
Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

ON THE ROLE OF INFORMED SEARCH
IN VERISTIC COMPUTING

STUART H. RUBIN, ROBERT J. RUSH JR., and JAMES BOERKE / LJILJANA TRAJKOVIC

SPAWARS SYSTEMS CENTER School of Engineering Science
 53560 Hull Street Simon Fraser University

San Diego CA 92152-5001 Burnaby, B.C., Canada
{srubin, rushr, jboerke}@spawar.navy.mil ljilja@cs.sfu.ca

Abstract

Veristic computing is defined to mean computing
with words. It necessarily entails the use of informed
search in the solution of qualitatively constrained
equations. Its use does not preclude computing with
numbers. Versitic computing allows for the
specification of higher-level programming languages,
which can evolve domain-specific knowledge bases.
The knowledge is evolved on a high-end computer
for subsequent porting to a PC. The application of
that knowledge to the translation of a higher-level
program is termed, expert compilation. This paper
serves to make clear the ubiquitous role assumed by
randomization in all aspects of software engineering
– from programming language design to program
design to program testing to knowledge transference.

Keywords
Data Mining, Expert Compilers, Knowledge
Discovery, Randomization, Transference.

1 Introduction to Randomization

The fundamental need for domain-specific
knowledge is in keeping with Rubin’s proof of the
Unsolvability of the Randomization Problem [1]. A
second application of the Unsolvability of the
Randomization Problem reduces the capability for
forming domain-specific generalizations to the
capability for forming domain-specific
representations. But then, this capability is dependent
on previous structure. All that matters is to minimize
the entropy of the information-theoretic model using
randomization [2]. Of course, there is also a practical
dimension that involves issues pertaining to
realization on a supercomputer. However, even here
the Unsolvability of the Randomization Problem
implies the necessary search for ever-better domain-
specific hardware.

2 Knowledge Acquisition

The acknowledged key to breakthroughs in the
creation of intelligent software is cracking the
knowledge acquisition bottleneck [3]. This project
benefits from the use of high-speed computers to
study deductive and inductive processes. Formerly,
such studies relied upon the use of heuristics, or rules
of thumb, to delimit the search space. While such
“best-first” methods are of practical utility, they limit
machine learning to that of improving the heuristic
base because this aspect must be separated from the
organizational representation of the knowledge,
which is to be searched.

The chosen representational formalism must also
include all manner of features. Data mining is
critically dependent on the quality of the feature
space. To better see this, consider mining a chess
game. If all that is recorded about a chess game are
the pieces and their sequence of positions, then this
highly specialized knowledge would prove to be of
little utility. What is needed is a generalization of this
declarative knowledge into procedural knowledge.
Here, such features as nearness of the king to the
center of the board, whether or not the rook can be
castled, or even if a particular depth-first search
procedure should be applied are clearly
representative of procedural knowledge.

3 Software Debugging

In addition to software reuse and retrieval [4],
software debugging also has strong ties to
randomization. For example, consider the debugging
of any sort program. It follows from the Unsolvability
of the Randomization Problem [1] that any program
sufficiently complex to be capable of self-reference
can never be assured to be totally bug-free. Rather,
the best that can be done is to test it to satisfaction.
There are two separate, but related issues here. First,
how does one develop a repository of test cases for
maximal coverage and second, what principles does

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

one employ to construct software so that it is
relatively bug free?

Test cases should cover as many execution paths as
practical; yet, be minimal in number so as to render
the testing process practical. For example, when
testing a sort program, one does not want test cases
such as: (1) (2 1) (3 2 1) (4 3 2 1) … because the test
vectors are mutually symmetric. Rather, one needs to
develop an approximation of a basis (e.g., akin to the
basis of a matrix). For example: () (1) (2 1) (1 3) (3 1
2) … Furthermore, Rubin [5, 6] has developed a
fuzzy programming language that accepts a
generalized program description and uses an
orthogonal sequence of test cases to instantiate a
working program, where possible. What is interesting
here is that the induced program is no better nor
worse than allowed by the supplied test sequence.
This is testing in reverse and serves to underscore the
critical role played by test case selection in
determining the overall quality of the resulting
software produced. One could argue that the
aforementioned process works well for functional
programming, but what about say for visual
programming? How does one map test cases to form?
The answer is that visual programming (e.g., creating
GUIs) requires testing as does any other program;
although, here an expert or expert system is required
to provide the feedback that determines the success or
failure of each test. Notice that the process of
randomization is pervasive: It exists in the generation
of a minimal set of test cases; it exists in the
specification of a fuzzy program (i.e., a minimal
representation of a program space whose instances
approximate useful working programs); it exists in
the reuse of expert systems for GUI design; and, it
surely exists in all related software processes too
detailed to be described here. Fig. 1 presents a
depiction of a fuzzy program written in an extended
version of the LISP language [7, 8].

To construct software that is relatively bug-free,
one needs to maximize the testability of every
included software unit. This is necessary because, in
keeping with the above arguments, software can only
be certified in proportion to its having been tested
using mutually random test cases that attempt to
approximate the environment in which it will be used.
For example, consider the development of the Fortran
subroutine. Instead of transferring to different
sections of possibly erroneous code, all these would-
be calls are instead transferred to a parametized
randomization of their semantics. The greater number
of calls here serves to increase the number of tests
made of the subroutine with the result that the overall
quality of the program is improved through the use of
subroutines. The same argument extends to the use of
objects and components. Thus, we see that what may
be termed, “randomized programming practices”

results in improved code quality. A new view of
software reuse will evolve in the form of a taxonomy:

• Level 5: Reuse requires a dynamic domain-
specific representation of knowledge.

• Level 4: Reuse requires the application of
knowledge bases (e.g., expert compilers).

• Level 3: Reuse occurs in the form of objects
and components.

• Level 2: Reuse occurs at the code level and
allows for parametization.

• Level 1: Reuse occurs at the level of
immutable code.

4 On Feature Acquisition

The discovery of features represents a search process
involving test and evaluation. Indeed, the search
space can rapidly become intractable, which serves to
underscore the need for a supercomputer. The term,
veristic computing was introduced by Zadeh [9]. The
term refers to computing with words in much the
same manner as we presently compute with numbers.
In particular, veristic computing provides for a
qualitatively fuzzy computational capability [1].

The feature space here consists of an object space
of LISP functions together with an operant search
methodology. Notice the key role assumed by the
representation in the synthesis of the LISP functions.
For example, the conditions (Null S) and Nil are
instances of the empty list, S. These instances may
also be fuzzy function calls as in the definition of
MYSORT below.

There are three ways to speedup veristic
computations, which are not mutually exclusive. First
and foremost, one can apply massively parallel
processing. Second, one can break an X * X problem
into an Y + Y problem (i.e., apply the triangle
inequality). Finally, one can find heuristics, where
possible, to partially order the search space. In
particular, these heuristics can serve to realize the
triangle inequality through the application of domain
knowledge.

Higher-level functions (e.g., MYSORT as
compared to NULL) require the application of more
processing power to test. Many such tests may
proceed in parallel. The need for a supercomputer at
once follows. Indeed, this need can evolve to that for
distributed clusters of supercomputers running in
MIMD mode.

These experiments promise to deliver veristic
programming languages, which require fast
computing facilities for compilation in the absence of
domain-specific knowledge. Furthermore, this
domain-specific knowledge can be represented in and

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

generated through the use of veristic computation.
This means that while a high-end computer is needed
to create the language and attendant knowledge bases
in the first place, the results can be ported to an
ordinary high-end PC.

5 Expert Compilers

Expert compilers were first defined by Geoffrey
Hindin [10]. Now, it is well-known that programmer
productivity bears proportion to the level of the
programming language in which a program may be
expressed. Thus, we saw a six-fold jump in
productivity in the 70s when assembly-language
programming gave way to Fortran (i.e., 3d generation
language) programming. Smaller gains are reported
for object and component-based programming due to
complexity issues. Simply put, the new problem in
increasing programmer productivity is that 3d
generation (universal) languages do not in effect
substitute for user domain knowledge. One still needs
to program every domain detail to get the program to
work as desired. Expert compilers relax this
stipulation by providing for rule-based knowledge
insertion. For example, consider the following 3d
generation vs. expert-compiled program.

In Fig. 2, the expert rules act on the expert
specification to produce the third generation code.
The rules have been oversimplified for purposes of
illustration. Notice that the expert specification is at a
higher level and is thus easier to debug and be more
productive in through the use of the expert compiler.
In fact, the separation of the domain knowledge from
the program knowledge may be viewed as an
extension of the traditional separation of the
knowledge base from the inference engine in an
expert system. Notice the parallels with the
introduction of the Fortran subroutine described
above. That is, an expert compiler is yet another form
of randomization!

In traditional software engineering practice, an
extensible language (e.g., LISP) serves many of the
same requirements for randomization. However, the
difference between an extensible language and expert
compilation is that the knowledge is embodied in the
object in an extensible language, which tends to
delimit its reusability. Such is not the case with an
expert compiler. Now, as the size of the object gets
smaller, its reusability increases until in the limit it
offers the same advantages offered by an equivalent
expert compiler, or so it would seem. What’s missing
from this argument is any notion of execution
efficiency. That is, as the objects get smaller, the
programs that they detail tend to loose efficiency.

An expert compiler can optimize code and thereby
offers the better of two approaches. On the one hand,

it frees the user to express a program in relatively
simple and cognitively straightforward terms. On the
other hand, the resulting sub-optimal program can
then be automatically transformed into a more
efficient form. For example, the typical computer

scientist will find it far easier to write an 2()O n
Bubble or Insertion sort than he/she will to write an

(log)O n n Quicksort. They may have the same test
suite and the expert compiler can incrementally
transform one into the other given an economy of
scale. Note that the details pertaining how to
accomplish this could occupy an entire volume. Thus,
we necessarily concern ourselves with the concept for
now.

A simple expert compiler can become more
complex by way of fusing a network of domain-
specific knowledge bases. Notice that as more and
more domain-knowledge can be brought to bear on
the compilation, the level of the effectively
transformed language can increase. All this may be
succinctly stated to be a consequence of
randomization. Moreover, the language in which the
rule predicates are represented in each rule base can
also be subject to expert compilation. We call this a
knowledge-based bootstrap. Observe that it too is
recognizable as being a higher-level randomization.
Informally, we call this a capability for the dynamic
domain-specific representation of knowledge.

Any network of expert compilers can grow to be
exceedingly complex. After all, given that there will
be errors, how does one trace a resultant error back to
its source? This problem can be accentuated through
the use of asynchronous MIMD architectures. The
solution is to keep the human in the loop. Moreover,
it is key to note that the more reusable the
representation of knowledge (and software), the
greater will be the propagation of repairs. This
follows because highly reusable components are
invoked by many other components. Correcting one
error then serves to correct many errors. Think of this
as being the inverse of testing, where the higher the
degree of reusability the more likely the program will
be valid.

What emerges from the previous discussion is the
notion that higher-level software is going to be more
structured in all its salient aspects. Instead of being
hand-crafted, it will be assembled – not by humans,
but by machines that were programmed for its
assembly. The central thesis of this section is that
higher structures necessarily go beyond the lax
bounds imposed by domain-independent
representation. While such representations account
for objects and components, they place the entire
burden of assembly upon the user. Here, the
knowledge source is a sole source – namely, the
human.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

((DEFUN MYSORT (S)
 (COND ((NULL S) NIL)
 (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))
? io
((((1 3 2)) (1 2 3)) (((3 2 1)) (1 2 3)) (((1 2 3)) (1 2 3)))
? (pprint (setq frepos '((CRISPY'
 (DEFUN MYSORT (S)
 (COND
 (FUZZY
 ((NULL S) NIL)
 ((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL))
 (T (CONS (MYMIN S (CAR S))
 (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))))))

((CRISPY '(DEFUN MYSORT (S)
 (COND (FUZZY ((NULL S) NIL) ((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL))
 (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))))

; Note that (ATOM S) was automatically programmed using the large fuzzy function space.

? (pprint (auto frepos io))

((DEFUN MYSORT (S)
 (COND ((ATOM S) NIL)
 (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))

; Note that each run may create syntactically different, but semantically equivalent
; functions:

? (pprint (auto frepos io))

((DEFUN MYSORT (S)
 (COND ((NULL S) NIL)
 (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))

Fig. 1 A Sample Veristic Computation for Supercomputing

To climb above the third-generation plateau, one
needs to capture domain-specific knowledge for
reuse. Such is accomplished by an expert compiler,
which effects in theoretical terms, semantic
randomization. Fourth-generation languages may
appear to get around this problem without resorting to
expert compilation, but this is a convenient illusion.
The reason for the illusion is that such languages are
not universal. In a practical sense, this means that
they are not flexible or conveniently extensible. Also,
fifth generation languages (e.g., LISP, PROLOG, et
al.) provide tools for the construction of expert
compilers, but are not expert compiled per se.

6 Veristic Predicate Calculus

Fuzzy logic is a logic of imprecision. Predicate
calculus is a formalism that enables qualitative
search. If both methodologies are properly combined,
then the result is a knowledge-based mechanism for
commonsense reasoning that can learn by way of an
object-oriented approach.

The situations, or states, and the goals of many
types of problems can be described by predicate
calculus wffs. In Fig. 3, for example, a situation is
depicted in which there are three blocks, A, B, and C,
on a table [11].

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

Third Generation: Expert Specification:

Repeat Read x, y;
 Read x, y; ratio = x/y;
Until Print ratio;
 y <> 0;
ratio = x/y; Expert Rules:
If ratio > 0 then
 Print ratio If “/” Then denom <> 0
Else If “/” Then ratio +
 Print –ratio;

Fig. 2 An Expert Compiler Running on a PC

Fig. 3 A Situation with Three Blocks on a Table

The following formulas formalize the situation.

ON (C, A)
ONTABLE (A)
ONTABLE (B)
CLEAR (C)
CLEAR (B)
()[() () (,)]x CLEAR x y ON y x∀ ⇒ ∃:

The formula CLEAR (B) means that block B has a
clear top. That is, no other block is on top of it. The
ON predicate is used to describe which blocks are
immediately (i.e., non-transitivity) on top of other
blocks. The formula ONTABLE (B) is intended to
mean that B is somewhere on the table. The last
formula means that if a block has a clear top, then
there does not exist a block on top of it.

Formulas, like the relatively simple ones given
above, can be used as a global database in an expert
system. The way in which we can use these formulas
depends upon the problem and its representation. For
example, suppose that we wish to prove that there is
nothing on block C in Fig. 3. We can prove this fact
by showing that the formula () (,)y ON y C∃:
logically follows from the state description for Fig.

3. Equivalently, we could show that this formula is a
theorem derived from the state description by the
application of sound rules of inference.

Expert or production systems can be used to show
that a given formula, called the goal wff, is a theorem
derivable from a set of formulas (the state
description). Such theorem-proving systems operate
using deduction. We will see that generalizing such
systems for the use of induction will allow for
heuristic reasoning capabilities.

In forward-chaining expert systems, the state
description serves as the start state. Here, production
rules are applied until a state description is produced
that either includes the goal formula or unifies with it
in some appropriate fashion. In backward-chaining
expert systems, the goal description serves as the
start state. Here, production rules are applied until a
subgoal is produced that unifies with formulas in the
state description. Combined forward-backward
chaining is also possible [11].

Let us use the following two rules and forward
chain.

R1: [ON (y, x) ∧ CLEAR (y)] ⇒ ONTABLE
(y) ∧ CLEAR (x)]

R2: [ONTABLE (x) ∧ CLEAR (x)] ∧ CLEAR
(y) ⇒ ON (x, y)]

R1 means that if one block is on top of another and
the higher block has nothing on top of it, then we can
place the higher block on the table, which clears the
top of the block immediately beneath it.

R2 means that if a block is on the table and has a
clear top, then that block can be placed on top of any
other block having a clear top.

Observe that one can apply R1 to move block C to
the tabletop, followed by an application of R2 to
move block C on top of block B. Similarly, one can

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

apply these rules in different sequences and with
different arguments to achieve any desired
configuration of blocks. The thing to note is that
search in this deductive system needs to be
controlled. Just being able to solve a problem is not
enough. One must also be able to find a (near-
optimal) solution, where one exists, in tractable time.

It follows that two types of rules are needed to
augment the rule set. The two types are not mutually
exclusive. First, are search control rules and second
are induced rules (i.e., generalizations and analogs).

Next, let us use the predicate calculus to negate
the expression,
()[() () (,)]x CLEAR x y ON y x∀ ⇒ ∃: :

()[() () (,)]

()[(() () (,))]

()[(() () (,))]

()[() () (,))]

(,)[() (,))]

x CLEAR x y ON y x

x CLEAR x y ON y x

x CLEAR x y ON y x

x CLEAR x y ON y x

x y CLEAR x ON y x

∀ ⇒ ∃ =

∃ ⇒ ∃ =

∃ ∨ ∃ =

∃ ∧ ∃ =

∃ ∧

: :

: :

: : :

The deduced expression states that there exists a

pair of blocks such that the bottom one has a clear
top and it also has a block on top of it. Clearly, this
is a contradiction having the value False, which is
the negation of the truth-value for the starting
formula, ()[() () (,)]x CLEAR x y ON y x∀ ⇒ ∃: .

Suppose now that we would like to amplify the
knowledge base beyond the limits provided by
classical deductive inference. The purported solution
is fractal-like in nature. That is, just as variables x, y
may be instantiated, so too may the object predicates
that reference them be instantiated. The following
formulas formalize the situation.

OFF (A, B)
OFF (C, B)
LOADED (A)
OFFTABLE (C)

The OFF predicate is true just in case neither ON (x,
y), nor ON (y, x). The LOADED predicate means that
the CLEAR predicate is false. The OFFTABLE
predicate means that the ONTABLE predicate is
false.

Next, let us negate the expression:
()[() () (,)]x CLEAR x y ON y x∀ ⇒ ∃: again – only
this time through the use of predicate negation:

()[() () (,)]

()[() () (,)]

x CLEAR x y ON y x

x CLEAR x y ON y x

¬ ∀ ⇒ ∃ =

∀ ¬ ⇒ ∃ ¬ =

:

:

()[() () (,)]

()[() (,)]

x LOADED x y OFF y x

x y LOADED x OFF y x

∀ ⇒ ∃ =

∀ ∃ ⇒

:

:

The induced expression correctly informs us that for
every loaded block there is at least one block that is
not off it. Observe that predicate negation is not the
same as ordinary negation. It will only hold if all of
the relevant formulas and their negations are
symmetric. The new rule is acquired and serves to
amplify the existing knowledge base.

Next, consider the case where the relevant
formulas are mostly symmetric, but only in an
implicit sense. That is, for example the rules
pertaining to automotive repair are similar to those
pertaining to truck repair. They are mostly
symmetric, but of course there are differences. Here,
we will consider the similar problem of stacking
glasses. Only empty glasses may be stacked and the
task is to induce rules analogous to R1 and R2. First,
the following formulas detail the situation.

EMPTY (G)
STACK (G1, G2)
ONTABLE (G)
(,)[() (,)]x y EMPTY x STACK y x∀ ⇒

The formula EMPTY (G) means that a glass is empty
and thus can be placed at the bottom of a stack. The
STACK predicate means that you can stack glass G1
on top of another, G2. The ONTABLE predicate is as
before. The last formula means that if a glass is
empty, then you can always stack a glass on top of it.

Next, an attempt is made to establish an
isomorphism. The actual details of doing so in a
large-scale system requires some form of learning to
correct errors (i.e., random points) as well as prevent
them from recurring [1]. Consider:

()[() () (,)]x CLEAR x y ON y x∀ ⇒ ∃:
()[() () (,)]x EMPTY x y STACK y x∀ ⇒ ∀

Here, CLEAR and EMPTY are in bijective
correspondence. Similarly, ON and STACK are in
bijective correspondence because the negation of the
existential qualifier is the universal qualifier.
Applying these transformations to R1 and R2 yields:

R3: [STACK (y, x) ∧ EMPTY (y)] ⇒
ONTABLE (y) ∧ EMPTY (x)]

R4: [ONTABLE (x) ∧ EMPTY (x)] ∧ EMPTY
(y) ⇒ STACK (x, y)]

R3 means that if two glasses are stacked and the top
glass is empty, then we can place the top glass on the

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

table, which implies that the glass beneath it is
empty.

R4 means that if a glass is on the table and it is
empty, then that glass can be placed on top of any
other empty glass.

As noted above, cross-domain transformations
need not preserve validity. A special case of validity
is the preservation of generality. Here, we know
from the physics of the glass domain that there is no
need to check the contents of the topmost glass. That
is, while we may not be able to move a block if there
exists another block on top of it, we can move a
filled glass almost as easily as an empty one. A
single meta-rule will effect the desired
transformation to R3 and R4.

R5: META (x, y): [STACK (y, x) ∧ EMPTY (y)]
⇒ STACK (y, x)]

The results of applying R5 to R3 and R4 follow.

R6: [STACK (y, x)] ⇒ ONTABLE (y) ∧
EMPTY (x)]

R7: [ONTABLE (x)] ∧ EMPTY (y) ⇒ STACK
(x, y)]

R6 means that if two glasses are stacked, then we can
place the top glass on the table, which implies that
the glass beneath it is empty.

R7 means that if a glass is on the table, then it can be
placed on top of an empty glass.

Notice that a glass can be filled or empty, while a
block (i.e., as presented here) cannot. This is said to
be a random point of variation between the two
domains (i.e., Blocks World and Glasses World).
The method for achieving veristic knowledge
acquisition, which is beyond the scope of this paper,
is to effectively accomplish the following five steps.

1. Identify symmetric (random) domains.
2. Create a knowledge base for at least one

domain.
3. Create a base of transformation rules,

mapping one domain to the other.
4. Create a base of meta-rules for resolving

random differences between domains.
5. Develop a set of tools, expert systems,

domain experts, etc. for quality assurance.

7 Conclusions

Randomization theory holds that the human should
supply novel knowledge exactly once (i.e., random
input) and the machine extend that knowledge by
way of capitalizing on domain symmetries (i.e.,
expert compilation). This means that in the future,
programming will become more creative and less
detailed and thus the cost per line of code will
rapidly decrease.

One of the basic tenets of randomization theory
pertains to porting knowledge from one base to
another. We have shown that not only is this
possible, but that knowledge transference is itself a
byproduct of randomization. We have also seen that
the knowledge needed to effect transference is more
complex than is the image of transformation and
outlined a five-step program for achieving veristic
knowledge acquisition as a consequence.

We have learned from various sources that the
White House has chosen LISP for programming
some server-based applications. It is claimed that
they experienced a 500 percent improvement in
productivity as a result of the extensible features
imbued in this language. Again, this success story
does not begin to touch on the possibilities offered
by networked expert compilers of scale. According
to Bob Manning [7],

Processing knowledge is abstract and
dynamic. As future knowledge management
applications attempt to mimic the human
decision-making process, a language is
needed which can provide developers with the
tools to achieve these goals. LISP enables
programmers to provide a level of intelligence
to knowledge management applications, thus
enabling ongoing learning and adaptation
similar to the actual thought patterns of the
human mind.

In conclusion, the solution to the software

bottleneck will be cracking the knowledge
acquisition bottleneck in expert systems (compilers).
We need to study knowledge representation and
learning, rule-based compilers, and associated
architectures. For example, it is possible that
knowledge-based segments can be retrieved on
demand over the Internet, which can provide the
necessary economy of scale required for the
successful implementation of networked expert
compilers [12]. Finally, according to Zadeh [13],
improved methods for soft computing will have
impact on qualitative and approximate reasoning,
computing with words, manipulation of perceptions,
intelligent control, intelligent information systems,
expert systems, chaotic systems, image analysis and

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001

image understanding, speech and natural language
processing, planning, learning, search, data mining,
and decision analysis.

Acknowledgments

This paper includes the work of U.S. Government
employees performed in the course of their
employment and is not subject to copyright. It is
approved for public release with an unlimited
distribution. This work was supported in part by the
Office of Naval Research, NSERC, and the BC
Advanced Systems Institute Fellowship.

References
[1] S.H. Rubin, “Computing with Words,” IEEE

Trans. Syst. Man, Cybern., vol. 29, no. 4, pp.
518-524, 1999.

[2] S.H. Rubin, “On Knowledge Amplification by
Structured Expert Randomization (Kaser),” SSC
San Diego Biennial Review, to appear in 2001.

[3] E.A. Feigenbaum and P. McCorduck, The Fifth
Generation. Reading, MA: Addison-Wesley
Publishing Co., 1983.

[4] S.H. Rubin and L. Trajkovic, “On the Role of
Randomization in Software Engineering,” The
Intern. Conf. on Comp. & Indus. Engr. (28th
ICC&IE), Cocoa Beach, FL, to appear in 2001.

[5] S.H. Rubin, “A Fuzzy Approach Towards
Inferential Data Mining,” Computers and
Industrial Engineering, vol. 35, nos. 1-2, pp.
267-270, 1998.

[6] S.H. Rubin, “A Heuristic Logic for
Randomization in Fuzzy Mining,” J. Control
and Intell. Systems, vol. 27, no. 1, pp. 26-39,
1999.

[7] B. Manning, “Smarter Knowledge Management
Applications: LISP,” PC AI, vol. 14, no. 4, pp.
28-31, 2000.

[8] E. Gat, “LISP as an Alternative to Java,”
Intelligence, pp. 21-24, Winter 2000.

[9] L.A. Zadeh, “From Computing with Numbers to
Computing with Words – From Manipulation of
Measurements to Manipulation of Perceptions,”
IEEE Trans. Ckt. and Systems, vol. 45, no. 1,
pp. 105-119, 1999.

[10] J. Hindin, “Intelligent Tools Automate High-
Level Language Programming,” Computer
Design, vol. 25, pp. 45-56, 1986.

[11] N.J. Nilsson, Principles of Artificial
Intelligence. Mountain View, CA: Morgan
Kaufmann Publishers Inc., 1980.

[12] I. Ben-Shaul and G. Kaiser, “Coordinating
Distributed Components over the Internet,”
IEEE Internet Computing, vol. 2, pp. 83-86,
1998.

[13] L.A. Zadeh, BISC Electronic Communique, Jan.
2001.

