
Fast and Parallel Video Encoding by WorMoad

N. H C. Yung & K. C. Chu
Department of Electrical & Electronic Engineering

The University of Hong Kong
Chow Yei Ching Building, Pokfulam Road, HONG KONG SAR

Email: Jnyung, kcchu)@eee. hku. hk

ABSTRACT
Today’s video codingldecoding technology captures a
wide area of applications such as video
phonelconferencing, interactive TV and many other
audio-video services. Ideally, the coding of the video
should be fast enough to offer real-time performance (>24
fis). However, the inherent computing complexity of
some of the coding components including motion
estimation, discrete cosine transform and variable length
entropy coding, means that fast implementation on
parallel computing platform is potentially fruitful. Over
the years, results have been reported on the
implementation of parallel MPEG and H.261 encoders [1-
41, where spatial or temporal data parallelism is
commonly exploited. Most of these methods decomposed
a fixed number of macroblocks (MB) in an arbitrary
sense. As the MB’s delays are different because of motion
content, this approach introduces uneven workload across
the processors, causing long critical path and poor
utilization of the processors [5]. In this paper, we explore
the issue of balancing the MB computing workload across
the processors. This includes first, the prediction of the
workload based on the previous frame workload, and
second, the scheduling of the MB bounded by the locality
constraint (Fig. 6). The algorithm was implemented on an
IBM SP2, and the results showed that the reduction in the
worst case delay is around 19-23%, with both the
prediction and scheduling overhead taken into account
(Fig. 9b). Because of the critical path reduction, the
overall processor utilization was increased, and the overall
coding rate improved.

1. INTRODUCTION
The H.261 video codec is mainly designed for audio-
visual services such as video phone or video conferencing

at the rates of px64 kbitslsecond through the ISDN
network [6]. Due to the nature of these applications,
encoding of the input frames must be fast enough to offer
a close to real-time frame rate (>24 fls) and minimize the
number of dropped frames. However, the inherent
computing complexity of motion estimation (ME),
discrete Cosine transform (DCT) and variable length
coding (VLC) [7], means that single processors today are
far from offering a satisfactory solution. For this reason,
most researchers take one of the two directions: develop a
new generation of fast coding technique [8]; or implement
the video encoder on parallel computing platforms [1-41.
For parallel implementation, the focus has been on the
MPEG standards, with [1] using a functional
decomposition approach on a 100 M68020, achieving a
utilization rate of 32%. In [2], a data parallel technique
was adopted to achieve real-time MPEG-2 coding on 330
nodes of an Intel paragon XPIS, or an equivalent of 38.7%
utilization. While [3] implemented the MPEG-1 on a
network of workstations, at a utilization of 62.5%. In [4],
the H.261 coding algorithm was considered and a number
of spatial and temporal parallel algorithms were
developed, with a utilization of 57.3% achieved.

Of all these development, it is interesting to note
that most groups strive to achieve real-time coding for
MPEG-1 or MPEG-2, instead of the H.261 or H.263. Of
the four intemational standards, both the H.261 and H.263
are designed for video phonelconferencing that require
real-time encoding, whereas the MPEG- 1 and MPEG-2
only need real-time decoding, not encoding. Furthermore,
most of these approaches have taken a one-off
parallelization approach without dealing with the issues of
optimality and generality. In particular, the derivation of
the granularity of spatial and temporal parallelization
seems to be arbitrarily on fixed data packet size, rather
than other possible criteria such as computing delay or
memory utilization [5] . As the computing delay of motion

0-78Q3-4778-1 /98 8 10.00 0 1998 lEEE
4642

estimation is dependent on the motion in the sequence, a
fixed number of macroblock (MB) approach would only
mean that the delay for estimating motion in a frame is
different for each MB.

For this reason, the research presented here aims
to investigating a workload balancing scheme that is
based on balancing the computing delays across the
number of processors. The success of this balancing
scheme hinges on two issues: a viable workload
scheduling and the accurately predicted computing delays
for the scheduling. Further, the allocation of MB to
processor is determined by the predicted computing
delays and bounded by the MB locality constraint. In this
paper, both the balancing and prediction issues are dealt
with, and an algorithm is proposed. It predicts the current
MB delays using the actual and predicted MB delays of
the last frame; and balances the workload by comparing
the remaining mean delay per processor with the allocated
value, to ensure that the MB locality constraint is
satisfied. By implementing the algorithm on IBM SP2
platform, our results show that the balancing approach is
very effective, offering close to theoretical performance if
the prediction is accurate. The critical path is only 4.5%
longer than the theoretical in the balanced case, whereas
the unbalanced case is 35% longer. Even if the prediction
is less than ideal, the improvement is still substantial.

2. CRITICAL PATH ISSUE
Typically, the computation of a problem can be
considered as comprising a sequential part S and a parallel
part P [5] . The sequential part is the computation that can
only be carried out by one processor while the parallel
part is the rest of computation that can be performed by
more than one processor in parallel. In a single processor
implementation, its critical path (or longest computing
delay path) is defined as the sum of delays for calculating
S and P. For parallel implementation, its critical path is
defined slightly differently as now P can be calculated in
parallel. Assume there are n processors available for the
computation, and the overhead for achieving parallel
computation is minimal, the critical path for parallel
calculation is given by the sum of S and P/n as illustrated
in Fig. 1.

If we define the speedup, S,, to be the ratio
between the computing delay using one processor and the
computing delay using n processor, then Amdahl's law
[5] can be modified to

s, = t , + t , , 3 (1)
t , + 'd+ t , (n)

where to(n) denotes the parallelization overhead. Ideally,
for n processors, S, equals to n. This is only possible when
ts & to($ are zero, i.e., there is no sequential component
in the problem or parallelization overhead. In practice, for
n 2 2, Sn increases, and for large n, S, becomes almost
constant.

I T Critical path =

a) Pafomed by one processa b) Pafwrred by rmltipmcgsor

Fig. 1 : Critical paths

In the case of implementing a video encoder on a
multiprocessing system using domain decomposition, the
problem still can be viewed as having S and P, where S is
given by the reading of frame data from the camera buffer
and writing of the coded bit stream; and P is given by the
computation of ME, DCT and etc. of each MB done in
parallel. The parallelization overhead is given by the
distribution of MB among the processors, and the
collection of VLC and decoded MB from them.
Considering MB is the smallest unit of decomposition and
they are distributed evenly among processors, for N MB
in a frame, rN/nl MB are distributed to each processor as
depicted in Fig. 2.

rrm
2"d processor

1" processor - - s o o r

1 [El MBs per processor 1
I ' * '
I . I

Fig. 2: Processors are given the same number of MB

In theory, if each MB incurs an identical
computing delay, then the delay through each parallel
computing path is the same and the critical path is given
by ts+to(n)+rN/nltMB, where tMB is the delay for coding
one MB. However, as motion estimation depends on the
motion content in the sequence and VLC depends on the
previous processes, the computing delay for an MB is not
likely to be constant. Fig. 3 depicts a more realistic case
of having the critical path determined by the longest delay
in the parallel computation, given by Eqt. (2).

4643

Critical path = t, + t o @) + max(r,,(i)) (2)
all i

n
S

T

Qitical pth= t, t

Fig. 3: Realistic critical path of parallel encoding

From Eqt. (2), the uneven parallel delays means
that some processors will complete their computation
earlier than the others. As a result of these processors
staying idle, waiting for the rest to finish, the utilization of
the implementation is reduced, which is normally defined
as the ratio between the speedup factor and n. To alleviate
this problem, it is possible to balance the computation
across the processors according to the workload per MB
rather than on a fixed number of MB per processor.
However, the computing delays must be somehow known
or estimated before they can be scheduled to each
processor on an equal computing delays basis. These two
issues are explored in the following sections.

3. UNBALANCED PARALLEL ENCODING
For estimating and balancing the workload in an encoder,
a parallel algorithm was selected from [4] based on a
multiple-master-multiple-slave (SMM) configuration. In
this algorithm, each frame data is spatially parallelized
across the slaves, and the communication tasks of MB
distribution and collection are parallelized by multiple
masters. The algorithm was theoretically modeled on a
completely load balanced scenario by considering the
delays through different stages of the coding and the
overall critical path. It was also implemented on a 32-
processor IBM SP2 supercomputer using a fixed number
of MB approach (unbalanced), where the actual delays
through each stage and the overall speedup were
measured [4]. The mean results are depicted in Fig. 4,
where the measured frame rates (dotted line) are obtained
from coding the “table tennis” NTSC sequence. The
discrepancy between the two curves is expected with the
modeled mean frame rate higher because of the balanced
load assumption.

m e
C

25

20

15

10

5
n
-‘fb?c3$?M

no. of node

Fig. 4: Modeled and measured frame rates

To illustrate the point of unbalanced workload,
Fig. 5 depicts the computing delay per processor for the
20” frame of the video. According to the measured data,
the average delay is 37 ms. With the longest delay being
50.1 ms, meaning that it is 35% higher in delay compared
with the theoretical case.

60000 1 I

Fig. 5: Measured delays (20th frame of “table-tennis”)

4. LOAD BALANCED ENCODING
As can be seen in Section 3, an unbalanced workload
across the processors can significantly reduce the
performance of the encoder. On the other hand, to achieve
a balanced workload scenario, two issues as discussed in
Section 2 are involved. First, the scheduling of the
workload is to be optimized on computing delay; and
second, the computing delay of each MB must be known
or estimated. These two issues will be dealt with in this
section, with the first one first.
Workload Scheduling

Let us assume that the computing delay, tk, of
the eh MB is somehow known for k=l, ... N . The total
computing delay of the frame is thus $k. From this, the

balanced computing delay per processor is given by
k=I

(3) l N
tboloncud = -Ctl ‘

n l = I

4644

Fig. 6: Allocation of MB according to computing delays

The concept of the proposed algorithm is built
upon the continuous comparison between the computing
delay per current allocation versus the computing delay
remaining. The aim of the comparison is to ensure the
current allocation converges to tbalanced. In reality, due
to the MB locality constraint, the allocation must involve
consecutive MB as depicted in Fig. 6, and therefore the
eventual allocation can only be closed to tb&nced, but
not exactly the same.

The balancing process begins with assigning two
indices: startlndexlj] and endIndexu] to represent the
starting and ending location of MB assigned to the j"
processor. From this, the computing delay of the f h

processor is given by the sum of delays between the two
indices. Assuming the MB allocation starts from the ls*
processor to the j" processor, where there are n-j
processors still to be allocated, the remaining computing
delay per processor is given by Eqt. (4) and depicted in
Fig.7. This should be similar to ti in the balanced case.

.s?llTil'rde*Ii]" ME 1 L=L, I , I lbm &?WIT MB

J" pnressOr has W d I k h f ,] -
WhKkxlj]+l MB

n-1, dw,l+l

N.(wK#I&$,]- \ ! m f I i ~] + l) MB "in

Fig. 7: Load balancing the Macroblocks across the
processors

Now considering the algorithm in detailed, for
the lst processor, startIndex[l] is 1 and endlndex[l] is

initially. With this, the workload in the 1 St processor is not
balanced. To make it balanced, t , and treamin are
compared such that if t , is larger than tremain then the last
MB in the 1st processor is reallocated back to the MB

pool; else the next MB from the pool is allocated to the 1"
processor. The comparison continues until t , and tremain are
closest to each other. There is no restriction as to whether
t , should be slightly larger or vice versa. The very same
sequence of steps repeats for the remaining processors
with startIndexlj] = endlndexb-l]+l and endIndexlj] =

startlndexlj] + N . r A1
Computing Delav per MB

On this issue, to predict the computing delay per
MB in frame i, f k , { , a delta prediction with error feedback
factor formula is used which is given by

where tk ,{- , and ik,,-, are the measured and predicted
computing delays of the gh MB in frame i-1, respectively;
and a is the feedback scaling factor. As both t,,r-, and
A are known after coding frame i-1, by choosing an
t L . 1 - I

appropriately, i,,, of frame i can be predicted. The
measured and predicted delays of frame i is used for
predicting the delays of frame i+l .

(5) A , .

t , I = It,,,-, + a ' (t k , i - l - ik , , - l >I '

5. SIMULATION RESULTS
The load balancing algorithm described in Section 4 was
simulated using 39 frames of the table-tennis sequences
with 330 MB per frame (NTSC). Based on the same
parallel algorithm presented in Section 3, the simulation
was implemented on 24 processors of the IBM SP2
installed at the University of Hong Kong. The simulation
was conducted under two sets of conditions. First,
measured computing delays of frame i are used for load
balancing of frame i. This enables us to study the behavior
and performance of the load balancing aspect of the
algorithm. Second, predicted computing delays (Eqt. (5))
are used for load balancing, allowing us to investigate the
behavior of the prediction aspect and the effect of
prediction error.

Case 1: Measured frame i delays for frame i balancing
The resulting frame rate per second including the

overhead spent on performing the balancing are depicted
in Fig.8, as the dotted line. The solid line with circle
markers represents the modeled case where the plain solid
line represents the measured unbalanced case. From this
figure, a number of points can be observed. First, the
frame rate of the balanced case is closed to the modeled
(theoretical) frame rate. The difference is due to the
overhead required for performing the load balancing, and

4645

the imbalance due to the constraints of MB locality.
However, the closeness of these two curves shows the
effectiveness of the balancing algorithm, and it also
implies that the modeled frame rate is an accurate
theoretical upper bound. For small n, the difference
between the two is minimal. Second, the frame rate
improvement from the unbalanced case is substantial,
particularly for large n. Such improvement can be
explained in Fig.9(a), where the computing delays per
processor of the 20th frame are plotted. In this case, the
worst case delay is 38.7 ms (critical path), and the best
case delay is 35.1 ms. This is just 4.5% higher than the
ideal case as compared with 35% in the unbalanced case.

Z E Z Z G v m r C) F a r c r , z. ofxode

Fig. 8: Frame rates

-50000
0

.Computation times when using-
measured data for balancing

~ _ _ ~ ~ -~~~~ - ~

Z T l Z Z Y * r -
Node number

Fig. 9 (a): Balanced computation delays: measured delays

Case 2: Predicted frame i delays for frame i balancing

60000

50000 -
8 40000

2 30000
-
I

,E 20000

;b 10000

s o

P

E

. - b F o m w , o ,
r r - 7 - T -

Node number

Fig. 9 (b): Balanced computation delays: predicted delays
When the computing delays are predicted using

Eqt. (5), the resulting frame rate per second including the
overhead spent on performing the balancing are depicted
in Fig.8, as the solid line with x markers. In this case, the
improvement due to balanced load is not as large as Case
1, not because of the balancing of workload, but due to
the inaccuracy in prediction. As the allocation of MB to
the processors is based on the predicted delays, any errors
in the prediction is reflected in the overall frame rate. As a
result, the improvement is about 1 f p s rather than 3 f p s in
previous case. This can be further explained in Fig.9(b),
where the computing delays per processor of the 20th
frame is again plotted. It can be seen that the critical path
is now 40.3 ms, or almost 11% higher than the ideal case.
Comparing this with the unbalanced case, the balanced
critical path is only 80% of the original, which is a
significant improvement.

6. CONCLUSIONS
For future real-time video phone and conferencing
applications, multiprocessing implementation seems
inevitable. The very high computing resource offered by
most multiprocessing platforms makes it all the more
important to design fast and efficient parallel algorithms
in achieving the ultimate. In this paper, through the use of
a data parallel H.261 coding algorithm, we can
demonstrate the positive effect of having the computing
workload balanced. The improvement in overall coding
performance can be substantial if the critical path of the
computation is reduced. The price to pay is the overhead
required by the balancing, and there may not be an
optimally balanced case under the MB locality constraint.
Furthermore, the accuracy of delay prediction is vital to
how much improvement can be achieved. Future research
in this area will be focused on reducing the prediction
error.

4646

ACKNOWLEDGMENT
The authors would like to express their sincere gratitude
to the Computer Centre of The University of Hong Kong,
whom provides the multi-processing environment of IBM
SP2 Supercomputer for simulations of the project.

REFERENCES
[11 F. Sijstermans & J. Van der Meer, “CD-I Full-motion

Video Encoding on a Parallel Computer”,
Communications of the ACM, Vo1.34, N0.4, 1991,

[2] M. Akramullah, I. Ahmad, Ming L. Liou, “A Portable
and Scalable MPEG-2 Video Encoder on Parallel and
Distributed Computing Systems”, SPIE Proc. On
Visual Communications and Image Processsing,

pp.8 1-9 1 .

1996, pp.973-984.

[3] I. Agi & R. Jagannathan, “A Portable Fault-tolerant
Parallel Software MPEG- 1 Encoder”, Multimedia
Tools and Applications, 2, pp. 183-197, 1996.

[4] N. H. C. Yung & K. K. Leung, “Parallelization fo the
H.261 video coding algorithm on the IBM SP2
multiprocessor system”, to be presented in the IEEE
ICA3PP, 1997.

[5] Kai Hwang and Zhiwei Xu, “Scalable Parallel
Computers for Real-Time Signal Processing”, IEEE
signal processing magazine pp. 50-66, July 1996.

[6] ITU-T Draft H.261. Line Transmission of Non-
telephone Signals. Video Codec for Audiovisual
Services at px64 kbits.

[7] A. Murat Tekalp, “Digital video processing”, Prentice
Hall PTR, Prentice-Hall, Inc., 1995.

[8] A. C. Huang & J. L. Wu, “New Generation of Real-
time Software-based Video Codec: Popular Video
Coder I1 (PVC-II)”, IEEE Transactions on Consumer
Electronics, Vol. 42, No. 4, Nov. 1996, pp. 963-973.

4647

