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A case study in applying discrete control synthesisto excavator
operation

Hervé MARCHAND
VERTECS, IRISA / INRIA, 35042 RENNES, France
Herve. Mar chand@risa.fr ww. irisa.fr/vertecs

Abstract— Robotic and control systems are ever more complex to
design, program, as well as to operate. Existing theoretical work and
tool support in discrete control synthesis can be applied to improve
task-level robot programming. This requires to determine patterns of
tasks and objectives, which are at once domain-specific to robotics,
and generic enough to cover a broad class of control systems. We
illustrate such a framework by a case study concerning the interactive
discrete control of tasks in an excavating system.

I. MOTIVATION

Robotic systems, and more generally control systems,
are getting more and more complex to design, to pro-
gram and to operate. One aspect of this is that they fea-
ture numerous control tasks, corresponding to different
functionalities, defined by different control laws. These
tasks must be managed, in the sense that they have to be
started, initialized, and exceptions observed and treat-
ed. In the case of complex missions, they also have to
be sequenced or composed in parallel, and their inter-
actions have to be controlled. Different approaches ex-
ist to robot architectures [6] offering support to the de-
sign of such controllers. Some of them rely on the use
of discrete models (finite state automata, reactive sys-
tems and languages) for the specification, verification,
and code generation. One of them is ORCcCAD (Open
Robot Controller CAD)? [3],which relies amongst oth-
ers on the synchronous languages and tools [7].

Different techniques exist exploiting models based
on finite state machines. Verification consists in deter-
mining, for a given property involving states or events,
whether or not it is true for a given automaton, rep-
resenting the possible behaviors of a program or sys-
tem [2]. Discrete control synthesis, given the same as
above, with the addition of a set of controllable events,
consists of determining the constraints on the latter that
make the resulting automaton satisfy the property, by
inhibiting the transitions which would lead to its viola-
tion. The state of the art provides for general theoretical
results and tool support, that can be applied to improve
robot programming [5], [9]. Their practical application
to robotics goes through specialization, so that it can be
used by domain specialists, with no expertise in formal
models. This requires patterns of tasks and objectives
to be determined, which are at once domain-specific to
robotics, and generic enough to cover a broad class of
control systems.
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This paper is proposes a generation process for task-
level controllers, based on the use of available formal
tools: SIGNAL and SIGALI. A user works with prede-
fined task schemes, equipped with the necessary control-
lable events, as well as a number of properties of inter-
est. The obtaining of the controller consists of a call to
the automated control synthesis tool. Here we report on
a case study concerning an excavation system, inspired
by the TELEDIMOS project [12], and the partial automa-
tion of its operation by a human operator.

Il. TASK-LEVEL ROBOTIC PROGRAMMING AND
DISCRETE CONTROL SYNTHESIS
A. Robotic architectures

We consider robot control at task-level [6], where
the continuous control part is encapsulated in a dis-
crete, event-based control. Amongst related approaches,
we take our inspiration in the structures used in ORcC-
CAD [3], where the control algorithms are specified in
terms of a data-flow network of numerical computation-
s. These are encapsulated in a task with explicit phas-
es or modes for initialization, nominal control, termina-
tion, and event handling for exceptions of different lev-
els; They are modeled by a finite state automaton. Mis-
sions of a robot are called robot procedures, defined as
combinations of such robot tasks, and can be specified
using a domain-specific language like MAESTRO. This
approach has been applied to manipulator arms, wheeled
mobiles, an underwater ROV, automated cars [3].

In such an approach, the discrete behavior of the sys-
tem is described by the automaton resulting from the
composition of task automata according to the mission
structure. Hence it is possible to use this automaton for
purposes of analysis and design of the discrete aspect of
applications. The advantage is that techniques for op-
timization, automated code generation, verification, are
then applicable. ORCCAD is based on the synchronous
models and technology [7], in particular the ESTEREL
language and compiler, and verification tools Fc2TooL
and/or CADP. Another applicable technique is then dis-
crete control synthesis, which requires adaptations in the
model, as well as an application methodology.

B. Discrete control synthesis

The basic models are discrete-event systems, and can
be formulated as, e.g., formal languages, Petri nets, or
finite state machine [4]. In the latter case, states cor-



respond to given configurations of the robot system,
and/or of the activation status of tasks controlling it.
Transitions correspond to the occurrence of, e.g., events,
commands, thresholds. They are labels on the transition-
s, which can involve conditions on their fireability. The
events labelling the transitions can be partitioned into
those that can not be controlled (e.g. inputs received
from sensors, failures) and those of which the value
can be determined or constrained, typically by a dis-
crete controller (typically the starting of some task). The
former are called uncontrollable, and the latter control-
lable. In the sequel, we shall consider a transition sys-
tems, in which events can occur simultaneously. Hence
a transition between two consecutive states can be la-
belled by a vector of events (some controllable, some
others uncontrollable (See Fig. 2))

Properties and objectives. Such transitions systems
can have properties related to the reachability of some
subset of the state space, or to the existence of paths a-
long which a certain sequence of events exists. They
can concern invariants on the states themselves (i.e., the
variables of which the valuation defines a state), or the
paths that can be taken in the transition system from s-
tate to state, etc (See Section 11-C.2). Synthesis will in-
volve exploring how to constrain the controllable events
in order to achieve an objective.

Synthesis algorithms and tools. The synthesis of a
controller consists of automatically computing the con-
troller: a relation that, given a state and uncontrollable
events, gives the value of controlled events such that on-
ly transitions respecting the objectives can be taken (in
other words: contradicting behaviors are inhibited), as
illustrated in Figure 1 in the case of a deterministic con-
troller. This produces a constrained model, i.e. model
and controller together satisfy the property.In the frame-
work depicted in Figure 1, the control strategy is the fol-
lowing: given a state and a set of uncontrollable events
that occurs, the set of controllable events that may occur
is given by the controller according to the restrictions on
transitions computed during the synthesis phase.
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Fig. 1. Discrete control synthesis: from uncontrolled system (left) to
closed-loop (right).

There can be several controllers satisfying the control
objectives; actually, sometimes forbidding any move is
a control which avoids the states not satisfying the prop-
erty, but this is less than satisfactory w.r.t. the activity
of the control system. The notion of maximally per-
missive controller captures that we have the controller
which insures the properties satisfaction while keeping

the greatest subset of behaviors of the original, uncon-
trolled, system.

Among the available methods and tools for discrete
control synthesis, SIGALI is integrated with the SiG-
NAL environment for the design of real-time systems.
It forms a complete toolset for undertaking experiments,
as it provides for the quite rare combination of a high-
level specification language, a complete compiler and
code generator, and a formal computation tool perform-
ing discrete control synthesis [9].

C. Using discrete control synthesisin robotics

There are works on fundamental issues related to au-
tomated manufacturing regarding for example, resource
management, boundedness, reversibility etc. Some s-
tudies have been experimented with on particular man-
ufacturing systems [5]. Differently to these works, the
goal here is to define a framework [11] for a pragmatic
design assistance, based on existing theory and tools, not
specific to an application, but generic enough for a wide
range of robotic systems. In other words, the framework
should be domain specific but not application specific.
This generic aspect serves as a foundation for a design
process where a tool support is integrated into the com-
pilation from the high-level specification of tasks and
missions (in terms of the application domain) to the ac-
tual, implemented discrete controller. Concretely, it con-
sists of an assistance to model construction using task
patterns equipped with control events, and a number of
properties patterns that can be used as control objectives.

C.1 Discrete model of tasks and missions

In our discrete model of tasks and missions, we dis-
tinguish different discrete control states for each task, as
shown in Fig. 2. Initially, each task is | dl e. It goes
from | dl e to Act when there is a request (event r eq)
and the controller accepts it (event go), i.e. the control
constraints allow it. With the intention of "installing"
controllability in the model, a Wi t state has been in-
corporated to enable the recording of a request when the
activity of another task prevents the controller from s-
tarting it. The controller may choose to make it active
once the conditions are favorable. Termination of a task
is signalled by the event st op. Under this model, only
the event go is assumed to be controllable; the others
are uncontrollable.

Go

Default task
Go

Fig. 2. The discrete model of the tasks.

Robots or control systems often require to be always
under control, even for rest configurations, because of



gravity or other external forces. This motivates the in-
troduction of a pattern for default tasks, shown in Fig. 2.
It is similar to the standard task except that it is not nec-
essary to have a request in order for a default task to
become active. Also, when the event st op is triggered,
the controller decides upon the termination of the task,
by triggering not go.

Missions. In the present state of our framework, mis-
sions are obtained by the parallel composition of tasks,
which builds a Cartesian product of automata. The syn-
chronous composition of processes is defined exactly
like that and therefore, using synchronous languages and
compilation provides efficient tool support [7]. Given
the looseness of this coupling, all tasks can be activated
independently. For n tasks, the whole automaton is of
size 3™,

C.2 Objectives and synthesis for robot applications

The model includes amongst its configurations some
that are undesirable, for example for reasons of re-
sources to be shared (e.g., an actuator between differ-
ent control laws), or criteria related to the functionali-
ty fulfilled by the tasks (e.g., incompatible side effects
on the device or its environment). Amongst the path-
s described by sequences of transitions, there can also
be undesirable ones, for example for reasons of neces-
sary transitory modes between some tasks (e.g., between
velocity-based and position-based movement control of
a motor). In order to control these situations, we have
to specify the properties on the states and events to be
either achieved or avoided. Then, using them as synthe-
sis objective, we can obtain the discrete controller, if it
exists, which will constrain the behaviors in such a way
that only those satisfying the properties will be allowed.
Typical ones are for example:

Safety properties concerning state characteristics,
like: the fact that for each actuator, one and only one
control task must be active, or also that some tasks of
one actuator must not be active together with some task
of another actuator.

Reachability can be used to specify that the system
can always be returned into an initial configuration;

Observers can be used to ensure that the system
avoids a certain sequence of task activations. They
are defined by an automaton, recognizing the sequence,
with a terminal state. The global system is the parallel
composition of the observer and the pre-existing system.
It is submitted to an objective of safety keeping out of
the terminal state.

Inhibiting two successive activations of the same task
t; without carrying another one ¢, in between is an ex-
ample of property. More precisely, we want to have, be-
tween the ending of ¢; and its next activation, at least a
complete activation of ¢,, from activation to end. Cases
with simultaneity are acceptable. For this, an observer

can be proposed as in Figure 3.
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Fig. 3. Example of an observer process

This automaton, initially in state St art, observes
changes in the value of state variables act;, and act;.,,
i.e., we have u; when acty, goes up from false to true
(i.e., t1 becomes active), and d; when act;, goes down
from true to false (i.e., t; becomes inactive). Along the
same lines, we have u. and ds for act:,. So we have the
following transitions:

(a) afirst occurrence of the starting of task #; causes a
transition to state T1_first.
Upon the task deactivation d; :

(b) in the absence of the activation of act;,, we go to
state T1 i dl e. There,

(c) if task t; goes active again before an activation of
to, the observer goes into the state denoting the error:
Error.

(e) if acty, becomes active: us, and t; does not go
active again, then we go to state T2_act i ve.

(d) if simultaneously act;, becomes active: wus, then
we go to state T2_act i ve. There,

(f) if t1 goes active again before the end of ¢4, the
observer goes into the state denoting the error: Er r or .

(g) if t; goes active again simultaneously with ¢, end-
ing, thenwegoto T1_first.

(h) if t; does not go active again when ¢, ends, and
then the observation starts from the initial state again.
The desired property is that a sequence reaching Er r or
is forbidden.

D. Discrete control synthesiswith SIGNAL/SIGALI

We give here again just a few essentials, details being
available elsewhere [9]. SIGNAL is a data-flow, equa-
tional language, with a graphical syntax in the form
of block-diagrams. It is a high-level language to build
models of discrete event systems. It provides program-
mers with hierarchical and compositional structures for
the construction of large, complex systems. Some in-
structions used in the remainder of the paper are the
composition of equations into systems : |, and func-
tions, e.g., on Booleans, as in:
A:=Bor C| B:=Dand E

A delay operator can be seen as a register, and defines a
discrete state. The behavior is such that in a given state
the system can make a transition according to interface
(input/output) and local events towards a new state. It-
s semantics is mathematically defined and underlies all



the analysis, verification and compilation techniques. It
is implemented in a complete design environment fea-
turing a graphical specification interface. Analysis and
optimization tools can transform the original program
automatically. Compilation and executable code gener-
ation are available for various execution platforms.

The discrete event dynamical aspects of SIGNAL have
a model and theory based on polynomial dynamical e-
quations systems. To every SIGNAL specification cor-
responds such a system, describing a transition system
by initialization, evolution relations. Algebraic manipu-
lations allow for the definition of operations checking
satisfaction of properties like: invariance of a transi-
tion system w.r.t. a condition, reachability/attractivity
of a set of states from another one. These notions can
be used in control synthesis, where a transition system
can modified by constraint on events declared control-
lable, making it satisfy a property [9]. A transition sys-
tem can be submitted to a series of such operations, in
a process of incremental synthesis. A tool is available,
called Si1GALI, which implements this with decision di-
agram techniques typical of model-checking. Some in-
structions use in the remainder are: B_True (resp.
B_Fal se) which designates the set of states where a
predicate is true (resp. false), and S_Securi ty, resp.
S Reachabl e, the synthesis operations for objectives
of invariance, resp. reachability. The result of synthesis
operations is a decision diagram, characterizing the con-
straints on controllable events necessary for the proper-
ty to be satisfied (if possible). Specification, synthesis,
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Fig. 4. The discrete control synthesis platform

and simulation in the SIGNAL/SIGALI environment goes
as shown in Fig. 4 [9]. It involves the modeling of the
system in all its possible behaviors and the specification
of properties (desirable and undesirable, i.e., those not
respecting properties) and objectives (invariance, reach-
ability, attractivity). The properties and objectives can
be expressed in SIGNAL, which eases their specifica-
tion: they can be stated in terms of the variables and
events used in the system model. The SIGNAL compil-
er is then used to produce a transition system given as
input to SIGALI, upon which discrete control synthesis
is performed automatically. The resulting controller is
produced in a form that is recognized by a generic e-
valuator, which can be integrated with an application-

specific graphical simulation environment. The SiG-
NAL compiler is used once again for the production of
an interactive graphical simulator integrating model and
controller. Modifying the specification and obtaining a
new controller can be done automatically, by running
the same operations, without having to re-examine the
whole controller manually.

I1l1. APPLICATION TO AN EXCAVATION SYSTEM
A. Model of the system

We consider a simplified model of an excavator system
inspired by the TELEDIMOS project [12]. It provides us
with an example which is manageable and illustrative,
and at the same time showing some complexity. The
system decomposes into sub-systems, according to the
actuators: the articulated arm, the grip held at the end of
the arm, the rotating cabin on which the arm is mount-
ed, and the mobile base, carrying the whole, itself com-
posed of two tracks. Each subsystem i.e., actuator, is
equipped with a library of control tasks, corresponding
to different functionalities of the device, and different
ways of achieving them, according to different criteria.
The complete excavator system is simply constituted by
the composition of all its actuators, each with its control
tasks, as shown in Fig. 5.

The grip is equipped with 2 tasks. The manipulation
task Mani p is a standard task; it is manually controlled
i.e., the operator directly decides on the movements of
the grip. At the lower level, the purpose of this task is
to either open or close the grip. The task Mai nt is the
default task; it maintains the grip at the current opening
position.

Torve Ao Maint

Manou
;’A TW A TW A TWA

The articulated arm
Mamip Maint ato Maint

) (3 i)

TWA WA 1WA TWA TWA
The grip The cabin

ity Maim

8 0D

IW A ITWA TWA
Left Track

Man: Velociy Main

NN

TW A

Right Track
i The Base

Fig. 5. The model of the excavator tasks.

Thearticulated arm is equipped with 4 tasks. The ma-
nipulation task Manu offers manual control to the oper-
ator e.g., with force-feedback, and possibly sharing of
degrees of freedom with an automated control law in
computer assisted teleoperation. The task Horre brings
the arm from whatever position it is in, towards a prede-
fined resting position (e.g., folded in a position where
a mechanical brake or blocking device can be put in
place). The automated movement task Aut o is defined



by a control law, for example, trajectory following, or
sensor-based movement, with the sensor placed at the
end of the arm. The task Mai nt , the default task, main-
tains the current position. It constitutes an actual control
task because just cutting off power might result in the ar-
m falling down due to gravity or moving arbitrarily due
to strong wind or water current.
The rotating cabin is equipped with 3 tasks. The rota-
tion control task Rot at e offers manual control to the
operator by means of handles or buttons, clockwise or
counter clockwise. The automated movement task Au-
t o determines the movement of the cabin automatically
by a control law. A maintaining task Mai nt is the de-
fault task. It maintains the position of the cabin at the
current angular position against any external torque.
Themobilebase is composed of 2 sub-systems: the left
and the right tracks. Each track is equipped with 3 in-
dependent tasks. The manual control task Manu gives
control to the operator, similarly to the manual tasks of
the grip or the arm. The velocity-based control task Ve-
| oci ty is such that velocity can be different for each
track, resulting in the turning motion of the base. A
maintaining task Mai nt is the default task; it maintains
the current position of the base (e.g., on the slope of a
hill), similarly to the maintaining tasks for the other ac-
tuators. There also exists the Aut o task, which imple-
ments a control law controlling both the tracks together.
Each task is modeled in SIGNAL by an instance of the
process encoding the appropriate task pattern (standard
or default), as introduced above. Each subsystem is de-
scribed by means of a composition of its tasks, sharing
inputs and outputs. The composition of subsystems sim-
ply defines the whole system. Hence it describes, at that
abstraction level, all possible dynamical behaviors of the
excavation system.

B. Properties and objectives

Having each actuator always under control of one single
task is characterized by an expression where at least one
and only one Act signal is t r ue. For example, in the
case of the cabin, we define the Booleans:

| cabin_act
or Act_rotate_cabin or Act_naint_cabin

;= Act _auto_cabin

when the others upon which it is mounted are in move-
ment. This decomposes into:

1. no cabin movement (except automated) while driving
(i.e. when the base is moving, i.e. when it is in any other

task than Mai nt ):
| Driving := not (Act_maint_track_|left

and Act_mmint_track_right)
| cabin_base := Act_rotate_cabin and Driving
| SIGALI (S_Security(B_Fal se(cabi n_base)))

2. No arm movement (except automated) while driving

or rotating:
| Rotating := not Act_maint_cabin
| arm_cabi n_base : = Act_manu_arm

and (Driving or Rotating)
| SIGALI (S_Security(B_Fal se(arm cabi n_base)))

3. or similarly: No manual manipulation of the grip
when arm movement, driving or rotating:

The initial state of the system is that in which all the
default tasks of the subsystems are active and all other
control tasks are idle. An interesting control objective is
to ensure the reachability of a state where all and only
the default tasks are active, seen as a safe resting state.
Note that this state is not exactly the initial state since
some of the other tasks may be in the Wi t state, but
it can characterize a restart state. Specifying the reacha-
bility of this state is as follows:

| config_init

and Act_nmint_track_ri ght
| SI GALI (S_Reachabl e(B_True(config_init)))

We want to exclude two successive manipulation-
s of the grip without any cabin or base movemen-
t in between. We make use of an observer as in
Fig. 3. Instantiating this observer with ¢; as Ac-
t _manip _grip and t; as the conjunction of Ac-
t _maint_cabin, Act_maint _track |eft and
Act _mai nt _track_ri ght, we obtain the desired
automaton, in which the final state Er r or is reachable
only after the system goes through the specified task se-
guence to be avoided. Thus we want the invariance of
the set of states where Er r or is f al se, i.e., for syn-
thesis: SIGALI (S _Security(B_Fal se(Error)))

C. Interactive simulation

| cabin_red := (Act_auto_cabin and Act_rotate_cabi nyAt every phase in the above construction of the model

or (Act_auto_cabin and Act_nai nt _cabin)
or (Act_rotate_cabin and Act_mai nt _cabin)

The predicate that is to be ensured to be t r ue is then,
Ctrl _cabin := cabin_act and (not cabin_red)
Finally, the SIGALI macro to compute the controller en-
suring the trueness of the above predicate (and thus the
invariance of the corresponding set of states) is:
SI GALI (S_Security(B_True(Ctrl _cabin))
The control of the grip, the tracks and the cabin is sim-
ilar. Other properties concern the interactions between
different subsystems. Safety concerns can command to
exclude manually controlled movements of an actuator

and control, it is possible to obtain a simulator of the be-
haviors of the controlled system. This way, a user can
observe how the behaviors change when adding one ob-
jective, and verify whether the constraints added corre-
spond to the problem to be solved. A simulation consists
of iterating, step by step, the following three operations:
1. simulating the environment is done through the un-
controllable inputs panel (see Fig. 6 (left)), where one
can enter the requests from the operator, and the events
signalling termination of tasks.

2. choosing among correct controls is done through the
controllable events panel (Fig. 6 (right)). Values ruled

= Act_maint_grip and Act_maint_arm
and Act_maint_cabin and Act_maint_track_|left



out by constraints are represented by non-selectable but-
tons. There can be possibly several possible values, if
the constraints do not completely determine the control
from the input. Then, the control of the system is di-
rected in a shared way by partly requests from the user,
partly control by the automatism. This is reminiscent
of the concept of teleoperation, where movements of an
actuator are directed by a human operator, with a shar-
ing of some degrees of freedom with automated control
laws. As such, this mode of interactive control can be
called discrete teleoperation.
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Fig. 6. Interactive Panels.

3. the dynamical evolution is observed with the task s-
tates display shown in Fig. 5. Changes in behaviors ob-
tained after adding a control objective can show in, e.g.,
observing that a requested task goes into wait state when
another, incompatible one is active, until termination.

IV. CONCLUSION AND PERSPECTIVES

This paper illustrates a framework for using discrete
controller synthesis in safe control systems program-
ming, at the level of a set of control tasks. We have pro-
posed a set of task and properties patterns, which corre-
spond to concepts used by application designers. These
patterns can be used for the construction of application
models, and the application of discrete control synthesis
computation, without requiring deep knowledge of the
underlying formal models and theory. In that sense, it
proposes a user-friendly, automated use of this formal
technique. The framework is systematic enough to de-
sign and develop an automated process on these bases.
It could be integrated with a programming environment
like ORCCAD. We have built up a practical experiment,
using the SIGNAL/SIGALI environment. The obtained
controllers are simulated in an interactive way, which
can be interpreted as a form of teleoperation, where the
control is shared between a human operator and an au-
tomatism, in a discrete space. The case study, inspired
by a excavation system [12], was treated to confront the
framework with an example of some size, while keep-

ing manageable and observable. It illustrates the con-
struction of the model of behaviors, the specification of
properties and objectives, and the use of the obtained
controller in a interactive simulation environment.
Perspectives and further developments of the approach
concern a mission language which would allow for the
specification of sequence patterns for tasks, for partial
specification of missions less “loose” than just paral-
lel composition, but still keeping some freedom, within
which discrete control synthesis would care for lower-
level management of the avoidance of conflicts, fol-
lowing properties like the ones described in this pa-
per. An execution framework for the synthesized con-
troller would be an interesting progress from this sim-
ulation framework. Other synthesis techniques could
bring significant enrichment in the task-level modeling
of robot systems, e.g., multi-mode tasks, with different
implementations of a control law distinguished by cost
(e.g., computational, energetic) and quality (e.g., accu-
rateness) [8]; the use of optimal synthesis can make use
of this information‘[10]. Also of interest are the taking
into account of fault tolerance aspects, and hybrid sys-
tems [1].
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