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Abstract - Data warehouses (DWH) have been 
established as the core of decision support systems. On 
top of a DWH, different applications can be realised with 
regard to conventional reporting. On line Analytical 
Processing (OLAP) has reached the maturity as an 
interactive and explorative way of analysing DWH data. 
However DWH are mostly organised as snapshot 
databases. For this reason important tasks like “how many 
times have products of a specific brand been sold in the 
“past?” cannot be answered successfully - in order to 
control the success of reshuffling the product range it is 
necessary to compare the sales of “old” and “new” 
products. The same applies in cases where the seasonality 
aspect for a particular range of products has to be 
answered. On the other hand, temporal databases allow a 
valid time to be assigned to data. In this manner, a past 
state can be reconstructed during retrieval. In this paper, 
we address the integration of DWH and OLAP with 
temporal datubme semantics. 

Keywords: Temporality, Time, Uncertainty, Temporal 
Data warehouses. 

1 Introduction 
This paper concentrates on the temporal aspects of 

data warehouses and their effects on OLAP environments. 
We suggest a temporal model for multidimensional DWH- 
OLAP, motivated by the observation that ignoring 
temporal issues leads to questionable expressive power 
and query semantics in many real life scenarios. Our 
suggested model will allow the expression of temporal 
OLAP queries in an elegant and intuitive fashion. 

We introduce multidimensional modelling for 
demonstrating the conventional OLAP architecture, and 
introduce the term temporal OLAP, TOLAP. A TOLAP 
environment is an extended OLAP environment that is 
able to handle temporal data and semantics. In the light of 
the above, we introduce a temporal multidimensional data 
model and a temporal SQL-type query language named as 
TOQL. We introduce TOLAP by means of examples, and 
we formally define its syntax and semantics. We propose 
the extension of the existing DWWOLAP environment by 
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incorporating temporal aspects. Therefore we require valid 
time information about data as well as the ability to model 
changing dimensional data and hierarchies. The OLAP 
query mechanism is extended to be able to execute 
temporal queries. In doing this we are proposing a query 
language that is extended with <Time> ON 
<DIMENSION> clause. The proposed extension paves 
the way towards TOQL query formalism for temporal 
OLAP environments. Furthermore, we suggest a new 
operator as part of TOQL formalism for dealing with 
multidimensional information that does not exist at a 
specific valid time. 

The rest of the paper is organized as follows: in 
section two we defme the impact of time in the 
architecture of a data warehouse. Section three delivers a 
time model for defining evolving hierarchies with either 
implicit or explicit temporal semantics. The representation 
of temporal data as part of a TOLAP environment is 
defined in section four with the emphasis in delivering a 
query model based on similarity empowerment for 
defining OLAP operators over changing hierarchies. 
Finally we conclude and provide an outlook on future 
research. 

2 Temporality & Data warehouses 
Temporal data warehouses should describe the 

evolving history of an enterprise. In the case of patient 
record data, it is frequently very important to enable the 
monitoring of data changes, i.e. to retain a complete 
history of past states. Correcting errors could be possible 
by posting compensating transactions with different 
timestamps to the data warehouse. In health informatics 
applications, keeping track of the diagnosis on which 
decisions where made may guard against wrongful, 
misconduct claims. When considering temporal DWH’s 
we need to understand how time is mirrored in a temporal 
database and how this relates to the structure of the data. 
Temporal DWH’s usually have to accommodate the 
following type of data; 

Regular dutu. Once a record is added to a database, it 
is never physically deleted, nor is its content ever 
modified. Rather, new records are always added to reflect 
transactions on data. Regular data thus offers a complete 
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history of the changes occurred in the data. Temporal 
DWH’s contain regular data 

Snapshot data. A data snapshot is a stable view of 
data as it exists at some point in time. It is a special kind of 
regular data. Snapshots usually represent the data at some 
time in the past, and a series of snapshots can provide a 
view of the history of an enterprise. 

The focus of existing research [2] in temporal data 
warehouses is on storing “regular” data with the aid of 
time stamped status and event records. The intuition 
behind this stream of research is that a query needs to 
access current data. In a single timestamp scheme, the only 
way to identify current records is to find the latest 
timestamp,.of the regular set, which is an inefficient 
process. It has been proposed [ I ]  time to he treated as a 
dimension and also to be considered as an intrinsic 
element of the fact table, see Figure 1.  

Time 
1 2001-08-01 1 

LT: load timeslamp 

RT,: revelation time (start) 

RT,: revelation time (end) 

Ws: valid time (start) 

WE: valid time (end) 

Figure 1. Temporal Fact Table 

Eventually what is proposed by is an extension of the 
hi-temporal datahase model [4], with the inclusion of the 
load timestamp. The load timestamp is basically 
addressing the need of knowing when a piece of 
information was integrated in the data warehouse, while 
the revelation time is indicating when a piece of 
information was recorded as part of a particular source. 

This paper is focused on the impact of the valid time 
dimension in multidimensional analysis. More specifically 
we advocate that: 

The assortment of a particular hierarchy may be 
variable through the valid time dimension. For 
example considering the disease assortment, a 
new disease may appear, or a disease may move 
from one group to another. 
It may be possible to b o w  for how long a piece 
of information is valid i.e. the length of the time 
interval is known, though the starting or the 
ending point may not be defined with precision. 
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To put it differently the time dimension itself may 
he evolving. 

In the next sections the temporal concepts that will 
allow the development of a temporal data warehouse as 
well as the formulation of TOLAP queries are defined. 

3 Modelling Valid Time 
Time has a standard geometric metaphor. In this 

metaphor, time itself is a line; a point on the time-line is 
called a time point; and the time between two time points 
is known as a time interval. 

Time point Our model of time does not mandate a 
specific time point size or (minimum) granularity; a time 
point may be of any duration (e.g., nanoseconds, years, 
Chinese imperial dynasties). We believe that specifying 
the minimum granularity should be left to the 
implementation rather than be tixed in the data model. 
Although our time model has only a single granularity, 
multiple granularities can also be handled. The time points 
are consecutively labeled with the integers in the set T = 

{0, ..., N} where N is the number of different values that a 
timestamp can represent. The set of time points is linearly 
ordered. 

Time Line: is the geometric metaphor of the time. 
Conceptually, time is linear and consists of a set of time 
points. The time l i e  is represented with the aid of the 
h e a r  equation: 

K X + B ; ( K , B , X ) E  N h C < B S C : ( C , C ) E  N (1) 

Time Interval: A time interval is an instantiation of 
a time l i e  and is bounded between two-time points of a 
specific duration. For example, assume the following triple 
values for the variables (K, B. 9 respectively (K=O, X=O, 
3 S B _C 5). This will generate the time interval TL=[tL, 
tR]=[3,5] that may imply any particular interval and can be 
mapped to any time hierarchy or calendar. 

Time Hierarchy-Calendar: A linear hierarchy of 
time units, denoted Hr, is a finite collection of distinct time 
units with a linear order 1 ~ 1  among those time units. H,is a 
finite collection of distinct time units, with linear order 
among those units, e.g. H,=daycmonthzyear, 
H,+ourcdaymonthgear are linear hierarchies of 
time units defined over the Gregorian calendar. Thus, a 
calendar is a collection of linear time hierarchies. A 
calendar consists of a h e a r  hierarchy H of time units and 
a validity predicate denoted validHr A validity predicate 
specifies a non-emply set of valid time points; validHT (t) 
is true if I is a valid time point. A validity predicate states 
that, for example, valid (14/9/1995) = true but valid 
(29/2/1997) = false. However (30/2/1997) is not a valid 
time point since February of 1997 only contains 28 days. 
Conceptually, time may be extended to infinite (I,T) past 
or future. 

Duration@: is the length of a time interval. To 
prevent having ill-formed temporal intervals the specified 
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length is not the distance between the n and n-1 
projections over the set of time points T. 

The following functions define formally the starting 
point of a time interval (t), the ending time point of a 
time interval 3 t) and its length with respect to an arbitmy 
calendar * I (t). 

k (C, c’, O-)C (2) 

i (C, c’, O+C’ (3) 

I * I (C, c’, O+I (4) 

It is now possible to extend the set of temporal intervals 
with the inclusion of null values (?). To make the three 
functions given above work correctly we must extend 
them to include null values (?): 

t (C, c‘, O?+{C,V (C’-OI 

-I (C, e, O?+ (C’ v (C + 0) 
I I (C, c’, 073 (1 v (C’-O) (7) 

(5 )  

(6) 

The proposed time representation for the valid time 
dimension can be used for encoding two different types (31 
of temporal information: 

Definite Temporal Information: is defined over the 
interval TI=[ C, C ] when the time points C, C’are defmed 
with precision over the time line. Using our time model 
definite temporal information can be utilised with the aid 
of equations (Z), (3), (4). 

Indefhte Temporal Information: is defmed over 
the interval T,=[C, C’]? when the time points C, C’ are not 
defined with precision over the time line but are bounded. 
Thus the time dimension itself is evolving. Indefinite 
temporal information in the context of our time 
reorientation can be utilised with the aid of equations (5), 

Furthennore, the inclusion of “null” in the set of time 
intervals allow us to encode implicit temporal information 
that cannot be represented with the use of an explicit-strict 
temporal representation. Moreover, the proposed time 
model does not treat time as a way to index propositions or 
information 151, [6] since the time itself is treated as a 
dynamic properly. 

The last observation poses the question how OLAP 
analysis can be performed as part of a temporal 
environment where: 

a) Hierarchy trees are changing through different times 
b) The valid time for requesting OLAP to be performed 

(6), (7). 

over a hierarchy tree may be implicit. 

4 Temporal Data & TOLAP 
Current approaches [7,81 assume that cube facts have 

an implicit timestamp assigned by their time dimension. In 
contrast, the dimensional elements are considered as 
snapshots. However, this kind of treatment does not take 
into account the fact that hierarchical structures can 
change over time. In this case, a typical requirement 
analysis could be to compare the new grouping with the 
old one. 

In solving this problem, we can annotate the edges of 
a hierarchy tree with valid time intervals. In this matrix, 
the parent nodes are the rows while children nodes are 
considered as columns; every cell takes a set of valid time 
intervals. This meta-information can be defined for every 
hierarchy tree in the data warehouse schema. Figure 2 
presents the bierarcby tree of an arbitrary hierarchy tree 
for the arbitrary time interval [C, (C+I)] where (C, 
(C+/))E H, (1). The corresponding valid matrix is also 
presented. For illustrative purpose we assume that (Vl,V2, 
V,, Vd. V,, Ci, CJ E N. 

T= C T=W 

Figure 2. Hierarchy trees &corresponding valid time 
matrix 

The assumption is that the defined hierarchy trees 
and valid time matrix depict a possible temporal analysis 
trace. Such analysis can be performed with the aid of a 
TOLAP query. The formulation of such a query requires 
the setting of a valid time for each dimension. Therefore, a 
query language can be extended by a “WITH TIME 
INTERVAL <Hr> On DIMENSION <DIMENSION>” 
clause. For each dimension the user is required to select an 
explicit or implicit time interval-valid time. 
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Such a query is capable of defining for example, the 
ROLL-UP effect with respect to distinct time points C, 
(C+I) as well as with respect the time interval [C, (C+/)J. 

4.1 The TOLAP Query Model 

We put forward a proposal to provide representation 
for handling changing-evolving hierarchies and retrieving 
intentional answers at the query level through case based 
reasoning mechanisms (CBR). 

The motivation behind this extension is based on the 
argument that in order to build TOLAP queries with their 
own information bases, out of the existing ones, we need 
to raise the abstraction of operations on the metadata level. 
In this context, the case-based querying-technology can be 
focused on an alternative mechanism for designing 
intelligent TOLAP querying systems. It can be employed 
either at the conceptual level or at the instance level 
(metadata level) for matching a current query description 
(a query case) to a specially organised database of indexed 
previous situations, called a case base (info-base). 
Therefore, a TOLAP querying system searches for case 
histories (response cases) that fully or partially match this 
description. The CBR strong features spring from its 
emphasis on similarity matching. 

Empowered similarity requires a model that elegantly 
combines into a sole formula both hierarchy similarities 
and object dissimilarities with respect to distinct time 
points C, (C+l). A simple model to capture similarities and 
dissimilarities between objects was proposed by [9], could 
be summarised as follows: 

sim(HA, HE) = S(HA n HB) - S(HA-HE) - SWB-HA) (8). 

In the context of a temporal environment this can be 
interpreted as follows: given two sample hierarchy trees 
HA, HB defined in the time interval [C, (C+l)J, estimate the 
ROLL-UP effect with respect to distinct time points C, 
(C+O as well as for the time interval [C, (C+O]. 

H,,B should contain all Trevskys components, 
(S(HAnHB), S(HA-H~), S(HB-HA)), respectively. The 
intuition is that the temporal ROLL-UP result, must 
express equally well the similarities (S(HAnHB)) and 
dissimilarities @(HA-HB), S(HB-HA)) between the 
evolving hierarchies (HA, HB). 

The important issue in constructing Trevsky's 
components is the estimation of the S(HA n HB) ~ SOIA- 
HB) - S(HB-HA) parameters for the distinct time interval 
[C, (C+I)l. 

With reference to Figure-2 hierarchies Trevsky's 
components for the time interval [C, (CCI)], are estimated 
as follows: 

S(HAnH&,(c+ir {{VT,VZ,) {Ct, Cd 1 items (9) 

S(HA-HB)IC, (c+o]= { {vd items (10) 

S(HB-HA)IC,(C+OI= ({v4,Vss } 1 items (11) 

With reference to the distinct time points C or (C+I) 
an extended ROLL-Up operator should reflect the effects 
occur by the time query: 

Items not valid at a particular time point 
Groupings with same name but different elements 
Residual items excluded from the chosen time 
point 

While drilling down can solve the fnst and second 
issues, the last issue requires an explanation of the 
instances hidden below the grouping "Residual". 

The OLAP architecture has to he modified as 
follows: information about valid time has to be stored in 
the meta-data repository and the OLAP server must be 
able to receive queries with valid time clauses. The 
repository itself has to he extended for storing versioned 
meta-information. 

5 Conclusions 
Traditionally, there is no real-time connection 

between a DWH and its data sources. This is mainly 
because the write-once read-many decision support 
characteristics would conflict with the continuous update 
workload of operational systems resulting in poor response 
times. Consequently, up until recently, rimeliness 
requirements were restricted to mid-term or long-term time 
windows. Ignoring these temporal issues leads to 
diminished expressive flexibility and questionable query 
semantics in many real-life scenarios. 

We review the issue of time in data warehouses and 
meaning of time as part of a conventional OLAP 
architecture. We propose an extension of the conventional 
OLAP architecture in order to handle temporal data. The 
extension concerns metadata repositow while the data 
warehouse remains untouched. 

In enforcing the TOLAF' architecture as a s o h a r e  
component the following issues have to be tackled: 

The communication between the OLAP server 
and the metadata repository has to be defined. 
Efficient algorithms for the proposed schema 
evolution have to be considered. 
An indication of whether information is 
aggregated or whether data have been 
transformed into another dimensional structure. 

The advantages provided by built-in temporal 
consistency support in data warehouses include: higher 
reliability in data modeling, more efficient gathering of an 
organization's history, as well as analyzing the sequence 
of changes to that history. 
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Important future research directions in this field will 
be the maintenance of data warehouses based on 
dynamically changing information systems (data updates, 
schema changes), and enhancements to the active 
behaviour in the field of active data warehouses. 

We further suggest the analysis of the process 
dimension with the capturing of case items or contextual 
facts as part of an integrated temporal workflow 
environment. The functionality of such environment is to 
express changing case-items with the aid of moving 
hierarchies-dimensions. 
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