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ABSTRACT

In this contribution new results in instantancous recogpition
of emotion in non-verbal speech shall be presented. As
classification method dynamic programming with Dypamic
Time Warp or Bakis-Hidden-Markov-Models with Vector
Quantization or Gaussian mixtures arc used to analyze the
pitch and energy contour of a speech signal. As emotional
states joy, anger, fear, sadness, disgust, irritation, and an
additional neutral user state have been evaluated, As rather
unusual innovative user states the influences of tiredness and
alcohol consumption of a speaker on his speech have been
analyzed by use of the same methods. One of the main goals
of the presented work was to keep the models applicable for
new users and recognition simple for real-time evaluation.
Finally observed results are presented and discussed.

Keywords: Automatic emotion recogrition, social
competence in the human-computer-interaction, speech
processing

1 INTRODUCTION

A growing interest in the recognition of human emotions can
be observed. In our daily live emotions play an important
role, For example in dislogs between humans they help to
interpret the counterpart’s intention with the emotional
background of the speaker. The commmmication between a
human and a machine on the other hand has been greatly
improved in the last decades. More powerful and smaller
processors helped to ensble complex algorithms to eg.
understand buman speech. With further new modalities like
gesture recognition or gaze tracking the interaction resembled
more and more the communication between human beings.
This encourages users to also show their emotions but makes
them also expect a very natural system to understand e.g.
their ironic manner of talking. Realizing a user’s need of aid
at a surprised or helpless user emotion might be another use
of automatic emotion recognition. Also safety routines could
be activated if users seem tired, or influeniced by alcobol. If
the user tends.to be dissatisfied a system counld either
apologize or check where an error might have been made.
Finally, if a user resembles satisfied it could tearn without
external supervision. Fields of application reach from
medical psychological analysis over the detection of lies to
video games and many more.

A.  Emotional classification in psychological theory

If we want to classify emotions in a reasonable way, we have
to reflect the meaning of an emotional state in the given

context. In psychology research four geperal views exist
according to Cornelius [1]. They all establish their own
model of the origin and nature of the human feelings.

Darwin {2} claims that emotions developed in the evolution
of mankind and form an essential factor to survive.
According to his theory certain behavior patterns are linked
to emotional sentiments. Like Descartes, who initially
followed this idea, the supporters of Darwin believe in

underlying basic cmotions which number is strongly

discussed. Ekman claims six, Plutchik eight and Izard ten, It
is believed that these fundamental emotions possess similar
cross-cultural meaning. Shaver found a high correlation
between six analyzed emotional reactions in Italy, China and
the USA: love, joy, surprise, anger, sadness, and fear. The
previously mentioned models likewise postulate similar
emotional states,

James [3] on the other hand defines emotions as the
perception of the body's reaction to certain events. This
means that an emotion arises from the stimulus of an organ of
sense. By afferent impulses that reach the cortex an object is
poticed. The inner organs and muscles are stimulated by
efferent impulses. Finally their afferent pulses lead back to
the cercbrum cortex. Perception of this corporeal change is
defined as emotion. Like this emotional sentiment without a
precedent physical reaction is not possible.

The cognitive approach represented by Arnold differs from
the latter in the description of a judgment before the body's
reaction. The emotion is experienced according to this
valuation. A change in consideration of the context therefore
results in a change of emotion.

Defenders of the recent socially constructivist perspective
support the opinion that emotion is the result of trained social
rules, Among others Averill [4] and Harré {5 regard the
culture as the most important factor for the contextual
appraisal leading to emotional sentiment Causes of e.g.
anger differ greatly among but also g people.
To interpret an emotion correctly it is therefore regarded most
essential to analyze the underlying cultural background.

Nowadays nore of the above approaches is in general valued
as the only right model. Mixed approaches to emotional
classification can also be found. However unresolved
problems exist, as Cowie et al. [6] describe: No set of
standard emotions exists, and also criteria to define such
differ greatly, Another contradiction is the belief that emotion
is a product of evolution in view of the cultural differences.



Like this some syndromes are clearly classified as emotion in
some cultures, while others neglect these. ..
B. Significance for the automatic recognition of emotions
A technical approach can only rely on pragmatic decisions
about kind, extent and number of emotions suiting to the
situation. It seems reasonable to adapt and limit the number
and kind of recognizablc emotions to the requirements given
in the application to ensure a robust classification. Yet no
standard exists for the classification of emotions in technicat
recognition. The most often persuaded way is to distinguish
between a defined set of discrete emotions. However, as

mentioned, no unity exists about their number and naming. A -

first approach can be found in the MPEG4 standard, which
names the six emotions anger, disgust, fear, joy, sadness and
surptise, A neutral emoticnal state is often added. Another
idea is to assume an emotional hyper-sphere. In such a sphere
emotions can be assigned to spots. Mostly the orthogonal
axes positivity and activity span such a space. As an
advantage onc has not to limit clagsification to concrete
emotions saving flexibility. Furthermore the temporal change
in emotion can be followed more exactly, Cowie ¢t al, 6]
regret the loss of information at the reduction in complexity
by the transformation of the high-dimensionally emotion
sphere into a two-dimensional plain. Pereira trics to avoid
this by definition of a third dimension [7). The additional
axis permits measurement of the affect in this work. Other
research groups use the extent of an emotion as third axis.

C. Classification in our research

A very first step was a linear classification to distinguish
between a satisfied or dissatisfied user. In this one-
dimensional space the positivity was estimated. In a next
approach we also intended to achieve a measurement for
surprise or tiredness of the user, what leads to the former
described two-dimensional sphere spanned by the axes
positivity and activeness as can be scen in figure I We
classified only discrete emotion points e/p, af".
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Figure 1: Two-dimensional emotion plain

Due to the high computational effort and the limited
reliability this method proved less suitable in our researches.
1t seems a possible but still hard task for 2 human decider to
estimate the degree of positivity or activeness. In a technical
solution a quantization of the axes leads to a quadratic or
cubic total number of different states according to the number
of quantization steps. To achieve first reasonable results the

complexity was reduced by use of maximal ten different
emotions. The number was decreased if only less emotional
information was used by the application to keep recognition
performance stable on a high level. Using only such discrete
emotions however, the latter described confidence in an
assumed emotion allows for interpretation of the extent. This
means that a higher trust in an emotion is correlated with a
greater ¢xtent, which can be seen controversially. Used states
were the mentioned states defined in MPEGH4 plus additional
states as a neutral user state. As innovative mental speaker
states also the influences of alcohol and tiredness were
integrated in the analysis.

1L SPEECH CORPUS

A, Speech as modality
While there are several approaches in recognition by video-
based features like mimic expressions {8]{6]), physiologic
features and manual interaction [9] also in speech clucs can
be found A system can either actively ask a user about his

- state [8] or try to collect itsclf data. An interrogation of the

user has the advantage that it is up to the user how much he
wants to let the system know, while a disadvantage is the
interruption in communmication for the emotional data
collection.

B. Data collection

The corpus has been collected with use of a dynamic AKG-
10008 MK-I1 microphone in an acoustically isolated room.
The phrases were all collected in German language and are
throughout acted emotions, This has beer widely discussed
due to the fact that acted emotions are not spontaneous and
tend to be exaggerated. To avoid similarities in over-
exaggerated pronunciations the samples have been assembled
over a very lopg period of time (about six months per
speaker). The three speakers were in average 25 years old and
male. Per emotion and speaker around 160 samples could be
collected what results in overall more than 3500 samples.
However the results achieved can be seen as an upper
benchmark if we assume this collection as idealized.

1. FEATURE EXTRACTION

Speech as one of the most natural communication forms
among humans seems very suitable to recognize emotion.
Besides verbal clues [9][10)[11] also prosodic non-verbal
clues carry information about the emotion. Prosody is the
cutirety of attributes as accent, intonation, quaptity and
breaks in speech, In general they are related to units lacger
than single phonemes. The analysis of specch-rats, rhythm
and pauses also belong to paralinguistic prosodic features
[12]. Global statistics of feature contours are often used to
assign cmotions: among others mean values, standard
deviations or quartiles of fundamental frequency, energy and
jitter {13], tremor [11] or temporal changes in spectral
coefficients [14], Others use instantaneous analysis of the
contours as pitch and energy {15]. This method is also
favored in the presented work. Further features are based on
durations, ¢.g. of voiced or unvoiced sounds, the articulation
or affect bursts [16]. In recent approaches more contextual
knowledge integration can be observed as in our former



publications [17]. Besides semantic information also the
social background is highlighted in the evaluation process.
To model the probability density functions Gaussian mixtures
of first or higher orders are very popular [11][18]. Cross-
cultural or multilingual intetpretation is at its beginning. The
classification methods reach from linear algorithms as
Euclidean distance metric [19] to Hidden-Markov-Models
(HMM) {15] or artificial neuronal networks [19][20]. In this
work we present results achieved by use of Dynamic-Time-
Warp (DTW) and HMMs. Even rule-based approaches
obtained good classification. In the sound system Halliday
[21] a neutral passage is correlated with a consistent decrease
in pitch, while a question or an objection to the uttered
content shall be recognized by an increase. Uncertainty can
be seen by an increase-decrease-increase progression or an
increase very shortly before the end of a phrase, Former
works also analyzed global features by linear classification
[10]). One of our main goals was an casily adaptable system
without the need of too many training utterances for online
user adaptation. Therefore we regarded discrete and
contiruous Hidden-Markov-Models.

Frames are analyzed every 10ms and a Hamming window
function is used. The energy is calculated by the mean energy
within a frame. The pitch contour is achieved by use of the
average magnitude difference function (AMDF) {22] as can
be seen in the equation, where F represents the fundamental
frequency, s(k) the signal at a discrete time instant k, N stands
for the last sample in the frame and f; is the sampling
frequency. The order i was set to one in our calculation.
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The principle of the AMDF is a maximum detection in the
auto-correlation function of the speech signal As all
estimation metheds for pitch contour this technique also
underlies deviations from the original contour, which could
only be measured by glottal measurement. However AMDF
is robust against noise but susceptible to dominant formants.
Further more the algorithm is fast due to the restriction to
additions if it is calculated in first order.
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Figure 2: Examples of pitch contour for the word "no"

To eliminate further high frequent noise additions low-pass
filtering of the pitch and energy contours is achieved by

smoothening with a symmetrical moving average (SMA)
filter. This method seems suited to deliver a smooth contour
and is often applied in digital signal processing [23]. In other
works a median filter is used instead [15] which is optimal to
correct single outlying events. However in our contours
almost none such events could be found. The equation shows
the recursive algorithm for the SMA-filter where B represents
the odd broadness of the filter window, and x stands for the

signal.

The first values have to be calculated with increasing width,
while the last values are respectively filtered with decreasing
filter width.

Xo =X, B =0
x=t(x, + x5 +1x,) B =1
: while B” <21

The obviously low-pass characteristic impulsc-response of
the SMA-filter can be seen in the next equation:
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We also use first and second order deviations of these
contours. The contours were additionally rormalized
according to their overall standard deviation and freed of
their mean value. As a result we achieve a six-dimensional
feature. vector m where Fp represents the pitch and £ the
energy contour:
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Unvoiced parts are cut away according to the fundamental
frequency that has to exceed a given threshold. This method
neglects most temporal effects but improves indspendence of
the spoken words. In our research of instantaneous
recognition this proceeding surpassed the mentioned loss in
information.

IV, AUTOMATIC CLASSIFICATION
The classification is realized with methods of Dynamic
Programming. [n a first step a DTW-algorithm with local
Hakura [24]) constraints and Euclidean distance metric was
used. For each emotion a set of references was created. The
minimum distance to a representative of each class was
calculated to achieve a score for each emotion as described
later in this chapter. In a sccond advance we used HMM with
Vector Quantization (VQ). In the HMM approach cach
emotion was represented by a HMM. We used 128 codebook
entries and the codebook was optimized with use of the
Linde-Buzo-Gray (LBG) [25] algorithm. The feature vector
was reduced by the first and second order deviations to the
dimension two. This reduction avoided further loss at



quantization. Finally we used continuous HMMs with
Gaussian Mixtures. The HMMs are trained using Baum
Welch re-estimation [26] with 10° iterations or an abruption
criterion of a change in model parameters & < 107, We use
one up to four mixtures, but analysis of the data suggests use
of only one Gaussian finction for complexity reasons. This
result could be verified in the real classification tests, The
HMM types were chosen as Left-Right-models, as in usual
speech processing. As a jump constraint the increase in the
index may not exceed two.

To obtain a confidence measure in a standardized form one
has to consider the relative difference to concurring
hypotheses as well as the absolute probability of a
hypothesis. The normalization used to compare results partly
neglects these aspects for reasons of simplification in view of
real-time capability, We normalized the HMM-evaluation
probabilities to their sum, while the DTW-distances d; are
each normalized to the maximum occurring distance ., to
achieve a pseudo-confidence measurement c; according to the
following equation:
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This solution allows direct comparison or integration of the
different resuits.

V. USER PROFILING

To adapt the recognition results to a new speaker the system
can be trained online supervised. A simple user profile helps
to enhance recognition results. The probabilities integrated in
the user model are [17]:

o P(ES)UA), the conditional probability of the ocourrence
of emotion Ey under the condition of user U/ at time £.

o PESUOMY,.. M), the conditional probability of
an emotion under the condition of the model Af if
different models are used.

s PESUYEMY), 1w further integrate knowledge of the

t emotion
s PEDSIUP XY), for integration of external influences and

finally
. P(E.f')izf'),sf'f), if the state of an application is given.

This leads to the integrated expectation of a user emotion Eg:

f(ruz. IM")- PM)

EY) = arg max, | = o
$roem)
i

The only way to obtain these models is a playfully
interrogation of the user at the moment,

. P(E:" IU(",E""',A""). Su))

V1. RESULTS

In the following recognition results can be found. They base
on the selection of the maximum-likelihood model. A human
decider with 82% recognition rate in classifying the four
emotions joy, anger, sadness and fear can be seen as a

benchmark for a comparison. The best guess as further
comparison would be 25% recognition rate. First a DTW-
algorithm was evaluated with use of several reference vectors
per emotion. 40 samples per speaker have been used in a first
performance measurement. The overall recognition rate was
62.5% cormect assignment of the intended emotion with the
four emotions: anger, imitation, joy and neutral state, While
the neutral user state could be recognized with almost
absolute certainty, this method could not distinguish reliably
enough between joy and anger, which in general seems a
difficult task. In a next step HMMs were used for
classification and tested with between 50 and 80 samples per
emotion and speaker. If not specially announced, the models
were trained with all available samples as described in
chapter II1. Figure 3 shows the overall recognition results for
four emotions achieved with a discrete HMM with Vector
Quantization (VQ) with less preprocessing of the sigpal as
very fast solution in training and recognition compared with a
continuous HMM solution with preprocessing as described in
chapter IV. The recognition results vary greatly with the
number of states used for the models. A general problem

" remains the lack of suﬂiciqnt spontaneous training-data,

In the following figures these abbreviations are used:

ang: anger; irr; irritation, joy; joy; ntl: neutral user state; dis:
disgust; fea: fear; sad: sadness; alc: alcohol influence; #ir:
tiredness; all: overall performance.

State Rec. results Rec, results
number | discrete HMM continuous
1) HMM 2)

1 0.50 0.65
2 0.61 0.70
4 0.73 0.71
6 0.65 0.74
8 0.68 0.71
10 0.68 0.74
16 058 0.76
20 0.48 0.78
24 0.54 0.75
32 0.58 0.80
64 0.51 0.81

Figure 3: Recognition results emotions ang, irr, joy, ntl:

1) Discrete HMM without SMA-filter and normalization

2) Continuous HMM, 100 training samples per emotion,
with SMA-filter (B=3) and global normalization

Figure 4 visualizes the trend of increasing recognition
performance with raising number of states used. The use of
more than 64 states did not result in a noteworthy further
gain. However, the trend measured is not strictly monotone.
Especially the fact of an observed maximum at four states
with use of discrete models seems to come from a data-
problem. Especially with only one state a clear difference.
between the approaches with discrete or continuous models
catches one’s eye. The continuous models outline the discrete
by far in performance besides at four states, where the
discrete models once exceed the continuous models in our
measurements. But one has to keep in mind that the signal
has not been filtered and normalized in the first solution to
save computation time for a very fast estimation.
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Figure 4: Recognition results emotions ang, irr, joy, ntl:
continuwous HMM, variable state number, with SMA-filter
(B=3) and global normalization

In a real application it might be useful to train the model with
the actual user data as mentioned in chapter V1. To obtain an
impression how much data is at lcast needed the recognition
results as a function of training samples used is shown in
figure 5,
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e
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Figure 5: Recognition results emotions ang, irr, joy, ntl:
continuous HMM, variable training samples per emotion,
without SMA-filter, local normalization

As a test of conformity the models were reclassified with
optimal HMM configuration and the complete training set.
Figure 6 shows results with four emotions and variable state
number. Furthermore the results for each emotion can be
seen. Appreciable is the almost perfect reclassification of
neutral utterances. Already with only one state remarkable
resuits can be observed. This resembles global statistics of an
utterance with Gaussian mixtures distributions to
approximate the original probability density function.

ang irr joy ntl | all

0.60 049 0.74 1.00 6.71
0.70 0.79 0.74 1.00 0.81
0.82 0.77 0.77 1.00 0.84
0.34 0.83 0.82 0.99 0.87
0.85 0.84 0.81 098 0.87
0.90 0.89 0.88 098 0.91
0.92 0.91 0.89 093 0.93

2R wan~|d

Figure 6: reclassification rates, continvous HMM

Figure 7 shows the confusion matrix obtained with real tests
with optimal configuration and maximum training set.

Recognized emotion
Intended ang dis fea ir joy ot sad
emotion
ang  |0.40 045 0,02 002 0,02 0,08 002
dis 10.13 0.85 002 0.00 0.00 0.00 0.00
fea 0.02 0.00 096 0.00 0.02 0.00 0.00
ir 0.12 0.10 006 0.67 0.06 0.00 0.00
7oy . (013 013 008 0.00 0.65 0.00 0.00_
ot 0.15 0.06 000 0.00 0.00 0.79 0.06
sad - 0.12 0.10 000 0.00 0.02 0.02 0.75

Figure 7: Confusion matrix continuous HMM:
64 states, SMA-filter, global normalization, 0.73 overall
rec. rate

' Three further emotions have been added, what results in a

loss in performance. Obviously the key-problem was the
distinction between anger and disgust. In the next figure a

. completely different set of mental user states has been

evaluated. These are the influences of alcohol consume and
fatigues compared with a neutral state.

- Recognized emotion
- Intended " |  alc ntl tir
emotion- . .
EY 11 0.36 0.49 0.15
. 0.11 0.88 0.02
HT - N 0.00 0.07 0.93

Figure 8: Confusion matrix continuous HMM:
one mixture, 64 states, SMA-filter, global normalization,
0.72 overall rec, rates

The recognition of tiredness seems satisfyingly solved with
this approach, while alcohol influences tend to be confused
with neutral user state. On the other hand a neutral state is
recognized reliably.

VIL DiscussioN

In our work it proved more reasonable to classify discrete
emotions than spots in a two-dimensional sphere [27]. The
use of HMMSs [29] excelled the use of DTW in recognition
results as expected, but nonetheless a rate of 62,5% correct
emotion detection could be achieved with DTW compared
with 68% using discrete HMMs and §1% maximum
recognition rate with continuous HMMs for four emotions.
With classification of seven emotions a performance of 73%
correct assignment could be reached, It could also be shown
that it is possible to detect tiredness with the same approach
at 93% recoguition rate. While the features seem less suited
to detect alcohol influences of the speaker in one utterance at
least only few confusions of neutral state with alcohol
influence took place. This still allows usage of the mentioned
features, but onc of the major problems is the negligence of
stretched phoneme occurrences. Their integration might
contribute to a better recognition of this effect. In a next
study we also aim to investigate pain influences and
exhaustion on the speaker’s voice. These ideas might be
interesting in high-risk tasks where it is essential to realize if



someone in a reliable position is obviously drunk, sleepy or
hurt,

No spectral characteristics have been integrated in the feature
vector yet. The energy below 250Hz seems very promising
regarding the results of McGilloway [13]. Scherer et al. use
the energy below 635 Hz instead [28]. In general the use of
more than one Gaussian mixture only slightly enhanced the
performance provided enough sample utterances.

The integration of contextual knowledge could not be valued
yet according to a lack of test-data. More studies have to take
place to manifest an improvement by such knowledge
integration.

VIII. ACKNOWLEDGMENTS

The work presented in this paper has been supported by the
FERMUS project, a cooperation of BMW Group,
DaimlerChrysler, SiemensVDO and the institute of Human-
Machine Communication at tihe TUM. The project stands for
error-robust multimodal speech dialogues.

The contents discussed largely benefit from the collaboration
with the student asgistants Stephan Reiter and Ronald Maller.

IX. REFERENCES

1. R. Comelius, , Theoretical approaches to emotion,”
ISCA Workshop on Speech and Emotion, Belfast 2000.

2. C.Darwin, “The Expression of the emotions in man and
amimals, ” Chicago: University of Chicago Press 1872 /
1965

3. W, James, “What is an emotion?,” Mind, 19, pp. 188-
205, 1884

4. 1 R. Averill, “4 constructivist view of emotion,™
published in R. Plutchik & H. Kellerman (Eds.)
“Emotion: Theory, research and experience, vol. 1,” pp.
305-339, New York: Academic Press, 1980

5. R. Harré (Ed.), “The social costruction of emotions,”
Oxford: Basil Blackwell, 1986

6. R. Cowie, E. Douglas-Cowic, N. Tsapatsoulis, G.
Votsis, S. Kollias, W. Fellenz, and J.G. Taylor,
wEmotion recognition in human-computer interaction;
IEEE Signal Processing magazine, vol. {8, po. 1, pp.
32-80, Januar 2001.

7. C. Pereira, “Dimensions of emotional meaning in
speech, " ISCA 2000, Canada, 2000

8. R W. Picard, "Toward computers that recognize and
respond to user " IBM Systems Journal, Vol.
39, NOS 3&4, S. 705-719, 2000

9. B. Schuller, M. Lang, G. Rigoll, “Multimodal Emotion
Recognition in Audiovisual Commumication,” ICME
2002, IEEE, Lausanne, CH .

10. B, Schuller, M. Lang, G. Rigoll, “Automatic Emotion
Recognition by the speech-signal,“, SCI 2002, IS,
Orlande, Florida, USA

11. T. S.. Polzin, , Verbal and non-verbal cues in the
communication of emotions,” ICASSP 2000, Paper
Proc. ID: 3485, Turkey, 2000

12

13.

14,

15.

16.

17.

18.

- 19,

20.

21.

23.

24,

25.

26.

27.

28.

29.

H. BuBmann, “Lexikon der Sprachwissenschaft,” Alfred
Kroner Verlag, Stuttgart, 2, Ausg. 1990

S. McGilloway, R. Cowie, E. Douglas-Cowie, S. Gielen,
M. Westerdijk, and S. Stroeve, “Approaching automatic
recognition of emotion from woice: a rough
benchmark,” Proceedings of the ISCA workshop on
Speech and Emotion, pp. 207-212, Newcastle 2000

M. Kienast, W. F. Sendlmeier, “Acoustical analysis of
spectral and temporal changes in emotional speech,”
ISCA 2000, Canadz, 2000 i
A. Nogueiras, A, Moreno, A. Bonafonte, J. Marifio,
“Speech Emotion Recognition Using Hidden Markov
Models,” Eurospeech 2001, Poster Proceedings, pp.
2679-2682, Scandinavia, 2001

M. Schrdder, ., Experimental study of affect bursts,*
ISCA 2000, Canada, 2000

B. Schutler, M. Lang, “Iniegrative rapid-prototyping for
multimodal user interfoces” USEWARE 2002,
VDL/VDE #1678, Darmstadt, BRD, pp. 279-284

L. ten Bosch, ,, Emotions: What is possible in the ASR
Jramework, " ISCA 2000, Canada, 2000

N. Amir, , Classifving emotions in speech: a
comparison of methods,” Eurospeech 2001, Poster
Proceedings, pp. 127-130, Scandinavia, 2001

R. Cowie, E. Douglas-Cowie, B. Appoloni, J. Taylor, A.
Romano and W. Fellenz, ,, W#hat a neural net needs 1o
know about emotion words,” CSCC Proceedings, pp.
5311-5316, CSCC 1999

B. Eppinger, E. Herter, “Sprachverarbeitung,” Carl
Hanser Verlag, Mtinchen Wien, 1993

G.S. Ying, L.H. Jamieson, and C.D. Mitchell, "4
Probabilistic Approach to AMDF Pitch Detection,”
published in “Proceedings of the Fourth International
Conferecece on  Spoken Language Processing,”
Philadelphia, PA, October 1996

S. W. Smith, “The Scientist and Engineer's Guide to
Digital Signal Processing,” Second Edition, California
Technical Publishing, San Diego, CA, 1999

F. Itakura, "Distance Measure for Speech Recognition
Based on the Smoothes Group Delay Spectrum,” Proc.
of the ICASSP 87, Vol. 3, pp. 1257-1260, 1987

Y. Linde, A. Buzo and R.M. Gray, "An algorithm for
vector quoantizer design,” TEEE Trapsactions on
Commmnications, vol. 28, pp. 84-95, January 1980.

L. E. Baum, “dn [Inequality and Associated
Maximization Technique in Statistical Estimation for
Probabilistic Functions of Markov Processes,”
Inequalities, Vol. 1, pp. 1-8, 1972

R. Cowie, E. Douglas-Cowie, S. Savvidow, E
McMahon, M. Sawey and M. Schréder, “'Feeltrace’:
an instrument for recording perceived emotion in real
time, ” ISCA 2000, Canada, 2000

K. R. Scherer, R. Bapse, H. G. Wallbott, T. Goldbeck,
Vocal cues in emotion emcoding and decoding
Motivation and Emotion 15, pp. 123-148, 1991

L. R. Rabiner, , A Tidorial on Hidden Markov Models
and Selected Applications in Speech Recognition,™
Proceedings of the IEEE, Vol. 77, No. 2, February 1989




