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Abstract

In this paper the classical “Westland” set of empiri-
cal accelerometer helicopter data is analyzed with the
aim of condition monitoring for diagnostic purposes.
The goal is to determine features for failure events
from these data, via a proprietary signal processing
toolbox, and to weigh these according to a variety of
classification algorithms.

As regards signal processing, it appears that the au-
toregressive (AR) coefficients from a simple linear
model encapsulate a great deal of information in a rel-
atively few measurements; it has also been found that
augmentation of these by harmonic and other parame-
ters can improve classification significantly. As regards
classification, several techniques have been explored,
among these restricted Coulomb energy (RCE) net-
works, learning vector quantization (LVQ), Gaussian
mixture classifiers and decision trees. A problem with
these approaches, and in common with many classifi-
cation paradigms, is that augmentation of the feature
dimension can degrade classification ability. Thus, we
also introduce the Bayesian data reduction algorithm
(BDRA), which imposes a Dirichlet prior on training
data and is thus able to quantify probability of error in
an exact manner, such that features may be discarded
or coarsened appropriately.

1 Introduction

Qualtech Systems has developed a suite of fault-
isolation tools (TEAMS) which can, in real time and
based on binary sensor data, isolate single and even
nultiple faults in complex systems. However, many
sensors (for example, of vibration) are incapable of
reliable decision-making on their own, and hence it
has become necessary to develop a (real-time) signal
processing “front-end” to the TEAMS inference en-
gine whose goal is to render decisions as intelligent as
possible. The signal processing system includes a wide
menu of spectral and statistical manipulation primi-
tives such as filters, harmonic analyzers, transient de-
tectors, and multi-resolution decomposition.

The signal processing kit includes pattern classifica-
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tion software, including techniques based on restricted
Coulomb energy (RCE), decision trees (DT), learn-
ing vector quantization (LVQ), fuzzy logic, Bayesian
data reduction (BDRA), Gaussian mixtures (GM) and
multi-layer perceptrons (MLP). At present the former
three are implemented within the SP toolkit, and the
fifth and sixth are implemented off-line in MATLAB
using features provided by the toolkit.

Recognition of faults can hence be automated pro-
vided there is sufficient training data. This paper thus
includes analysis of no-fault and seeded-fault vibra-
tion data from a CH-46 (“SeaKnight”) helicopter aft
gearbox as collected from a test-stand. This data is
made freely available through the generosity of the
Penn State ARL [8].

Results show promising fault detection accuracy, par-
ticularly when learning is based on auto-regressive
(AR) coefficient features. The analysis presented in
this paper is an outgrowth of that in [11]. In that pa-
per, only a very abbreviated version of the Westland
dataset was explored, and the RCE, LVQ, and DT
schemes were discussed. In this paper the full dataset
is used, and the set of classifiers is augmented by the
GM and BDRA approaches.

In section 2 we go into detail about the toolbox clas-
sification techniques: LVQ, DT, RCE, Gaussian mix-
ture, and BDRA classifiers. In section 3 we apply the
signal processing and classifiers to the Westland heli-
copter dataset. Similar to results reported elsewhere,
we find near-perfect fault-recognition accuracy, in our
case with relatively small feature sets involving au-
toregressive coefficients.

2 The Classifiers

2.1 Restricted Coulomb Energy Clas-
sification

The RCE classifier [4, 9] relies on the approximation
of a decision region via a union of hypersphere “cells”.
Cells may overlap if they do not belong to the same
class, and this may produce ambiguous outputs. Note
that partition of the observation space into decision re-
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gions is not exhaustive in the RCE approach. Training
is iterative, and is described in [11]. After the network
has become fixed classification is accomplished by in-
terrogation of membership of the various cells: each
cell is assigned a class, and the output corresponds to
that class. For the cases that data is either a member
of no cell, or of several which are of different classes,
the RCE classifier gives an indeterminate output: such
cases may be decided randomly or by heuristic.

2.2 Learning Vector Quantization

Classification

The LVQ classifier [5] is a variation on the traditional
cluster-classifier based on K-means training [10]. In
essence, each class is assigned sub-clusters defined by
their centroids, and data are classified based on the
membership of the centroid to which they are nearest.
Training is iterative, and is described fully in [11]. An
LVQ classifier may be considered a development on
the earlier K-means based cluster classifiers in that
nomn-separable classes cause no intrinsic, and in that
there is an intelligent means of “pruning” clusters.

2.3 Decision Tree Classifier

At core the DT classifier [10] produces its output by
asking a series of questions which must have binary
answers. The “path” taken may be thought of as tra-
versal of a logical tree; but the form of the resultant
decision regions must be as hyper-rectangles. In prin-
ciple it is possible and easy to separate the training
data precisely via a sufficiently-rich question set. In
practice there are too many “questions” (parameters),
and the DT classifier is found not to have a partic-
ularly good generalization ability. There are means
to limit the number of questions, and these gener-
ally amount to the choice of a cost to be placed on
a question’s posing. In our implementation we use
an information-theoretic cost function, although ad-
mittedly its basis is empirical rather than true prior
statistics.

2.4 Gaussian Mixture Classifier

This classification technique has a greater statistical
grounding than the previous, in that a probability den-
sity function (pdf) is sought for each class. The spe-
cific pdf used is a mixture of multivariate Gaussians:

f(X) Z \/ﬁ %[x‘#-]Tﬂfi[x—pt] (1)

There are M elements to the mixture, and each has a
different mean p; and prior probability 7;. Decisions
are made according to the maximum posterior prob-
ability of each class (in fact, classes are assumed to

be equally-likely a-priori). Note that if M =1 this is
identical to the quadratic discriminant classifier.
Training is via the expectation/maximization (EM)
algorithm [10]. The correlation matrix R is common
to all elements of the mixture within a class of fault —
this is known as a “homoscedastic” mixture — and the
ideas behind this are that the number of elements to be
estimated can be reduced and that there is little con-
cern about unboundedness of the likelihood function.
A variant of the above restricts R to be diagonal; this
reduces the number of parameters to estimate consid-
erably, but in this particular case (see, for example,
figure 1) the ability to “tilt” the pdf level curves aris-
ing from the use of a full R is valuable.

2.5 BDRA Classification

The Bayesian data reduction approach is perhaps the
most statistically defensible of the classifiers used. It
begins with a quantized version of the data, and as-
sumes a Dirichlet prior (of complete ignorance) on this
a prior, for each fault class. From that prior distribu-
tion classification is relatively simple; the key is that
the prior enables an explicit (and correct) probability
of error to be calculated, and thence features may be
pruned in an optimal way. The BDRA is discussed in
detail in [6], among other places. Generally the BDRA
works very well when there are too many features for
the training data to support, and/or when the classes
are not easily separable.

The BDRA requires that the data be pre-quantized.
To some extent this is not a concern, since the quanti-
zation may be as fine as desired - the BDRA coarsens
the quantization as part of its feature/level selection.
For practical reasons, the quantization cannot be too
fine, and hence it is not expected that this dataset will
be kind to the BDRA. In fact, the BDRA results are
reasonable, but what is interesting is its ability to se-
lect features and its prediction of its own performance.

3 Results on CH-46 Data

3.1 The Data

In the early 1990°s the US Navy contracted with
Westland, a British helicopter manufacturer, to de-
velop and study vibration signatures for the CH-46
(SeaKnight) aft gearbox. Essentially this is “test-
stand” (not in-flight) data; this is a disadvantage from
the perspectlve of result rehablhty, but offers a distinct
advantage in that the vibration signatures are labeled.
The data is as follows:

o There are 68 files each containing data traces of
100,000 samples.



e For each case there is data available from eight
accelerometers.

e There are a total of nine fault conditions, rang-
ing in severity from mild to severe. Faults were
“seeded” (by electronic discharge milling) in the
sense that parts with known defects were installed
and de-installed.

o There is data from no-fault (normal) operating
conditions.

e Data was observed at nine different torque levels
(since this is a rotorcraft, angular velocities are
relatively constant), ranging from 27% to 100%.

For details on the faults, etc., please see [1, 8]. Note
that if all fault levels and torques were represented
there would be 90 files; in fact, a number of conditions
are unrepresented in the data. As regards training
versus testing, the entire dataset is split randomly into
two parts, which are used separately.

The data has been analyzed previously (e.g. {1, 7, 12])
using a variety of classification techniques such as
multi-layer perceptrons and fuzzy reasoning. Indeed,
this is apparently an “easy” (or separable) dataset
for classification, as the reported accuracies approach
100%. Thus, our goal here is not really to beat previous
(unbeatable!) approaches, but to attempt to match
them using the SP toolbox classifiers. Further, it ap-
pears that past approaches have often used a rather
dense feature set (several hundred features, such as
FFT outputs), and we attempt here to use a much
sparser arsenal.

3.2 The Features
3.2.1 AR Coefhicients

It is possible to use periodogram outputs explicitly
as features for classification; however, in general this
implies a great many features, and the usual “curse of
dimensionality” may ensue. Since it is clear that spec-
tral features do indeed yield much relevant informa-
tion, we propose to use a concise way of representing
the spectrum: the autoregressive (AR) parameters [2].
These are estimated on blocks of various sizes, from
N =256 to N = 16384.

Examples of AR coefficients are given in figures 1 and
2. It is clear that there is a reasonable amount of struc-
ture to these, but also that certain conditions cannot
be separated reliably using only such data. In fact,
there are 8 accelerometers from which to choose, and
a further two AR coefficients.

3.2.2 FFT Features

AR coefficients are able to digest much global spectral
information into a small dimension. There is some in-
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Figure 1: Scatter plot of AR coefficients a; versus as
(out of p = 4 AR coeflicients), for accelerometer 3 and
combined over all torque levels, estimated on blocks of
length 4096, for faults 3, 5, 8 and no-fault conditions.

dication that faults may manifest in specific frequency
behavior, and hence we additionally investigate the
use of relative harmonic power (RHP). The i** RHP
is the ratio of the i*"-highest spectral peak (measured
via FFT) to the average power. In the sequel we use
4 RHP’s. Examples are given in figures 3 and 4, for
the same conditions as figures 1 and 2. It is clear that
these features are less a direct indication of fault class.
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Table 1: Percentage of correct classification for three
classifiers, versus accelerometer number — features are

gm-order AR coefficients from individual accelerome-
ers.

3.3 Results for RCE, LVQ and DT

We first examine the results for the case that ac-
celerometers are used individually. The features used
are AR coefficients of order p = 4, each estimated on
a block of length N = 4096. Results are reported
in table 1. None of these performances is acceptable,
although accelerometers 3,4, and 7 appear to be the
most promising. Motivated by this, we attempt to
classify by combining accelerometers. Example results
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Figure 2: Scatter plot of AR coefficients a; versus ag
(out of p = 4 AR coeflicients), for accelerometer 3 and
combined over all torque levels, estimated on blocks of
length 4096, for faults 4, 6, 7 and no-fault conditions.
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Figure 3: Scatter plot of RHP values, corresponding

to figure 1.
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2,7] 964 | 89.4 | 94.7
3,71 99.1 | 96.7 | 95.5
4,71 983 | 89.6 | 949
all | 985 | 966 | 91

Table 2: Percentage of correct classification for three
classifiers, with combined accelerometer AR coeffi-
cients (p = 4) from individual accelerometers as fea-
tures. (In the Ist row p = 2.)

are shown in table 2. We find that the combination of
accelerometers 3 and 7 is the most propitious. There is
apparently little benefit from using all accelerometers.
In table 3 we explore the choice of AR order. The
results indicate that p = 4 is a good compromise be-
tween sensitivity and dimensionality. With this choice
we consider adding the RHP features. In table 4 we
do, and additionally compare the results for different
block lengths. The results become quite outstanding
in the cases N = 4096 and N = 16384, particularly
for the RCE classifier; the LVQ classifier is somewhat
less satisfying, and the DT scheme has been overcome.

Finally, we note that we have chosen to ignore the
torque level in our classification feature set. That is,
we have trained using combined data from all torque
levels, and results to this point are given in terms of
combined probability of correctness. It could be ar-
gued that this is dangerous, in that poor performance
may lurk at some torque level; in fact, as seen in table
5, this is not the case.
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Figure 4: Scatter plot of RHP values, corresponding

to figure 2.

3.4 Results for GM

We show example results for the two homoscedastic
GM classifier variants in figure 5. Apparently the GM
classifier is not as good as the RCE scheme in this sit-
uation; GM classifiers are often more useful when the
data is less separable and when confidence information
is desired, so it is perhaps interesting that the perfor-
mance is as good as it is. Of particular note is the
M = 1 GM classifier - this is essentially a quadratic
discriminant, and its probability of error is very low.

As regard the second GM classifier variant - that with
a diagonal covariance matrix — it is interesting to ob-
serve from figure 5 that the performance improves
markedly as the number of mixture elements M is in-
creased. There is some explanation of this in figure 6,



[p [RCE[LVQ [ DT |

3

2 | 832 | 887 | 87.7
31940 | 8.4 | 974
4 199.1 | 96.7 | 95.5
6 | 99.0 | 92.8 | 95.0
8 | 989 | 91.1 | 95.9
121 976 | 96.1 | 93.8

Table 3: Percentage of correct classification for three
classifiers, with combined accelerometers 3 and 7, for
various AR orders p, estimated on data blocks of
length N = 1024.

[N [RCEJIVQ ] DT ]
1024 | 968 | 95.1 [ 03.1
4096 | 99.6 | 97.9 | 93.9
16384 | 99.3 | 96.7 | 91.9

Table 4: Percentage of correct classification for three
classifiers, with combined accelerometers 3 and 7, for
various AR orders p = 4 estimated on data blocks of
length N. The feature set is augmented by the RHP
spectral peak clues.

in which the “coverage” of one class’s data by the mix-
ture elements is illustrated. It is clear that the more
elements, the more complete the coverage.

3.5 Results for BDRA

In table 6 we show the results for the BDRA in terms
of correct detection of a fault condition — no attempt is
made here to isolate the fault, but testing is simply bi-
nary. (The BDRA is capable of multi-class operation,
but the version used does not support that.) Despite
the fact that the BDRA is not particularly well-suited
to the problem, the results are quite good. It is par-
ticularly notable that the algorithm is able to predict
its own performance with reasonable fidelity.

As indicated earlier, a strength of the BDRA is that it
is able to determine for itself a feature set. In fact, it
is originally “given” a the entire set of features, quan-
tized to whatever fineness is desired — in table 6 this is
5 or 10 levels per feature, thresholded for equal proba-
bility, meaning in the case of 10 levels and p = 6, there
are initially 8 x (6 + 4) x 10 = 800 possible observa-
tions. In table 7 the final quantization from the BDRA
is shown, and the dominance of accelerometers 3 and
7 is clear. Table 7 deals only with AR coefficients:
if RHP features are also presented to the BDRA, it
turns out that these are often chosen.

4 Summary

Here we have reported on a signal processing tool-
box specially matched to Qualtech Systems TEAMS

[ torque | RCE [ ITVQ | DT |
2% [ 976 [ 941 1929
40% 100 | 100 | 98.8
45% 100 | 100 | 100
50% 100 | 100 | 97.2
60% 100 | 98.6 | 88.9
70% 99.1 | 824 | 83.3
5% 979 | 99.0 | 84.8
80% | 99.1 | 98.2 | 91.7
100% | 100 | 98.3 | 89.2

Table 5: Percentage of correct classification for three
classifiers, with combined accelerometers 3 and 7, for
various AR orders p = 4 estimated on data blocks of
length N = 4096. The feature set is augmented by the
RHP spectral peak clues. Training data is combined
over all torque levels, and testing is done individually
at each torque level.
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Figure 5: Probability of error performance for

Gazussian mixture classifiers. Here p = 4 and N =
1024.

diagnostic inference engine, and in particular on its
classification capability as applied to the “Westland”
data set. We have found that essentially perfect diag-
nostic performance is achievable via the use of AR co-
efficient features augmented by harmonic peak infor-
mation. The best classification performance appears
to come from the RCE learning/classification scheme.
The aproach works well across all torque levels, so
there is no need to supply engine load information to
the classifier. We have also found that the Bayesian
data reduction (BDRA) approach, despite not being
well-matched to the problem, works surprisingly well,
and indeed that its ability to select features (perhaps
for other classifiers?) is particularly promising.
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Figure 6: Dots show scatter plot of AR coefficients a;
versus az (out of p = 4 AR coefficients), for accelerom-
eter 3 and combined over all torque levels. Ellipses
are probability contours for elements of diagonal-R
Gaussian mixture fit with 8 elements.

LN [p[ C5 ]G [ChlCho]

1024 121930923958 96.9
1024 | 4 | 92.0 [ 93.8 | 94.9 | 95.7
1024 { 6 | 93.3 [ 93.3 | 94.4 | 96.9
4096 | 2| 95.1 | 96.6 | 96.0 | 98.5
4096 | 4 | 95.6 | 98.8 | 95.6 | 98.8
4096 | 6 | 92.0 | 95.2 | 94.1 | 96.4

Table 6: Percentage of correct fault detection for
BDRA, using AR(p) coeflicients and RHP clues. Sub-
script of C denotes number of initial quantization lev-
els per feature; superscript ¢ means actual, and ¢ is
theoretical.
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