 

This paper proposes a methodology for developing 
multi-agent systems. Several design considerations for 
robotic agents are discussed. A script specifies a multi- 
agent system by defining the behavior of each agent. An 
agent is modeled by an extended Finite State Automaton. 
By using the state transition rules as the building blocks, 
an agent as well as a multi-agent system can be 
developed efficiently. This methodology is further 
applied to multi-agent robotic systems in which 
reactivity and interaction are important issues. A script- 
based architecture is developed to implement the agents 
in multi-agent rootic systems. This architecture 
considers not only the control architecture of a single 
agent, but also the interactions among multiple agents 
and their environments. A script for the Object-Sorting 
Task problem is utilized for demonstration. 

1. INTRODUCTION 

There are many situations that a group of people should 
work together for achieving tasks, such as the staff in a 
regular office environment or a software project. A 
project manager must manage the project members so 
that the project can follow the schedule to reach the 
goals. In order to accomplish tasks, a group of people 
may be asked to follow some rules defined by the 
managers. 

Multi-agent systems employ several software 
agents or hardware agents as the working members to 
deal with tasks and to solve problems. Most multi-agent 
tasks require cooperation among agents through coordi- 
nating the actions of each agent. If agents are self- 
centered and work independently, the task achievement 
would be accidental. Hence, there should be protocols 
(via negotiation, coordination, or social rules) among 
agents such that agents coordinate their behaviors to 
reach their goals. 

In this paper, we provide a framework for 
coordinating agents to achieving tasks that require the 
agents working together. This framework includes the 
definition of cooperation, the agent architecture, and the 
implementation for cooperation -- called the scripts. 
Various agent models or interaction mechanisms can be 
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systematically implemented and evaluated on the 
framework. A script specifies a multi-agent system by 
defining each agent as a Finite State Automata (FSA). 
By using the state transition rules as the building blocks, 
an agent as well as a multi-agent system can be 
developed efficiently. A set of transition rules composes 
a protocol set that represents some agent's behavior. 
Various protocol sets can be developed for different 
agent models. 

There are many approaches concerning the 
interactions among agents. Some research models 
agents based on the architecture of actions, beliefs, and 
desires[5]. Negotiation [ 10,131, contracts [IS], planning 
[4], or social rules [7,8,14] are employed for solving 
conflicts or inconsistency. The agents in distributed 
sensor network [6]  communicate local plans and 
eventually converge their solutions. Each of the 
approaches is under agent model which can be rational, 
cooperative, benevolent, self-interested, or rule-abiding. 

Regardless of the agent model adopted, we need a 
good methodology to systematically develop multi- 
agent systems and test the underlying interactions. This 
paper proposes a generic multi-agent framework that 
has the following characteristics: 

Flexibilio: Various models or assumptions for 
agents can be implemented. In addition, various 
interaction mechanisms can be developed 
systematically. 
Conciseness: A framework should be concise. For 
example, the description of world can be reduced 
to the description of an agent rather than the 
description of all the agents if the agents are 
homogeneous. . 

0 Realization: Any interaction mechanism should 
can be realized. An simulation environment is 
provided for implementation, experiment and 
evaluation. 

When the framework is applied to the domain of 
multiple robots, several issues should be addressed: 

Reactivity: In a dynamic environment, each agent 
interacts with its environment including other 
agents. Hence, it is impossible to deliberate every 
actions in real-time. Reactive behavior is necessary 
for quick response to the environment. 
Interaction: Due to the uncertainty of sensors, the 
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changing environment, and the complex interac- 
tions, it is impractical to pre-plan a complete 
sequence of actions in advance. In addition, the 
world model may not be sufficient for planning. 
Rather than trying to find a complete plan that may 
fail, it is more important to focus on the interac- 
tions between an agent and its environment or 
other agents. 
Availability: ‘ne robots are distributed in the 
work space. Any movement between two locations 
takes time. Hence, any algorithm or mechanism 
must consider this issue rather than assuming the 
agents are always available. 
Interference: Since robots are physical entities, 
they are more likely to interfere with one another 
when they are dose together than far away. 
Achievement: Although we would like a robot to 
be autonomous, performing tasks specified by 
human are the most important mission of the robot. 
It is necessary to have an interface for a human 
supervisor to assign tasks, monitor and control task 
execution, as well as for the robot to request help 
from the supervisor. 

In general, a centrally controlled robot architecture can- 
not satisfy all the above requirements. An architecture 
consisting of several. control levels should be used for 
multi-agent robotic systems. The reacriviry level con- 
tains basic capabilities reacting with the environment by 
controlling physical units. The interaction level 
includes functional modules performing interaction 
mechanisms by controlling the reactivity level. The 
interface level interacts with the human supervisor, 
manages interaction mechanisms, and controls 
functional modules. All active modules or capabilities 
can execute simultaneously. 

Reactive control is motivated from the stimulate- 
reaction mechanism studied in ethology and sociology. 
Many behavior-basecl architectures have been utilized in 
the robot control because of its reactivity, robustness, 
and flexibility. Brooks [2] proposed and utilized the 
subsumption architelcture to control their robots on 
applications. Arkin [ I ]  motivated from schema theory 
and proposed schema-based navigation for reactive 
robot systems. These architectures were demonstrated 
only on basic behaviors such as avoidance, escape, and 
navigation, etc. To achieve a goal requiring planning or 
world modeling, some research intended to incorporate 
deliberate planing and reactive control. Connell [3] 
proposed a hybrid architecture combining a servo- 
control layer, a subsu.mption layer, and a symbolic layer. 
The architecture was illustrated by an indoor navigation 
example. Watanabe et at. [ 161 used an adaptive level on 
the behavior-based architecture to recover from failure 
during executing a sequence of motions. 

Some other research proposed the architecture for 
multi-agent robotic systems. Noreils [ 1 11 proposed a 
cooperative architecture for mobile robots, which fo- 

cused on task decomposition. Agents negotiated for 
decomposing a global task and resolved conflicts in 
their plans represented by a sequence of actions, then 
each agent executed its plan. Pape [ 121 utilized a central 
task planner and scheduler for multiple robot coordina- 
tion. Individual robots determined their contribution for 
a global task, then the central planner decided the final 
task allocation. Since deliberate planning and reasoning 
are embedded into the complex architectures, the reac- 
tivity of agents decreases. Furthermore, most of the pro- 
posed architectures focus on task decomposition and 
negotiation for task assignment. Nevertheless, the reac- 
tivity of performing tasks is an important issue to 
exploit. 

The following section introduces the Object-Sorting 
Task (OST) which will be utilized to illustrate the 
proposed framework in the other sections. Next, the 
framework are described. Finally, the help-based 
cooperation protocol of the OST is demonstrated for the 
framework. 

2. THE OB JECT-SORTING TASK (OST) 

Let O=(o, ...., oM) be a set of stationary objects that is 
randomly distributed in a bounded area. Every object, 
o!=(li,di,ni), is associated with an initial location li, a 
destination location di, and the number ni of agents for 
movement. An object oi can be moved if and only if 
there are at least ni agents available to move it. Let 
R=(r, ,... rN)  be the set of agents and nmx be the 
maximal number of agents to move any single object, an 
object-sorting task can be completed only if N is not 
less than nmM. Agents search for objects and move 
them to their destinations. When all the objects have 
been moved to their destinations, the task is finished. 

For the OST, the functional modules can be search, 
movement, and cooperation. The search module 
searches for objects. The movement module moves 
objects alone or together with the other agents. The 
cooperation module exchanges messages with the other 
agents for cooperation. 

A formal definition of the OST as well as a genetic 
algorithm for approximating the optimal solutions can 
be found in [9]. Two cooperation protocols for the OST 
were developed in [7,8]. 

3. SCRIPT 

A multi-agent system includes the agents, the environ- 
ment, and their interactions. This paper proposes an 
approach to design a multi-agent system based on the 
design of individual agent. Starting from the design of 
each agent as well as its interactions with the environ- 
ment and other agents, a multi-agent system is created 
by combining the involved agents. 

A script specifies a kind of multi-agent system in 
which one or more interaction mechanisms are em- 
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ployed. Implementations of diverse interaction mecha- 
nisms result in different scripts. For example, a system 
may use negotiation in self-interested agents, or employ 
social rules in cooperative agents, etc. Since there are a 
wide variety of multi-agent systems, it is useful to have 
a general framework in which different scripts can be 
developed, implemented, and evaluated. 

First, we need a representation from which various 
scripts can be generated. Each agent is modeled by an 
extended Finite State Automaton (FSA). Furthennore, it 
is modularized through function and capability. Finally, 
an architecture is needed to realize the model. 

3.1 Script representation 

In the world of multi-agent systems, each agent 
performs its own task as well as interacts with the 
environment and the other agents. Status or change of 
the world may be sensed by an agent. The sensed result 
is an input event to the agent and may effect the internal 
state of the agent. An a result, the agent may take some 
actions reacting to the event and change its internal state. 
Hence, the concept of FSA is extended to model an 
agent. 

Definition 1. An agent R is a 5-tuple (S ,  E, A, T, M) 
defined as follows. 

S is a finite set of symbols representing the internal 
state of the agent. In each state, the agent may 
perform some tasks as well as handle input events. 
M is a finite set of symbols representing the 
messages used in communication among agents. 
E is a finite set of symbols representing the input 
events to the agent. An event may be: 
Cl a result sensed: e.g. finding an object, 
CI a message received: e.g. receiving a help- 

request message from another agent, or 
0 a condition satisfied: e.g. staying in a state 

for more than a specified period of time. 
A is a finite set of symbols representing the actions 
of the agent. Each action may: 
CI control physical units: e.g. issuing a motor 

command, 
U send messages: e.g. broadcasting a help 

message, 
Cl make decisions: e.g. choosing the nearest 

partner from a group of candidates to send a 
message, or 

C l  take no actions, which is denoted by nuN. 
Tis a finite set of rules, called prorocol set, which 
specifies the state transitions and actions taken by 
the agent. Each rule is a 4-tuple (s,  e, a ,  t )  where 
0 s E S: the agent's current state 
0 eE E anevent 
0 a E A: anaction 
U t E S: the next state 

* 

* 

It is possible for a rule (s, e, a,  t )  to specify a state 

remains unchanged, i.e. s = t .  For all s and e, if there 
does not exist a and t such that (s, e, a, 1) E T, the 
behavior of the agent is defined as (s, e. null, s). In 
addition, there is a constraint concerning the rules: 

For any two rules (SI, e l ,  a l .  t i )  and (9, e2, a2,t2) 
E T, tl = t2 if SI = s2 and e l  = e2. 

# 

A protocol set defines the actions an agent should 
take when events occur. Different protocol sets may be 
utilized for agents to manage different situations. Based 
on the definition of agents and the concept of connected 
graph, a script defines a multi-agent system in which the 
agents can work together either through communication 
or without communication. 

Definition 2. Script. 
Given a set W of n agents ( R I ,  R2. ..., Rn } where 
Rf-(Si,Ei,Ai,Ti,Mi) for each i, 1s i S n, let G=(W, 
B) be a graph where W is the set of vertices and B 
is the set of edges defined as ((Q I 15 i j 2 R, ifj, 
Mi n M, # 0 ). A script P=(RI. R2, ..., R,) 
defines a multi-agent system if either condition 
below is satisfied. 
1. 
2. G is connected. 

For all i. l l  i l n ,  M i =  0; or 

# 

The protocol sets employed in a script control the 
behaviors of the underlying multi-agent system. In a 
homogeneous multi-agent system, the same protocol set 
is utilized for all the agents. Nevertheless, it is possible 
to merge several protocol sets into a new protocol set in 
which the utilized protocols can change over time for 
adapting to different situations. 

3.2 Agent architecture 

The architecture of each agent consists of physical units, 
basic capabilities, functional modules, and the protocol 
manager, as depicted in Fig. 1. The protocol manager 
interacts with human, governs all protocol sets, and 
controls the behavior of each functional module by 
changing the module rules of each module. It adds, 
deletes, performs protocol sets under the control of an 
outside supervisor which may be a human or another 
agent. 

A protocol set defines the transition of a FSA, i.e. 
the behavior of an agent. The FSA is realized by several 
functional modules which perform functions in parallel. 
They share the global state information and change the 
state information according to their partial state 
transition functions. A module's transition function is 
represented by a working module set which defines the 
underlining behavior of the module. 

When an agent starts a specified protocol, the 
protocol manager will retrieve the underlining protocol 
set cp  and load its module sets (m,, m2, ..., mh) for each 
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associated functional module (FM,, FM2, ..., FM,,). 
Then the manager activates the h functional modules. 
Under this situation, the protocol set cp, the h functional 
modules, and the h inodule sets are all active. 

7 

fe... \--] 

I motors communication I effectors Phvsical Units 

Fig. 1: Generic agent architecture 

Each functional module controls several basic 
capabilities of the agent. Reactive behavior-based 
design is utilized for the basic capabilities. Each basic 
capability reacts with the environment by managing the 
related physical units such as end effectors, sensors, 
motors, and communication systems. 

An event may come from the basic capabilities or 
the functional modoles. For example, if the object 
detection behavior fiinds a large object, it will issue a 
"large object found" event. When the communication 
system receive a help message, it issues a "received 
help" event. When an agent have waited for a specified 
duration, the motion module issues an "timeout" event. 

The advantages of the proposed architecture are 
summarized as follows: 

The architectunt is reactive and modularized in 
low level basic behaviors. 
Each module performs a part of the global FSA, i.e. 
only focus on ihe rules in its active module set 
rather than the global FSA. In addition, modules 
can execute simultaneously. 
Both rules and module sets can be shared by 
different protocol sets. 
A cooperation protocols can be represented by a 
set of cooperaticm rules. 
Multiple protoclds can be implemented into the 
architecture. Moreover, different protocol sets can 
be activated or inactivated dynamically in 
changing environment. 

4. DEMONSTRATION 

The help-based cooperation protocol [7] for the Object- 
Sorting Task is illustrated to demonstrate the framework. 
Several assumptions were made in our research. The 
agents are homogeneous mobile robots with the basic 
capabilities for navigation, obstacle awoidnnce, object 
recognition, and object handling. The agents are 
cooperative and follow cooperation protocols. Finally, 
the communication system is reliable, and the agents 
communicate with the others by broadcast or point-to- 
point messages. 

4.1 Problems of the OST 

The OST consists of two kinds of work. One is the 
search work: searching for objects, another is the object 
processing work carrying objects to destinations. The 
former has search problem while the latter has 
coordination and deadlocks problems. To solve the 
OST, these problems need to be addressed . 
1. Search. All the objects must be found in order to 

' attack the task. How do they search efficiently ? 
2. Coordination. How do the agents coordinate for 

assigning themselves to a found object ? That is, 
for a given object, which agents should work 
together to move it ? and who makes the 
decision ? 

3. Deadlocks. When each agent autonomously selects 
an object and none of the selected object has 
enough agents for movement, a deadlock occurs. 

4.2 Help-based script 

The working area is equally partitioned into disjoint N 
subareas, and each subarea is assigned to an agent. 
Advantages of the equally partition are load balancing 
and parallel performance of the search work. Each 
agent exhaustively searches its subarea, requests help 
from the others once it has found a large object, and 
selects its partners. After there are enough agents 
amving at the found object, they carry the object to its 
destination. The cooperation protocol defines how and 
when an agent requests help, how and when the other 
agents offer help, and deadlock handling in order to 
coordinate the agents for accomplishing the task. 

Three functional modules are required: the search 
module, the motion module and the cooperation module. 
The search module searches and identifies objects. The 
motion module performs navigation and object move- 
ment (alone or coordinated with other agents). The 
cooperation module cooperates with the other agents by 
communication messages. Fig. 2 shows the agent archi- 
tecture designed for the OST. 

The help-based script defines the protocol set of 
each agent. The state diagram for each agent is showed 
in Fig. 3. The rules is presented in the following 
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subsection. Furthermore, the protocol set is functionally 
decomposed into three module sets which are handled 
by each module 171. 

Entemal Supervise - <e- Protocoi Manager 

Fig. 2: Agent architecture for the Object-Sorting Task 

A- 

Fig. 3: State transition diagram 

4.3 The protocol set 

Several strategies are used to illustrate the protocol. The 
request-help strategy specifies when an agent request 
help from the others. The offer-help strategy defines 
when to offer help. The select-help strategy determines 
an agent to offer help. The select-partner strategy 
selects the partners to work together. The deadlock-free 
strategy is to detect or prevent the system from 
deadlocks. The following notations are used for 
abbreviation. 

D-s: sensing events 
R-m: receiving message m 
C-c: satisfying condition c 
S-m: to send a message m 
M-d: to make decision d 
'I-": the null action, or state unchanged 

Request-help: 
When an agent finds a large object, it sends a help 

message to request help and enters the WAITING state. 
(SEARCHING, D-large-object, S-help, WAITING) 

Offer-help: 
Let AVAIL be the set of these states (SEARCHING, 

-AVAIL represent the states not in AVAIL, and R- 
AVAIL={ S-REPLY, R-REPLY, I-REPLY]. When an 
agent in AVAIL and there exist any help requests, it 
selects a request based on the offer-help strategy and 
replies it. Then it enters one of the reply states. After 
that, when it receives an accept message, it enters 
HELPING state. On the other hand, it retums to its 
previous state when it receives a reject message. 

(SEARCHING, R-help, M-ofler-help, S-REPLY) 
(RETURNING, R-help, M-offer-help, R-REPLY) 
(I-RETURNING, R-help, M-ofer-help), I-REPLY) 
(SUB-FIN, R-help, M-ofler-help, I-REPLY) 
(IDLE, R-help, M-offer-help, I-REPLY) 
(-AVAIL, R-help, enqueue help, - ) 
(R-AVAIL, R-accept, - , HELPING) 
(S-REPLY, R-reject, - , SEARCHING) 
(R-REPLY, R-reject, - , RETURNING) 
(I-REPLY, R-reject, - , IDLE) 

RETURNING, I-RETURNING, SUB-FIN, IDLE}, 

"M-offer-help" is to perform the offer-help strategy. For 
example, 

M-ofleer-help: Send a reply message to the near- 
est agent among the received help-requests. 

Select-partner: 
When an agent in WAITING state and there exist 

any received reply messages, it select its partners by the 
select-partner strategy. 

(WAITING, R-reply, M-select-partner, - ) 
M-select-partner: Let n be the required number of 

agents, i be the current number of selected partners, 
and h be the number of reply messages. S-accept to 
the nearest n-i agents and S-reject to the other h-(n-i) 
agents if h > n-i. Otherwise, S-accept to the h agents. 

Deadloc k-free: 
When an agent stays in WAITING for a duration of 

the "wait timeout", it will broadcast an isblocked 
message and enter the BLOCKED state, The other 
agents not in WAITING will reply a norblocked 
message if it receives an isblocked message. If an agent 
stays in BLOCKED for the duration of "blocked 
timeout", the agent will broadcast a blocked message to 
state that the system IS deadlocked. The agents will use 
the specified deadlock resolution to break the 
deadlocked state. One of the resolution states that the 
agents will help the highest priority agent to move its 
object. 

(WAITING, C-wait-rimeour, S-isblocked, 
BLOCKED) 
(-WAITING, R-isblocked, S-norblocked, - ) 
(BLOCKED, R-norblocked, - , WAITING) 
(BLOCKED, C-blocked-rimeour, S-blocked, - ) 
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(BLOCKED, R-blocked, M-resolution, - ) 
(BLOCKED, R-accept, - , HELPING) 
(BLOCKED, R-reject, - , WAITING) 

M-resolution: If I am the highest priority agent, keep 
state in WAITING, else S-reply to the highest 
priority agent. 

5. CONCLUSION 

In this paper, a script-based framework for designing 
multi-agent robotic: system is proposed. A script 
specifies a kind of multi-agent system by defining each 
agent's behavior as well as its interaction with the 
environment and other agents. An agent is modeled by 
the concept of Finite State Automata. A reactive and 
modularized architecture is utilized to realize the agent 
model for multi-agent robotic systems. In addition, the 
Object-Sorting T a d  is employed to illustrate the 
framework. 

By the representation of transition rules, a protocol 
set can be decomposed into several module sets so that 
they can perform in parallel. Furthermore, a module set 
can be shared by different protocol sets. Advantages of 
the agent architecture are summarized as follows: 

0 The architecture is reactive, modularized. 
Each module performs a part of the global FSA. 
And all modules can execute simultaneously. 
A cooperation protocols can be represented by a 
set of cooperation rules. 
Multiple protocols can be implemented into the 
architecture. ]Moreover, different protocol sets 
can be activated or inactivated dynamically. 

The simulation environment described in [7] 
provides an experiment environment for the proposed 
framework, and can be modified to generalize the 
environment. In addition, a language can be developed 
for the specification of protocol sets. 

' 
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