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Abstract 
 
Veristic computing is defined to mean computing 
with words. It necessarily entails the use of informed 
search in the solution of qualitatively constrained 
equations. Its use does not preclude computing with 
numbers. Versitic computing allows for the 
specification of higher-level programming languages, 
which can evolve domain-specific knowledge bases. 
The knowledge is evolved on a high-end computer 
for subsequent porting to a PC. The application of 
that knowledge to the translation of a higher-level 
program is termed, expert compilation. This paper 
serves to make clear the ubiquitous role assumed by 
randomization in all aspects of software engineering 
– from programming language design to program 
design to program testing to knowledge transference. 
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1  Introduction to Randomization 

 
The fundamental need for domain-specific 
knowledge is in keeping with Rubin’s proof of the 
Unsolvability of the Randomization Problem [1]. A 
second application of the Unsolvability of the 
Randomization Problem reduces the capability for 
forming domain-specific generalizations to the 
capability for forming domain-specific 
representations. But then, this capability is dependent 
on previous structure. All that matters is to minimize 
the entropy of the information-theoretic model using 
randomization [2]. Of course, there is also a practical 
dimension that involves issues pertaining to 
realization on a supercomputer. However, even here 
the Unsolvability of the Randomization Problem 
implies the necessary search for ever-better domain-
specific hardware. 
 
 

2  Knowledge Acquisition 
 

The acknowledged key to breakthroughs in the 
creation of intelligent software is cracking the 
knowledge acquisition bottleneck [3]. This project 
benefits from the use of high-speed computers to 
study deductive and inductive processes. Formerly, 
such studies relied upon the use of heuristics, or rules 
of thumb, to delimit the search space. While such 
“best-first” methods are of practical utility, they limit 
machine learning to that of improving the heuristic 
base because this aspect must be separated from the 
organizational representation of the knowledge, 
which is to be searched. 

The chosen representational formalism must also 
include all manner of features. Data mining is 
critically dependent on the quality of the feature 
space. To better see this, consider mining a chess 
game. If all that is recorded about a chess game are 
the pieces and their sequence of positions, then this 
highly specialized knowledge would prove to be of 
little utility. What is needed is a generalization of this 
declarative knowledge into procedural knowledge. 
Here, such features as nearness of the king to the 
center of the board, whether or not the rook can be 
castled, or even if a particular depth-first search 
procedure should be applied are clearly 
representative of procedural knowledge. 
 
 
3  Software Debugging 

 
In addition to software reuse and retrieval [4], 
software debugging also has strong ties to 
randomization. For example, consider the debugging 
of any sort program. It follows from the Unsolvability 
of the Randomization Problem [1] that any program 
sufficiently complex to be capable of self-reference 
can never be assured to be totally bug-free. Rather, 
the best that can be done is to test it to satisfaction. 
There are two separate, but related issues here. First, 
how does one develop a repository of test cases for 
maximal coverage and second, what principles does 
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one employ to construct software so that it is 
relatively bug free? 

Test cases should cover as many execution paths as 
practical; yet, be minimal in number so as to render 
the testing process practical. For example, when 
testing a sort program, one does not want test cases 
such as: (1) (2 1) (3 2 1) (4 3 2 1) … because the test 
vectors are mutually symmetric. Rather, one needs to 
develop an approximation of a basis (e.g., akin to the 
basis of a matrix). For example: () (1) (2 1) (1 3) (3 1 
2) … Furthermore, Rubin [5, 6] has developed a 
fuzzy programming language that accepts a 
generalized program description and uses an 
orthogonal sequence of test cases to instantiate a 
working program, where possible. What is interesting 
here is that the induced program is no better nor 
worse than allowed by the supplied test sequence. 
This is testing in reverse and serves to underscore the 
critical role played by test case selection in 
determining the overall quality of the resulting 
software produced. One could argue that the 
aforementioned process works well for functional 
programming, but what about say for visual 
programming? How does one map test cases to form? 
The answer is that visual programming (e.g., creating 
GUIs) requires testing as does any other program; 
although, here an expert or expert system is required 
to provide the feedback that determines the success or 
failure of each test. Notice that the process of 
randomization is pervasive: It exists in the generation 
of a minimal set of test cases; it exists in the 
specification of a fuzzy program (i.e., a minimal 
representation of a program space whose instances 
approximate useful working programs); it exists in 
the reuse of expert systems for GUI design; and, it 
surely exists in all related software processes too 
detailed to be described here. Fig. 1 presents a 
depiction of a fuzzy program written in an extended 
version of the LISP language [7, 8]. 

To construct software that is relatively bug-free, 
one needs to maximize the testability of every 
included software unit. This is necessary because, in 
keeping with the above arguments, software can only 
be certified in proportion to its having been tested 
using mutually random test cases that attempt to 
approximate the environment in which it will be used. 
For example, consider the development of the Fortran 
subroutine. Instead of transferring to different 
sections of possibly erroneous code, all these would-
be calls are instead transferred to a parametized 
randomization of their semantics. The greater number 
of calls here serves to increase the number of tests 
made of the subroutine with the result that the overall 
quality of the program is improved through the use of 
subroutines. The same argument extends to the use of 
objects and components. Thus, we see that what may 
be termed, “randomized programming practices” 

results in improved code quality. A new view of 
software reuse will evolve in the form of a taxonomy: 
 

• Level 5: Reuse requires a dynamic domain-
specific representation of knowledge. 

• Level 4: Reuse requires the application of 
knowledge bases (e.g., expert compilers). 

• Level 3: Reuse occurs in the form of objects 
and components. 

• Level 2: Reuse occurs at the code level and 
allows for parametization. 

• Level 1: Reuse occurs at the level of 
immutable code. 

 
 
4  On Feature Acquisition 

 
The discovery of features represents a search process 
involving test and evaluation. Indeed, the search 
space can rapidly become intractable, which serves to 
underscore the need for a supercomputer. The term, 
veristic computing was introduced by Zadeh [9]. The 
term refers to computing with words in much the 
same manner as we presently compute with numbers. 
In particular, veristic computing provides for a 
qualitatively fuzzy computational capability [1]. 

The feature space here consists of an object space 
of LISP functions together with an operant search 
methodology. Notice the key role assumed by the 
representation in the synthesis of the LISP functions. 
For example, the conditions (Null S) and Nil are 
instances of the empty list, S. These instances may 
also be fuzzy function calls as in the definition of 
MYSORT below. 

There are three ways to speedup veristic 
computations, which are not mutually exclusive. First 
and foremost, one can apply massively parallel 
processing. Second, one can break an X * X problem 
into an Y + Y problem (i.e., apply the triangle 
inequality). Finally, one can find heuristics, where 
possible, to partially order the search space. In 
particular, these heuristics can serve to realize the 
triangle inequality through the application of domain 
knowledge. 

Higher-level functions (e.g., MYSORT as 
compared to NULL) require the application of more 
processing power to test. Many such tests may 
proceed in parallel. The need for a supercomputer at 
once follows. Indeed, this need can evolve to that for 
distributed clusters of supercomputers running in 
MIMD mode. 

These experiments promise to deliver veristic 
programming languages, which require fast 
computing facilities for compilation in the absence of 
domain-specific knowledge. Furthermore, this 
domain-specific knowledge can be represented in and 
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generated through the use of veristic computation. 
This means that while a high-end computer is needed 
to create the language and attendant knowledge bases 
in the first place, the results can be ported to an 
ordinary high-end PC. 
 
 
5  Expert Compilers 

 
Expert compilers were first defined by Geoffrey 
Hindin [10]. Now, it is well-known that programmer 
productivity bears proportion to the level of the 
programming language in which a program may be 
expressed. Thus, we saw a six-fold jump in 
productivity in the 70s when assembly-language 
programming gave way to Fortran (i.e., 3d generation 
language) programming. Smaller gains are reported 
for object and component-based programming due to 
complexity issues. Simply put, the new problem in 
increasing programmer productivity is that 3d 
generation (universal) languages do not in effect 
substitute for user domain knowledge. One still needs 
to program every domain detail to get the program to 
work as desired. Expert compilers relax this 
stipulation by providing for rule-based knowledge 
insertion. For example, consider the following 3d 
generation vs. expert-compiled program. 

In Fig. 2, the expert rules act on the expert 
specification to produce the third generation code. 
The rules have been oversimplified for purposes of 
illustration. Notice that the expert specification is at a 
higher level and is thus easier to debug and be more 
productive in through the use of the expert compiler. 
In fact, the separation of the domain knowledge from 
the program knowledge may be viewed as an 
extension of the traditional separation of the 
knowledge base from the inference engine in an 
expert system. Notice the parallels with the 
introduction of the Fortran subroutine described 
above. That is, an expert compiler is yet another form 
of randomization! 

In traditional software engineering practice, an 
extensible language (e.g., LISP) serves many of the 
same requirements for randomization. However, the 
difference between an extensible language and expert 
compilation is that the knowledge is embodied in the 
object in an extensible language, which tends to 
delimit its reusability. Such is not the case with an 
expert compiler. Now, as the size of the object gets 
smaller, its reusability increases until in the limit it 
offers the same advantages offered by an equivalent 
expert compiler, or so it would seem. What’s missing 
from this argument is any notion of execution 
efficiency. That is, as the objects get smaller, the 
programs that they detail tend to loose efficiency. 

An expert compiler can optimize code and thereby 
offers the better of two approaches. On the one hand, 

it frees the user to express a program in relatively 
simple and cognitively straightforward terms. On the 
other hand, the resulting sub-optimal program can 
then be automatically transformed into a more 
efficient form. For example, the typical computer 

scientist will find it far easier to write an 2( )O n  
Bubble or Insertion sort than he/she will to write an 

( log )O n n  Quicksort. They may have the same test 
suite and the expert compiler can incrementally 
transform one into the other given an economy of 
scale. Note that the details pertaining how to 
accomplish this could occupy an entire volume. Thus, 
we necessarily concern ourselves with the concept for 
now. 

A simple expert compiler can become more 
complex by way of fusing a network of domain-
specific knowledge bases. Notice that as more and 
more domain-knowledge can be brought to bear on 
the compilation, the level of the effectively 
transformed language can increase. All this may be 
succinctly stated to be a consequence of 
randomization. Moreover, the language in which the 
rule predicates are represented in each rule base can 
also be subject to expert compilation. We call this a 
knowledge-based bootstrap. Observe that it too is 
recognizable as being a higher-level randomization. 
Informally, we call this a capability for the dynamic 
domain-specific representation of knowledge. 

Any network of expert compilers can grow to be 
exceedingly complex. After all, given that there will 
be errors, how does one trace a resultant error back to 
its source? This problem can be accentuated through 
the use of asynchronous MIMD architectures. The 
solution is to keep the human in the loop. Moreover, 
it is key to note that the more reusable the 
representation of knowledge (and software), the 
greater will be the propagation of repairs. This 
follows because highly reusable components are 
invoked by many other components. Correcting one 
error then serves to correct many errors. Think of this 
as being the inverse of testing, where the higher the 
degree of reusability the more likely the program will 
be valid. 

What emerges from the previous discussion is the 
notion that higher-level software is going to be more 
structured in all its salient aspects. Instead of being 
hand-crafted, it will be assembled – not by humans, 
but by machines that were programmed for its 
assembly. The central thesis of this section is that 
higher structures necessarily go beyond the lax 
bounds imposed by domain-independent 
representation. While such representations account 
for objects and components, they place the entire 
burden of assembly upon the user. Here, the 
knowledge source is a sole source – namely, the 
human. 
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((DEFUN MYSORT (S) 
   (COND ((NULL S) NIL) 
     (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 
? io 
((((1 3 2)) (1 2 3)) (((3 2 1)) (1 2 3)) (((1 2 3)) (1 2 3))) 
? (pprint (setq frepos '((CRISPY' 
          (DEFUN MYSORT (S) 
            (COND 
             (FUZZY 
              ((NULL S) NIL) 
              ((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL)) 
             (T (CONS (MYMIN S (CAR S)) 
             (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))))))  
 
 
((CRISPY '(DEFUN MYSORT (S) 
    (COND (FUZZY ((NULL S) NIL) ((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL)) 
      (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))) 
 
; Note that (ATOM S) was automatically programmed using the large fuzzy function space. 
 
? (pprint (auto frepos io)) 
 
((DEFUN MYSORT (S) 
   (COND ((ATOM S) NIL) 
     (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 
 
; Note that each run may create syntactically different, but semantically equivalent 
; functions: 
 
? (pprint (auto frepos io)) 
 
((DEFUN MYSORT (S) 
   (COND ((NULL S) NIL) 
     (T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 

 
 

Fig. 1 A Sample Veristic Computation for Supercomputing 
 
To climb above the third-generation plateau, one 
needs to capture domain-specific knowledge for 
reuse. Such is accomplished by an expert compiler, 
which effects in theoretical terms, semantic 
randomization. Fourth-generation languages may 
appear to get around this problem without resorting to 
expert compilation, but this is a convenient illusion. 
The reason for the illusion is that such languages are 
not universal. In a practical sense, this means that 
they are not flexible or conveniently extensible. Also, 
fifth generation languages (e.g., LISP, PROLOG, et 
al.) provide tools for the construction of expert 
compilers, but are not expert compiled per se. 
 
 

6  Veristic Predicate Calculus 
 

Fuzzy logic is a logic of imprecision. Predicate 
calculus is a formalism that enables qualitative 
search. If both methodologies are properly combined, 
then the result is a knowledge-based mechanism for 
commonsense reasoning that can learn by way of an 
object-oriented approach. 

The situations, or states, and the goals of many 
types of problems can be described by predicate 
calculus wffs. In Fig. 3, for example, a situation is 
depicted in which there are three blocks, A, B, and C, 
on a table [11]. 
 
 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference Copyright © 2001 

 
Third Generation:                                                            Expert Specification: 
 
Repeat                                                                                 Read x, y; 
  Read x, y;                                                                          ratio = x/y; 
Until                                                                                    Print ratio; 
  y <> 0; 
ratio = x/y;                                                                          Expert Rules: 
If ratio > 0 then 
  Print ratio                                                                          If “/” Then denom <> 0 
Else                                                                                      If “/” Then ratio + 
  Print –ratio; 
 

 
Fig. 2 An Expert Compiler Running on a PC 

 
 

 
Fig. 3 A Situation with Three Blocks on a Table 

 
 
The following formulas formalize the situation. 
 

ON (C, A) 
ONTABLE (A) 
ONTABLE (B) 
CLEAR (C) 
CLEAR (B) 
( )[ ( ) ( ) ( , )]x CLEAR x y ON y x∀ ⇒ ∃:  

 
The formula CLEAR (B) means that block B has a 
clear top. That is, no other block is on top of it. The 
ON predicate is used to describe which blocks are 
immediately (i.e., non-transitivity) on top of other 
blocks. The formula ONTABLE (B) is intended to 
mean that B is somewhere on the table. The last 
formula means that if a block has a clear top, then 
there does not exist a block on top of it. 

Formulas, like the relatively simple ones given 
above, can be used as a global database in an expert 
system. The way in which we can use these formulas 
depends upon the problem and its representation. For 
example, suppose that we wish to prove that there is 
nothing on block C in Fig. 3. We can prove this fact 
by showing that the formula ( ) ( , )y ON y C∃:  
logically follows from the state description for Fig. 

3. Equivalently, we could show that this formula is a 
theorem derived from the state description by the 
application of sound rules of inference. 

Expert or production systems can be used to show 
that a given formula, called the goal wff, is a theorem 
derivable from a set of formulas (the state 
description). Such theorem-proving systems operate 
using deduction. We will see that generalizing such 
systems for the use of induction will allow for 
heuristic reasoning capabilities. 

In forward-chaining expert systems, the state 
description serves as the start state. Here, production 
rules are applied until a state description is produced 
that either includes the goal formula or unifies with it 
in some appropriate fashion. In backward-chaining 
expert systems, the goal description serves as the 
start state. Here, production rules are applied until a 
subgoal is produced that unifies with formulas in the 
state description. Combined forward-backward 
chaining is also possible [11]. 

Let us use the following two rules and forward 
chain. 
 

R1: [ON (y, x) ∧  CLEAR (y)] ⇒  ONTABLE 
(y) ∧  CLEAR (x)] 

R2: [ONTABLE (x) ∧  CLEAR (x)] ∧  CLEAR 
(y) ⇒ ON (x, y)] 

 
R1 means that if one block is on top of another and 
the higher block has nothing on top of it, then we can 
place the higher block on the table, which clears the 
top of the block immediately beneath it. 
 
R2 means that if a block is on the table and has a 
clear top, then that block can be placed on top of any 
other block having a clear top. 
 

Observe that one can apply R1 to move block C to 
the tabletop, followed by an application of R2 to 
move block C on top of block B. Similarly, one can 
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apply these rules in different sequences and with 
different arguments to achieve any desired 
configuration of blocks. The thing to note is that 
search in this deductive system needs to be 
controlled. Just being able to solve a problem is not 
enough. One must also be able to find a (near-
optimal) solution, where one exists, in tractable time. 

It follows that two types of rules are needed to 
augment the rule set. The two types are not mutually 
exclusive. First, are search control rules and second 
are induced rules (i.e., generalizations and analogs). 

Next, let us use the predicate calculus to negate 
the expression, 
( )[ ( ) ( ) ( , )]x CLEAR x y ON y x∀ ⇒ ∃: : 
 

( )[ ( ) ( ) ( , )]

( )[ ( ( ) ( ) ( , ))]

( )[ ( ( ) ( ) ( , ))]

( )[ ( ) ( ) ( , ))]

( , )[ ( ) ( , ))]

x CLEAR x y ON y x

x CLEAR x y ON y x

x CLEAR x y ON y x

x CLEAR x y ON y x

x y CLEAR x ON y x

∀ ⇒ ∃ =

∃ ⇒ ∃ =

∃ ∨ ∃ =

∃ ∧ ∃ =

∃ ∧

: :

: :

: : :  

 
The deduced expression states that there exists a 

pair of blocks such that the bottom one has a clear 
top and it also has a block on top of it. Clearly, this 
is a contradiction having the value False, which is 
the negation of the truth-value for the starting 
formula, ( )[ ( ) ( ) ( , )]x CLEAR x y ON y x∀ ⇒ ∃: . 

Suppose now that we would like to amplify the 
knowledge base beyond the limits provided by 
classical deductive inference. The purported solution 
is fractal-like in nature. That is, just as variables x, y 
may be instantiated, so too may the object predicates 
that reference them be instantiated. The following 
formulas formalize the situation. 
 

OFF (A, B) 
OFF (C, B) 
LOADED (A) 
OFFTABLE (C) 

 
The OFF predicate is true just in case neither ON (x, 
y), nor ON (y, x). The LOADED predicate means that 
the CLEAR predicate is false. The OFFTABLE 
predicate means that the ONTABLE predicate is 
false. 

Next, let us negate the expression: 
( )[ ( ) ( ) ( , )]x CLEAR x y ON y x∀ ⇒ ∃: again – only 
this time through the use of predicate negation: 
 

( )[ ( ) ( ) ( , )]

( )[ ( ) ( ) ( , )]

x CLEAR x y ON y x

x CLEAR x y ON y x

¬ ∀ ⇒ ∃ =

∀ ¬ ⇒ ∃ ¬ =

:

:
 

( )[ ( ) ( ) ( , )]

( )[ ( ) ( , )]

x LOADED x y OFF y x

x y LOADED x OFF y x

∀ ⇒ ∃ =

∀ ∃ ⇒

:

:
 

 
The induced expression correctly informs us that for 
every loaded block there is at least one block that is 
not off it. Observe that predicate negation is not the 
same as ordinary negation. It will only hold if all of 
the relevant formulas and their negations are 
symmetric. The new rule is acquired and serves to 
amplify the existing knowledge base. 

Next, consider the case where the relevant 
formulas are mostly symmetric, but only in an 
implicit sense. That is, for example the rules 
pertaining to automotive repair are similar to those 
pertaining to truck repair. They are mostly 
symmetric, but of course there are differences. Here, 
we will consider the similar problem of stacking 
glasses. Only empty glasses may be stacked and the 
task is to induce rules analogous to R1 and R2. First, 
the following formulas detail the situation. 
 

EMPTY (G) 
STACK (G1, G2) 
ONTABLE (G) 
( , )[ ( ) ( , )]x y EMPTY x STACK y x∀ ⇒  

 
The formula EMPTY (G) means that a glass is empty 
and thus can be placed at the bottom of a stack. The 
STACK predicate means that you can stack glass G1 
on top of another, G2. The ONTABLE predicate is as 
before. The last formula means that if a glass is 
empty, then you can always stack a glass on top of it. 

Next, an attempt is made to establish an 
isomorphism. The actual details of doing so in a 
large-scale system requires some form of learning to 
correct errors (i.e., random points) as well as prevent 
them from recurring [1]. Consider: 
 

( )[ ( ) ( ) ( , )]x CLEAR x y ON y x∀ ⇒ ∃:  
( )[ ( ) ( ) ( , )]x EMPTY x y STACK y x∀ ⇒ ∀  

 
Here, CLEAR and EMPTY are in bijective 
correspondence. Similarly, ON and STACK are in 
bijective correspondence because the negation of the 
existential qualifier is the universal qualifier. 
Applying these transformations to R1 and R2 yields: 
 

R3: [STACK (y, x) ∧  EMPTY (y)] ⇒  
ONTABLE (y) ∧  EMPTY (x)] 

R4: [ONTABLE (x) ∧  EMPTY (x)] ∧  EMPTY 
(y) ⇒ STACK (x, y)] 

 
R3 means that if two glasses are stacked and the top 
glass is empty, then we can place the top glass on the 
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table, which implies that the glass beneath it is 
empty. 
 
R4 means that if a glass is on the table and it is 
empty, then that glass can be placed on top of any 
other empty glass. 
 

As noted above, cross-domain transformations 
need not preserve validity. A special case of validity 
is the preservation of generality. Here, we know 
from the physics of the glass domain that there is no 
need to check the contents of the topmost glass. That 
is, while we may not be able to move a block if there 
exists another block on top of it, we can move a 
filled glass almost as easily as an empty one. A 
single meta-rule will effect the desired 
transformation to R3 and R4. 
 

R5: META (x, y): [STACK (y, x) ∧  EMPTY (y)] 
⇒  STACK (y, x)] 

 
The results of applying R5 to R3 and R4 follow. 
 

R6: [STACK (y, x)] ⇒  ONTABLE (y) ∧  
EMPTY (x)] 

R7: [ONTABLE (x)] ∧  EMPTY (y) ⇒ STACK 
(x, y)] 

 
R6 means that if two glasses are stacked, then we can 
place the top glass on the table, which implies that 
the glass beneath it is empty. 
 
R7 means that if a glass is on the table, then it can be 
placed on top of an empty glass. 
 

Notice that a glass can be filled or empty, while a 
block (i.e., as presented here) cannot. This is said to 
be a random point of variation between the two 
domains (i.e., Blocks World and Glasses World). 
The method for achieving veristic knowledge 
acquisition, which is beyond the scope of this paper, 
is to effectively accomplish the following five steps. 
 

1. Identify symmetric (random) domains. 
2. Create a knowledge base for at least one 

domain. 
3. Create a base of transformation rules, 

mapping one domain to the other. 
4. Create a base of meta-rules for resolving 

random differences between domains. 
5. Develop a set of tools, expert systems, 

domain experts, etc. for quality assurance. 
 
 
 
 
 

7  Conclusions 
 

Randomization theory holds that the human should 
supply novel knowledge exactly once (i.e., random 
input) and the machine extend that knowledge by 
way of capitalizing on domain symmetries (i.e., 
expert compilation). This means that in the future, 
programming will become more creative and less 
detailed and thus the cost per line of code will 
rapidly decrease. 

One of the basic tenets of randomization theory 
pertains to porting knowledge from one base to 
another. We have shown that not only is this 
possible, but that knowledge transference is itself a 
byproduct of randomization. We have also seen that 
the knowledge needed to effect transference is more 
complex than is the image of transformation and 
outlined a five-step program for achieving veristic 
knowledge acquisition as a consequence. 

We have learned from various sources that the 
White House has chosen LISP for programming 
some server-based applications. It is claimed that 
they experienced a 500 percent improvement in 
productivity as a result of the extensible features 
imbued in this language. Again, this success story 
does not begin to touch on the possibilities offered 
by networked expert compilers of scale. According 
to Bob Manning [7], 
 

Processing knowledge is abstract and 
dynamic. As future knowledge management 
applications attempt to mimic the human 
decision-making process, a language is 
needed which can provide developers with the 
tools to achieve these goals. LISP enables 
programmers to provide a level of intelligence 
to knowledge management applications, thus 
enabling ongoing learning and adaptation 
similar to the actual thought patterns of the 
human mind. 

 
In conclusion, the solution to the software 

bottleneck will be cracking the knowledge 
acquisition bottleneck in expert systems (compilers). 
We need to study knowledge representation and 
learning, rule-based compilers, and associated 
architectures. For example, it is possible that 
knowledge-based segments can be retrieved on 
demand over the Internet, which can provide the 
necessary economy of scale required for the 
successful implementation of networked expert 
compilers [12]. Finally, according to Zadeh [13], 
improved methods for soft computing will have 
impact on qualitative and approximate reasoning, 
computing with words, manipulation of perceptions, 
intelligent control, intelligent information systems, 
expert systems, chaotic systems, image analysis and 
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image understanding, speech and natural language 
processing, planning, learning, search, data mining, 
and decision analysis. 
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