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Abstract - IVith tl7e emerging applications of multi-agent 
systems, there is aluays a need for simulation to i~ertfi 
the results before actual implementation. Multi-agent 
sintulafion provides a test bed for several soflcompziting 
algorithms like f i z zy  logic, learning automata, 
evolutionary olgorithms, etc. In this paper we discuss the 
fusion of these saff-computing methodologies and existing 
tools for discrete event simulation (DEVS)for multi-agent 
simulation. We propose a methodology for combining the 
agent-based architecture, discrete wen t  system and soft- 
computing methods in the simulation of multi-agent 
robotics arid network security Vstem. We also define a 
framework called Virtual Laboratory (V-LabQ) for multi- 
agent simulation using intelligent fools. 

Keywords: Soft-computing, DEVS, IDEVS, V-lab@, 
Fuzv-DEVS, GA-DEVS. 

1 Introduction 
Most of the AI-based simulation is based on the 

concepts of agents. Agents are entities (robots, software 
entities, animals, etc) which can sense or perceive the 
environment and act upon the environment based on some 
control paradigms. Multi-agents are agents that can work 
together (collaborative) or act autonomousIy in their 
environment to realize a set of goals. Applications of 
multi-agents are many. Such as the exploration of the 
Mmian landscape, rovers can he used to quickly map an 
unstructured environment, to move an object larger than 
any single mver could move or to cooperatively navigate 
in rough tenain. Using multiple agents also allows for the 
failure of a single agent without the failure of the entire 
mission, ensuring reliability. Modularity is also a key 
feature of agent based simulation. We use Discrete Event 
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System Specifcation (DEVS) [lO][ll] modeling for 
multi-agent simulation using some of the soft computing 
methods. 

1.1 DEVS 
Discrete Event System Specification (DEVS) is a 

formalism, which provides a means of specfying the 
components of a vstem in a discrete event simulation. In 
DEVS formalism one must specify Basic Models and 
how these models are connected together. These basic 
models are called Atomic models and larger models which 
are obtained by connecting these atomic blocks in 
meaningful fashion are called Coupled models as shown 
in Figure 1. Each of these atomic models has inports (to 
receive external events), outports (to send events), set of 
state variables, internal transition, exiernal transition and 
time advance functions. Mathematically it is represented 
as 7-tuple system: 

M = a, s, Y, 6&, Be* h: ta> (1) 

where X is an input set, S is set of states, Y is set of 
outputs, 6, is internal transition function, 6-, is external 
transition function, 1 is the output function, and ta is the 
time advance function 

Atomic 

Coupled 

I I 

Figure 1. Sample DEVS Atomic and Coupled Models 

* U.S. Government work not protected by U.S. copyright 
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The models description (implementation) uses (or 
discards) the message in the event to do the computation 
and delivers an output message on the outport and makes 
a state transition. DEVSJAVA [l], a Java-based 
implementation of DEW formalism can be used to 
implement these atomic or coupled models. 

1.2 Soft Computing 
The word soft computing was coined by L. Zadeh, 

which is based on concepts such as human-like reasoning, 
leaming in uncertain environment, probabilistic 
reasoning, to give robust solution to problems, in low 
cost. Soft computing, also called computational 
intelligence, is a consortium of tools for natural 
intelligence stemming from approximate reasoning (fuzzy 
logic), learning (neural networks, stochastic learning 
automata), optimization techniques (genetic algorithms, 
genetic programming), etc. Soft computing has been and 
is being extensively used in many applications such as 
robotics, manufacturing processes, control engineering, 
economics, software engineering, etc. Simulation is 
needed in advance, before the implementation and testing 
of these soft computing paradigms in real systems. An 
example of this is the automation and control of robotic 
agents. We take advantage of simulation tools available 
and fuse it with these soft computing paradigms in a 
meaningful method to give us an intelligent simulation 
tool. 

2 Intelligent DEVS 
Intelligent DEVS or IDEVS is fusion of DEVS and 

soft computing paradigms. Enhancement or enrichment to 
DEVS with different soft computing elements like fuzzy 
logic, neural networks, genetic algorithms, and stochastic 
learning automata gives different components of IDEVS 
like fuzzy-DEVS, NN-DEVS, GA-DEW, SLA-DEVS, 
respectively. Fusion of soft computing methodologies 
with simulation tools such as DEVS provides a novel and 
systematic way of handling time-dependent parameters 
without altering the essential functionality and problem- 
solving capabilities of soft computing elements. In this 
paper we will see two such elements of IDEVS namely 
GA-DEVS and Fuzzy-DEVS and application of Fuzzy- 
DEVS in simulation of computer network security system. 

2.1 GA-DEVS 
Genetic Algorithm (GA) is an element of 

evolutionary computation, which is a rapidly grnwing 
area of soft computing. The continuing pricelperformance 
improvements of computational systems have made GAS 
attractive for some types of optimization. In particular, 
genetic algorithms work very well on mixed (continuous 
and discrete), combinatorial problems. They are less 
susceptible to getting 'stuck' at local optima than gradient 
search methods [4]. Although GA tends to be 

computationally expensive, one can use some methods to 
accelerate its process. 

There are four main parts in the GA process, 
namely, the problem representation or encoding, fitness or 
objective function definition, fitness-based selection, and 
evolutionary reproduction of candidate solutions 
(individuals or chromosomes). So we need to deiine an 
encoding method, fitness function, select method, and 
reproduction method as well as criteria rules for the GA 
formulation. Figure 2 shows the basic cycle of a GA. 

stop? 

solution 
Gener Find Fitness Repro 

& Select -duce 

I I 

Figure 2. Basic cycle of a genetic algorithm 

The basic GA cycle is implemented via atomic and 
coupled models of DEVS. Figure 3 shows a GA-DEVS 
implementation. An initial model was added to collect 
required initial conditions. In every generation, we can get 
not only the current best fitmm value fi) but also the 
average and deviation of fitness value vu, f4 of the 
population. So we can fmd the tendency of the process by 
observing the history of fitness during evolution. 

Figure 3. GA-DEVS implementation 

The functionality of the framework proposed is 
tested with several examples. In the following example 
we use flexible reproducing operators to accelerate the 
GA process, i.e., modifying the probability of crossover 
(Pc) and probability of mutation (Pm) according to the 
deviation fitness of the population. Based on the resulting 
performance analysis of GA-DEVS example-simulations, 
we found that properly adjusting Pc and Pm during the 
progress will improve the algorithm. However, GA is time 
consuming, so sometime they didn't reach the global 
optimum during desired simulation time. 

A simulation result of& andf with generations is 
sketched in figure 4. It can be seen that the maximum 
fitness value never goes down because of using the elitism 
strategy and the average fitness curve also keeps an 
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upward tendency. When the average fitness goes very 
close to max fitness value, which means, the diversity is 
almost lost, it will be good to have more mutation. This 
also verifies that flexible Pc and Pm will benefit the 
progress and we still need to avoid the scaling problem. 

Figure 4. Average & max fitness values versus 
generations 

The problem depicted above is to fmd the real value of x 
which maximizes the function 

f(x) = (-x2+255x) /42.5 (2) 

for values of x in the range [O.OO ... 255.001. The best 
individual is x=127.5. The tolerant error amount of x is 
1.5 and for y is 1382.4471-382.501=0.0529. Linear 
transfonnation f =uf+b with a=0.8, b==4 is used, so f m = 

0.8*382.5+4 = 310. 
This GA-DEVS simulation example has an advantage 

to perform reasonably well within the limit of total 
generation of GA. GA-DEVS will be a tool to optimize a 
fuzzy or a classical controller for multi-agent simulations. 

2.2 Fuzzy-DEVS 
A fuzzy logic controller consists of three operations: (1) 
fuzziiication, (2) inference engine, and (3) 
defuzzification. The input sensory (crisp or numerical) 
data are fed into fuzzy logic rule based system where 
physical quantities are represented into linguistic variables 
with appropriate membership functions. These linguistic 
variables are then used in the antecedents (IF-Part) of a 
set of fuzzy “IF-THEW rules within an inference engine 
to result in a new set of fuzzy linguistic variables or 
consequent (THEN-Part) [SI 

A typical Mamdani rule can he composed as follows 

IF x, is A; AND x, is A; THEN y’ is B’, for i = 1,2 ,..., l 
where 4 and Ai are the fuzzy sets representing the ith- 

antecedent pairs, and B’ are the fuzzy sets representing 
the i’-consequent, and l is the number of rules. 

We define DEW-Fuzzifer as follows: 
A DEVS-Fuzzifier is an atomic DEVS model: 
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Fz =(X, Y, S, &xt, &at, 1, ta, (3) 

where, the input set, X, is usually a set of real numbers, to 
be fuzzified. The output set Y = [0,1], since the output of 
this atomic model is a fuzzy value. S is a sequence of 
fuzzified input values: S={si I si = &xt(q,sj.l,x) ). 
S..,(q,s,x)=p(x), where p is the membership function 
associated with this fuzzifier. Si.&) and h(s) are the 
identity functions. ta (s) =O , since there is no time 
advance in this model. p(x) is the membership function 
associated with this fuzzifier. 

This atomic model represents an antecedent membership 
function. 

A consequent membership function can be defined as: 

cMF=(x, y, s, sat, &ut, h, ta, p) (4) 

where, X is a set of fuzzy values: X=[O,l]. output 
of this model is a fuzzy set, so Y is a set of fuzzy sets. Y = 

{Z I C is a fuzzy set}.S is a sequence of discrete fuzzy sets 
(membership functions). S=( ..., Xi.!, Zi,Z+, ,._.) 

The 

where, p is the membership function associated with this 
model. This function in fact cuts those values of the fuzzy 
set Zp(q)/a, which their membership values are greater 
than x (see Figure 5). &.,(s)=s, X(s)=s and ta=O. 

In a typical fuzzy d e  connectives are used to make 
connection between antecedent pairs. An “AND” 
connective takes the minium, while an “OR” connective 
returns the maximum value of two pairs [SI. 

Connectives are defmed in DEVS as atomic models: 

I ’  I 

Figure 5. A typical consequent membership function (CMF) 
model 

where, XI= ...= X. =[O,l] are input sets. (A connective 
can haven inputs.), Y = S = [0,1], Si&) = s, h(s) = s, ta = 
0, Sext(q,s,xl ,... &) = min(x, ,..., xJ, in case of ‘‘AND’’ 
and, S.,(q,s,xl,. . .x3 = max(x,,. ..,xJ, in case of “OR. 

A fuzzy rule can be composed as a coupled model using 
the above three afomic models. For instance, consider the 
following fuzzy rule: “IF x is A OR x is B THEN z is C”. 



Figure 6 shows how this fuzzy rule can be composed 
using two Fuzzifiers, one Connective and one Ch4F 
(consequent membership function). 

In order to fully implement a Fuzzy Logic Controller, a 
Defuzzifier is needed, which can be defmed in the same 
way. i.e. takes fuzzy sets as input and calculates the 
defuzzified value [5]. 

DeFZ=&, XZ, .. ., X., Y, S, L,, L, h, ta) (7) 
where, Inputs of this atomic model are fuzzy sets so 
XI=X2= ...= X. ={x[xisafuzzyset} 
Output is a real number, Y = 93, 
s = 'H, SI&) = s, h(s) = s, ta = 0, 
G,,(q,s,xl ,.._ xn) = Center-of-Gravity (xI U x 2 u  ... x.) 

Center-of-Gravify(x) is a function which calculates the 
defuzzified value of fuzzy set x using center ofgravity 
method [ 5 ,  page 1931 : 

Figure 6. A DEVS model for a typical fuzzy rule 
'TF x is A ORy is B THEN z is C" 

3 Virtual Laboratory 
V-Lah@ [2] stands for Virtual Laboratory for 

autonomous agents. The V-Lab@ environment consists of 
4 distinct software layers, as Figure 7 illustrates, and each 
of these layers fills a specific role in the simulation. The 
foundation of the simulation consists of the operating 
system and the network code needed to operate the 
networking hardware, which in turn allows machines to 
communicate over a network. Using this functionality, a 
middleware such as the Remote Method Invocation (RMI) 
[9], Common Object Request Broker Architecture 
(CORBA), High Level Architecture (HLA) [SI or even 
sockets acts to solve the problem of how to use the 
network to connect different portions of a simulation 
together. Using the IDEVS environment, V-Lab@ defines 
an appropriate structure in which one can organize the 
elements of IDEVS for a distributed agent based 
simulation. It also provides the critical objects needed to 
control the flow of time, the flow of messages, and the 
base class objects designers will need to create their own 
V-Lab@ modules. 

V.Llb5 

r 4  I-DE\S 

Figure 7. Layered Architecture of V-Lab@ 

3.1 Architecture of V-Lab@ 
Modular architecture of V-Lab@ is as presented in 

Figure 8. The different modules of V-Lab@ are the agents 
which are implemented as DEVS or IDEVS atomic or 
coupled models. The environment provides plug-and-play 
for agents to be added and removed without distracting 
the functionality of other agents. This modular 
architecture is similar to the mediutor design pattern [4]. 

Figure 8. Modular Architecture of V-Lab@ 

Essential parts of V-Lab@ are the SimMan 
(Simulation Manager) and SimEnv (Simulation 
Environment). SimEnv is the high level coupled model. 
V-Lab Simulation kicks off by starting SimEnv which 
instantiates all other modules. SimMan acts as message 
relay for all other modules. With SimMan, V-lab has the 
property of separability, i.e., the modules do not know the 
existence of other modules. The modules simply publish 
the messages that they can handle. All other modules 
request or subscribe by sending appropriate messages to 
the SimMan. 

4 Applications 

4.1 Computer network security simulation 
As an application of IDEVS components, we 

demonstrate discrete event simulation of computer 
network security system using Fuzzy-DEVS. We use 
combination of crisp andfizy rules to simulate a network 
security system which encompasses both prevention and 
detection features. 

Prevention systems are network security systems 
which block unauthorized access to local network, such as 
firewalls, packet filters, etc. Detection systems are systems 
which detect misuse (or inmsion) but do not necessarily 
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handle the prevention of such a misuse. Examples are 
host based and network based intrusion detection (NIDS), 
etc. The application discussed here focuses on the 
simulation of combination of prevention and detection 
systems using Fuzzy-DEVS, which employs similar 
modular approach as in V-Lab@. 

4.1.1 Implementation Details 
In this paper, for prevention system functionality we 

simulate packet filtering fuewall such as ipiables [7] 
found in Linux. The fuewall rules defmed for filtering is 
crisp. The rules are mitten in a configuration 
(ConfigRules) file which is read each time when the 
packet arrives. Typical policy rules are shown in figure 9. 

/ /S rC- lp  D e s t - i p  S r c g o r t  D e s t g o r t  A C t l O n  
ANY 127.0.0.1 6000 23 DENY 
23.34.45.56 64.1.2.3 1024 21 A C C E P T  

Figure 9. Filtering Rules 

The entire simulation is based on multi-agent 
architecture; in which each agent perform specific 
filtering functionality. We have three agents TCP agent, 
UDP agent and ICMP agent for handling TCP, UDP, and 
ICMP protocol packets. A packet sensor looks into the 
packet header to determine the protocol and passes the 
packet to specific agent which can handle those packets. 
The execution of the policy rules for each packet's 
acceptance or rejection is done by the TCP and UDP 
agents. For the purpose of simulation, we implement 
several DEVS atomic model, each of which can generate 
packets at particular time period with packet generation 
rate as input to these models (Refer figure IO). 

Several inhusion detection classifications can be done 
such as: Invalid logins, abnormal connections, anomalies, 
suspicions modification of files, denial of service, 
protocol violation etc. We demonstrate here a particular 
case of intrusion which is denial of service attack. Denial 
of Service @OS)  is an attack wherein the intruder or 
hacker sends large number of packets (ICMP echo 
packets or SYN packets) in small amount of time. We 
employ temporalfizzy rules in ICMP agents to detect 
such large number of packets witbin short interval of time. 
While the TCP and UDP agents perform the filtering 
@revention system) of network packets using crisp rules, 
ICMP agent functions as detection system employing 
temporal fuzzy rules to detect ICMP ECHO denial of 
service attacks. The fuzzy d e s  can also be extended to 
TCP SYN flooding by introducing the rules in TCP agent. 
The ICMP agent is coupled model, which helps to detect 
DOS attacks. The IP address of the intruder is assumed to 
be known here. So there is one intruder attacking onr 
network with several ICMP ECHO packets. 

Pkl GeN TCP Agent 

Packet 
UDP Agent 

lcMp Agent 
Pkt Genr = Packet Generator 

Figure IO. Agent based Intrusion detection system 

1-1 

1 1  3 I 5 6  7 %  
i 

I P - -  Akn 

Figure 11. Generation of Alert due to DOS attack 

From figure 11, we can infer that when packet arrival rate 
increases, there is an intrusion. Since we assumed only 
one intruder sending lot of ping (ICMP request) packets 
within short interval of time, there is alert for intrusion 
from the system. Simple temporal fuzzy rules can be 
written, such as, 
If packet-arrival-rate is HIGH in Lost-2-seconds, then 
ALERT is HIGH 
If packet-arrival-rate is LOW in Lost-2-seconds, then 
ALERT is ZERO. 
The membership function for packet arrival rate is as 
shown in figure 12. Note the packet rate numbers are 
experimental. 

I I 

Figure 12. Membership functions for packet arrival rate 
(p.) and Last-2-seconds (p~) 

Membership functions for output 'Alert' are as shown in 
figure 13. 

Figure 13. Membership function for output ALERT 
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The degree of fuzziness in temporal fuzzy logic obtained 
by following formula [6]:  

4.2 Multi-agent Robotic Simulation 

4.2.1 Architecture 
The V-Lab@ architecture was successfully used to 

demonstrate simulation of multiple robots. Each of the 
modules, shown in figure 8, such as rover dynamics, 
sensors, terrain, etc were implemented as DEVS atomic or 
coupled models. The controller for robots was tested and 
implemented using crisp and fuzzy logic separately. 
Since the V-Lab@ architecture provides plug-and-play, 
the controller can be easily removed and replaced without 
affecting functionality of other modules like terrain, plot 
or rover dynamics. 

The simulation involves robots reaching a goal 
position from random initial point avoiding the obstacles. 
The obstacle information is defined in terrain model. The 
agents (robots here) navigate with the help of sensors, 
infra-red, GPS and compass, each of which are 
implemented as DEVS atomic model. The robots do not 
have global map information of the terrain, but local 
sensory information helps the robot to detect obstacles, 
accelerate, or decelerate, based on control algorithm in the 
controller module. 

4.2.2 Simulation Results 

Figure 14. Robotic Simulation using V-Lab@ 

Figure 14 shows the result of robotic simulation of rovers 
reaching a goal position avoiding the obstacles (convex 
polygons). Several rovers can be added to create swarms 
of robots performing collaborative task. Simulation can be 
performed on different machines using Java Sockefs. 

5 Conclusion 
In this paper we described multi-agent network security 
simulation using temporal fuzzy logic implemented within 
IDEVS framework. For complex multi-agent simulation 
we defined a modular and distributable framework called 
Virtual Laboratory (V-Lab@) which is built on top of 

IDEVS components. The control algorithms simulated 
using IDEVS components will be tested on hardware 
platform using AcrivMedia Robotics Pioneer I1 robots. As 
a future work, GA-DEVS can be used to optimize the 
temporal Fuzzy-DEVS rules. 
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