
Multi agent Simulation using Discrete Event and Soft-

Prasanna Sridhar
Center for Autonomous

Control Engineering
(ACE) and Department of

Computer Science,
University of New

Mexico, Albuquerque,
NM, USA

pnsanna'gcs . unm .edu

computing Methodologies*
Shahab Sheikh-Bahaei
Center for Autonomous

Control Engineenng
(ACE) and Department of

Electncal & Computer
Engmeenng,

University of New
M e m o , Albuquerque,

NM, USA
sliahabfumni edu

Abstract - IVith tl7e emerging applications of multi-agent
systems, there is aluays a need for simulation to i~ertfi
the results before actual implementation. Multi-agent
sintulafion provides a test bed for several soflcompziting
algorithms like f i z zy logic, learning automata,
evolutionary olgorithms, etc. In this paper we discuss the
fusion of these saff-computing methodologies and existing
tools for discrete event simulation (DEVS)for multi-agent
simulation. We propose a methodology for combining the
agent-based architecture, discrete wen t system and soft-
computing methods in the simulation of multi-agent
robotics arid network security Vstem. We also define a
framework called Virtual Laboratory (V-LabQ) for multi-
agent simulation using intelligent fools.

Keywords: Soft-computing, DEVS, IDEVS, V-lab@,
Fuzv-DEVS, GA-DEVS.

1 Introduction
Most of the AI-based simulation is based on the

concepts of agents. Agents are entities (robots, software
entities, animals, etc) which can sense or perceive the
environment and act upon the environment based on some
control paradigms. Multi-agents are agents that can work
together (collaborative) or act autonomousIy in their
environment to realize a set of goals. Applications of
multi-agents are many. Such as the exploration of the
Mmian landscape, rovers can he used to quickly map an
unstructured environment, to move an object larger than
any single mver could move or to cooperatively navigate
in rough tenain. Using multiple agents also allows for the
failure of a single agent without the failure of the entire
mission, ensuring reliability. Modularity is also a key
feature of agent based simulation. We use Discrete Event

Shan Xia
Center for Autonomous

Control Engineering
(ACE) and Department of

Electrical & Computer
Engineering,

University of New
Mexico, Albuquerque,

NM, USA
siashan'iunni .edu

MO Jamshidi
Center for Autonomous

Control Engineering
(ACE) and Department of

Electrical & Computer
Engineering,

University of New
Mexico, Albuquerque,

NM, USA
innishidi;ic'eece.un.edu

System Specifcation (DEVS) [lO][ll] modeling for
multi-agent simulation using some of the soft computing
methods.

1.1 DEVS
Discrete Event System Specification (DEVS) is a

formalism, which provides a means of specfying the
components of a vstem in a discrete event simulation. In
DEVS formalism one must specify Basic Models and
how these models are connected together. These basic
models are called Atomic models and larger models which
are obtained by connecting these atomic blocks in
meaningful fashion are called Coupled models as shown
in Figure 1. Each of these atomic models has inports (to
receive external events), outports (to send events), set of
state variables, internal transition, exiernal transition and
time advance functions. Mathematically it is represented
as 7-tuple system:

M = a, s, Y, 6&, Be* h: ta> (1)

where X is an input set, S is set of states, Y is set of
outputs, 6, is internal transition function, 6-, is external
transition function, 1 is the output function, and ta is the
time advance function

Atomic

Coupled

I I

Figure 1. Sample DEVS Atomic and Coupled Models

* U.S. Government work not protected by U.S. copyright
1711

http://innishidi;ic'eece.un.edu

The models description (implementation) uses (or
discards) the message in the event to do the computation
and delivers an output message on the outport and makes
a state transition. DEVSJAVA [l], a Java-based
implementation of DEW formalism can be used to
implement these atomic or coupled models.

1.2 Soft Computing
The word soft computing was coined by L. Zadeh,

which is based on concepts such as human-like reasoning,
leaming in uncertain environment, probabilistic
reasoning, to give robust solution to problems, in low
cost. Soft computing, also called computational
intelligence, is a consortium of tools for natural
intelligence stemming from approximate reasoning (fuzzy
logic), learning (neural networks, stochastic learning
automata), optimization techniques (genetic algorithms,
genetic programming), etc. Soft computing has been and
is being extensively used in many applications such as
robotics, manufacturing processes, control engineering,
economics, software engineering, etc. Simulation is
needed in advance, before the implementation and testing
of these soft computing paradigms in real systems. An
example of this is the automation and control of robotic
agents. We take advantage of simulation tools available
and fuse it with these soft computing paradigms in a
meaningful method to give us an intelligent simulation
tool.

2 Intelligent DEVS
Intelligent DEVS or IDEVS is fusion of DEVS and

soft computing paradigms. Enhancement or enrichment to
DEVS with different soft computing elements like fuzzy
logic, neural networks, genetic algorithms, and stochastic
learning automata gives different components of IDEVS
like fuzzy-DEVS, NN-DEVS, GA-DEW, SLA-DEVS,
respectively. Fusion of soft computing methodologies
with simulation tools such as DEVS provides a novel and
systematic way of handling time-dependent parameters
without altering the essential functionality and problem-
solving capabilities of soft computing elements. In this
paper we will see two such elements of IDEVS namely
GA-DEVS and Fuzzy-DEVS and application of Fuzzy-
DEVS in simulation of computer network security system.

2.1 GA-DEVS
Genetic Algorithm (GA) is an element of

evolutionary computation, which is a rapidly grnwing
area of soft computing. The continuing pricelperformance
improvements of computational systems have made GAS
attractive for some types of optimization. In particular,
genetic algorithms work very well on mixed (continuous
and discrete), combinatorial problems. They are less
susceptible to getting 'stuck' at local optima than gradient
search methods [4]. Although GA tends to be

computationally expensive, one can use some methods to
accelerate its process.

There are four main parts in the GA process,
namely, the problem representation or encoding, fitness or
objective function definition, fitness-based selection, and
evolutionary reproduction of candidate solutions
(individuals or chromosomes). So we need to deiine an
encoding method, fitness function, select method, and
reproduction method as well as criteria rules for the GA
formulation. Figure 2 shows the basic cycle of a GA.

stop?

solution
Gener Find Fitness Repro

& Select -duce

I I

Figure 2. Basic cycle of a genetic algorithm

The basic GA cycle is implemented via atomic and
coupled models of DEVS. Figure 3 shows a GA-DEVS
implementation. An initial model was added to collect
required initial conditions. In every generation, we can get
not only the current best fitmm value fi) but also the
average and deviation of fitness value vu, f4 of the
population. So we can fmd the tendency of the process by
observing the history of fitness during evolution.

Figure 3. GA-DEVS implementation

The functionality of the framework proposed is
tested with several examples. In the following example
we use flexible reproducing operators to accelerate the
GA process, i.e., modifying the probability of crossover
(Pc) and probability of mutation (Pm) according to the
deviation fitness of the population. Based on the resulting
performance analysis of GA-DEVS example-simulations,
we found that properly adjusting Pc and Pm during the
progress will improve the algorithm. However, GA is time
consuming, so sometime they didn't reach the global
optimum during desired simulation time.

A simulation result of& andf with generations is
sketched in figure 4. It can be seen that the maximum
fitness value never goes down because of using the elitism
strategy and the average fitness curve also keeps an

1712

upward tendency. When the average fitness goes very
close to max fitness value, which means, the diversity is
almost lost, it will be good to have more mutation. This
also verifies that flexible Pc and Pm will benefit the
progress and we still need to avoid the scaling problem.

Figure 4. Average & max fitness values versus
generations

The problem depicted above is to fmd the real value of x
which maximizes the function

f(x) = (-x2+255x) /42.5 (2)

for values of x in the range [O.OO ... 255.001. The best
individual is x=127.5. The tolerant error amount of x is
1.5 and for y is 1382.4471-382.501=0.0529. Linear
transfonnation f =uf+b with a=0.8, b==4 is used, so f m =

0.8*382.5+4 = 310.
This GA-DEVS simulation example has an advantage

to perform reasonably well within the limit of total
generation of GA. GA-DEVS will be a tool to optimize a
fuzzy or a classical controller for multi-agent simulations.

2.2 Fuzzy-DEVS
A fuzzy logic controller consists of three operations: (1)
fuzziiication, (2) inference engine, and (3)
defuzzification. The input sensory (crisp or numerical)
data are fed into fuzzy logic rule based system where
physical quantities are represented into linguistic variables
with appropriate membership functions. These linguistic
variables are then used in the antecedents (IF-Part) of a
set of fuzzy “IF-THEW rules within an inference engine
to result in a new set of fuzzy linguistic variables or
consequent (THEN-Part) [SI

A typical Mamdani rule can he composed as follows

IF x, is A; AND x, is A; THEN y’ is B’, for i = 1,2 ,..., l
where 4 and Ai are the fuzzy sets representing the ith-

antecedent pairs, and B’ are the fuzzy sets representing
the i’-consequent, and l is the number of rules.

We define DEW-Fuzzifer as follows:
A DEVS-Fuzzifier is an atomic DEVS model:

1713

Fz =(X, Y, S, &xt, &at, 1, ta, (3)

where, the input set, X, is usually a set of real numbers, to
be fuzzified. The output set Y = [0,1], since the output of
this atomic model is a fuzzy value. S is a sequence of
fuzzified input values: S={si I si = &xt(q,sj.l,x)).
S..,(q,s,x)=p(x), where p is the membership function
associated with this fuzzifier. Si.&) and h(s) are the
identity functions. ta (s) =O , since there is no time
advance in this model. p(x) is the membership function
associated with this fuzzifier.

This atomic model represents an antecedent membership
function.

A consequent membership function can be defined as:

cMF=(x, y, s, sat, &ut, h, ta, p) (4)

where, X is a set of fuzzy values: X=[O,l]. output
of this model is a fuzzy set, so Y is a set of fuzzy sets. Y =

{Z I C is a fuzzy set}.S is a sequence of discrete fuzzy sets
(membership functions). S=(..., Xi.!, Zi,Z+, ,._.)

The

where, p is the membership function associated with this
model. This function in fact cuts those values of the fuzzy
set Zp(q)/a, which their membership values are greater
than x (see Figure 5). &.,(s)=s, X(s)=s and ta=O.

In a typical fuzzy d e connectives are used to make
connection between antecedent pairs. An “AND”
connective takes the minium, while an “OR” connective
returns the maximum value of two pairs [SI.

Connectives are defmed in DEVS as atomic models:

I ’ I

Figure 5. A typical consequent membership function (CMF)
model

where, XI= ...= X. =[O,l] are input sets. (A connective
can haven inputs.), Y = S = [0,1], Si&) = s, h(s) = s, ta =
0, Sext(q,s,xl ,... &) = min(x, ,..., xJ, in case of ‘‘AND’’
and, S.,(q,s,xl,. . .x3 = max(x,,. ..,xJ, in case of “OR.

A fuzzy rule can be composed as a coupled model using
the above three afomic models. For instance, consider the
following fuzzy rule: “IF x is A OR x is B THEN z is C”.

Figure 6 shows how this fuzzy rule can be composed
using two Fuzzifiers, one Connective and one Ch4F
(consequent membership function).

In order to fully implement a Fuzzy Logic Controller, a
Defuzzifier is needed, which can be defmed in the same
way. i.e. takes fuzzy sets as input and calculates the
defuzzified value [5].

DeFZ=&, XZ, .. ., X., Y, S, L,, L, h, ta) (7)
where, Inputs of this atomic model are fuzzy sets so
XI=X2= ...= X. ={x[xisafuzzyset}
Output is a real number, Y = 93,
s = 'H, SI&) = s, h(s) = s, ta = 0,
G,,(q,s,xl ,.._ xn) = Center-of-Gravity (xI U x 2 u ... x.)

Center-of-Gravify(x) is a function which calculates the
defuzzified value of fuzzy set x using center ofgravity
method [5 , page 1931 :

Figure 6. A DEVS model for a typical fuzzy rule
'TF x is A ORy is B THEN z is C"

3 Virtual Laboratory
V-Lah@ [2] stands for Virtual Laboratory for

autonomous agents. The V-Lab@ environment consists of
4 distinct software layers, as Figure 7 illustrates, and each
of these layers fills a specific role in the simulation. The
foundation of the simulation consists of the operating
system and the network code needed to operate the
networking hardware, which in turn allows machines to
communicate over a network. Using this functionality, a
middleware such as the Remote Method Invocation (RMI)
[9], Common Object Request Broker Architecture
(CORBA), High Level Architecture (HLA) [SI or even
sockets acts to solve the problem of how to use the
network to connect different portions of a simulation
together. Using the IDEVS environment, V-Lab@ defines
an appropriate structure in which one can organize the
elements of IDEVS for a distributed agent based
simulation. It also provides the critical objects needed to
control the flow of time, the flow of messages, and the
base class objects designers will need to create their own
V-Lab@ modules.

V.Llb5

r 4 I-DE\S

Figure 7. Layered Architecture of V-Lab@

3.1 Architecture of V-Lab@
Modular architecture of V-Lab@ is as presented in

Figure 8. The different modules of V-Lab@ are the agents
which are implemented as DEVS or IDEVS atomic or
coupled models. The environment provides plug-and-play
for agents to be added and removed without distracting
the functionality of other agents. This modular
architecture is similar to the mediutor design pattern [4].

Figure 8. Modular Architecture of V-Lab@

Essential parts of V-Lab@ are the SimMan
(Simulation Manager) and SimEnv (Simulation
Environment). SimEnv is the high level coupled model.
V-Lab Simulation kicks off by starting SimEnv which
instantiates all other modules. SimMan acts as message
relay for all other modules. With SimMan, V-lab has the
property of separability, i.e., the modules do not know the
existence of other modules. The modules simply publish
the messages that they can handle. All other modules
request or subscribe by sending appropriate messages to
the SimMan.

4 Applications

4.1 Computer network security simulation
As an application of IDEVS components, we

demonstrate discrete event simulation of computer
network security system using Fuzzy-DEVS. We use
combination of crisp andfizy rules to simulate a network
security system which encompasses both prevention and
detection features.

Prevention systems are network security systems
which block unauthorized access to local network, such as
firewalls, packet filters, etc. Detection systems are systems
which detect misuse (or inmsion) but do not necessarily

1714

handle the prevention of such a misuse. Examples are
host based and network based intrusion detection (NIDS),
etc. The application discussed here focuses on the
simulation of combination of prevention and detection
systems using Fuzzy-DEVS, which employs similar
modular approach as in V-Lab@.

4.1.1 Implementation Details
In this paper, for prevention system functionality we

simulate packet filtering fuewall such as ipiables [7]
found in Linux. The fuewall rules defmed for filtering is
crisp. The rules are mitten in a configuration
(ConfigRules) file which is read each time when the
packet arrives. Typical policy rules are shown in figure 9.

/ /S rC- lp D e s t - i p S r c g o r t D e s t g o r t A C t l O n
ANY 127.0.0.1 6000 23 DENY
23.34.45.56 64.1.2.3 1024 21 A C C E P T

Figure 9. Filtering Rules

The entire simulation is based on multi-agent
architecture; in which each agent perform specific
filtering functionality. We have three agents TCP agent,
UDP agent and ICMP agent for handling TCP, UDP, and
ICMP protocol packets. A packet sensor looks into the
packet header to determine the protocol and passes the
packet to specific agent which can handle those packets.
The execution of the policy rules for each packet's
acceptance or rejection is done by the TCP and UDP
agents. For the purpose of simulation, we implement
several DEVS atomic model, each of which can generate
packets at particular time period with packet generation
rate as input to these models (Refer figure IO).

Several inhusion detection classifications can be done
such as: Invalid logins, abnormal connections, anomalies,
suspicions modification of files, denial of service,
protocol violation etc. We demonstrate here a particular
case of intrusion which is denial of service attack. Denial
of Service @OS) is an attack wherein the intruder or
hacker sends large number of packets (ICMP echo
packets or SYN packets) in small amount of time. We
employ temporalfizzy rules in ICMP agents to detect
such large number of packets witbin short interval of time.
While the TCP and UDP agents perform the filtering
@revention system) of network packets using crisp rules,
ICMP agent functions as detection system employing
temporal fuzzy rules to detect ICMP ECHO denial of
service attacks. The fuzzy d e s can also be extended to
TCP SYN flooding by introducing the rules in TCP agent.
The ICMP agent is coupled model, which helps to detect
DOS attacks. The IP address of the intruder is assumed to
be known here. So there is one intruder attacking onr
network with several ICMP ECHO packets.

Pkl GeN TCP Agent

Packet
UDP Agent

lcMp Agent
Pkt Genr = Packet Generator

Figure IO. Agent based Intrusion detection system

1-1

1 1 3 I 5 6 7 %
i

I P - - Akn

Figure 11. Generation of Alert due to DOS attack

From figure 11, we can infer that when packet arrival rate
increases, there is an intrusion. Since we assumed only
one intruder sending lot of ping (ICMP request) packets
within short interval of time, there is alert for intrusion
from the system. Simple temporal fuzzy rules can be
written, such as,
If packet-arrival-rate is HIGH in Lost-2-seconds, then
ALERT is HIGH
If packet-arrival-rate is LOW in Lost-2-seconds, then
ALERT is ZERO.
The membership function for packet arrival rate is as
shown in figure 12. Note the packet rate numbers are
experimental.

I I

Figure 12. Membership functions for packet arrival rate
(p.) and Last-2-seconds (p~)

Membership functions for output 'Alert' are as shown in
figure 13.

Figure 13. Membership function for output ALERT

1715

The degree of fuzziness in temporal fuzzy logic obtained
by following formula [6]:

4.2 Multi-agent Robotic Simulation

4.2.1 Architecture
The V-Lab@ architecture was successfully used to

demonstrate simulation of multiple robots. Each of the
modules, shown in figure 8, such as rover dynamics,
sensors, terrain, etc were implemented as DEVS atomic or
coupled models. The controller for robots was tested and
implemented using crisp and fuzzy logic separately.
Since the V-Lab@ architecture provides plug-and-play,
the controller can be easily removed and replaced without
affecting functionality of other modules like terrain, plot
or rover dynamics.

The simulation involves robots reaching a goal
position from random initial point avoiding the obstacles.
The obstacle information is defined in terrain model. The
agents (robots here) navigate with the help of sensors,
infra-red, GPS and compass, each of which are
implemented as DEVS atomic model. The robots do not
have global map information of the terrain, but local
sensory information helps the robot to detect obstacles,
accelerate, or decelerate, based on control algorithm in the
controller module.

4.2.2 Simulation Results

Figure 14. Robotic Simulation using V-Lab@

Figure 14 shows the result of robotic simulation of rovers
reaching a goal position avoiding the obstacles (convex
polygons). Several rovers can be added to create swarms
of robots performing collaborative task. Simulation can be
performed on different machines using Java Sockefs.

5 Conclusion
In this paper we described multi-agent network security
simulation using temporal fuzzy logic implemented within
IDEVS framework. For complex multi-agent simulation
we defined a modular and distributable framework called
Virtual Laboratory (V-Lab@) which is built on top of

IDEVS components. The control algorithms simulated
using IDEVS components will be tested on hardware
platform using AcrivMedia Robotics Pioneer I1 robots. As
a future work, GA-DEVS can be used to optimize the
temporal Fuzzy-DEVS rules.

6 References

[I] Arizona Center for Integrative Modeling and
Simulation, httu://wv,w.acims.arizona.edu/.

[2] El-Osery, A., J. Bnrge, M. Jamshidi, et al. “V-Lab@
- A Distributed Simulation and Modeling Environment
for Robotic Agents - SLA-Based Learning Controllers,”
IEEE Transactions on Systems, Man and Cybernetics,
Vol. 32, No. 6, pp. 791-803,2002

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
“Design Pattems: Elements of Reusable Object- Oriented
Software”, Addison Wesley Publication, Oct 1994.

[4] Jamshidi, M., L. dos S . Coelho, R. A. Krohlmg, and
P. Fleming, “Robust Control Design Using Genetic
Algorithms”, CRC Publkhers, Boca Raton, FL, 2002.

[5] Jamshidi, M., Zilouchian, A., “Intelligent Control
Systems using Sot? Computing Methodologies”, CRC
Press, Boca Raton, FL. 2001

[6] Mucientes, M., R. Iglesias, C.V. Regueiro, A.
Bugarin, P. Carinena, S . Barro, “Fuzzy Temporal Rules
for Mobile Robot Guidance in Dynamic Environments”,
IEEE Transactions on Systems, Man, and Cybernetic -
Part C, August 2001.

[7] Packet Filtering HOWTO, httu://www.netfilter.orp/

[8] US Department of Defense, “High. Level
Architecture”,
httus://www.dmso.mil/uublic/transitio~l~

[9] Wollrath, A. and Waldo, J. “Trail : RMI”,
httu:lliava.sun.com/docs/books/tutonal/xm~index.htd

[IO] Zeiglar, B. P., Praehofer, H., Kim, T.G., “Theory of
Modeling and Simulation”, Second edition, Academic
Press, Boston, 2000

[I l l Zeiglar, B.P. and Sajoughian, H., “Introduction to
DEVS Modeling and Simulation with JAVA A
Simplified Approach to HLA-Compliant Distributed
Simulations”, ACIM, http:l/www.acims.arizona. edu

1716

http://httu://wv,w.acims.arizona.edu
http:l/www.acims.arizona

