

Bibliographic Information

McGovern, S. M. and Gupta, S. M. “Greedy Algorithm for Disassembly Line
Scheduling”, Proceedings of the 2003 IEEE International Conference on Systems,
Man, and Cybernetics, Washington, DC, pp. 1737-1744, October 2003.

Copyright Information

(c) 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other users, including reprinting/ republishing this material for
advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work in
other works.

Contact Information

Dr. Surendra M. Gupta, P.E.
Professor of Mechanical and Industrial Engineering and
Director of Laboratory for Responsible Manufacturing
334 SN, Department of MIE
Northeastern University
360 Huntington Avenue
Boston, MA 02115, U.S.A.

(617)-373-4846 Phone
(617)-373-2921 Fax
gupta@neu.edu e-mail address

http://www.coe.neu.edu/~smgupta/ Home Page

Laboratory for Responsible Manufacturing

L R m

Greedy Algorithm for Disassembly Line Scheduling*

Seamus M. McGovern
Laboratory for Responsible Manufacturing
Department of Mechanical, Industrial and

Manufacturing Engineering
Northeastern University

Boston, MA, U.S.A.
mcgovern.s@neu.edu

Surendra M. Gupta**
Laboratory for Responsible Manufacturing
Department of Mechanical, Industrial and

Manufacturing Engineering
Northeastern University

Boston, MA, U.S.A.
gupta@neu.edu

* 0-7803-7952-7/03/$17.00 2003 IEEE.

** Corresponding author

Abstract - Remanufacturing, recycling, and disposal
recovery operations require the performance of
disassembly activities. The disassembly line is the best
choice for automated disassembly of returned products,
however, finding the optimal balance is computationally
intensive with exhaustive search quickly becoming
prohibitively large. In this paper, a greedy algorithm is
presented for obtaining optimal or near-optimal
solutions to the disassembly line balancing problem. The
greedy algorithm is a first-fit decreasing algorithm
further enhanced to preserve precedence relationships.
The algorithm seeks to minimize the number of
workstations while accounting for hazardous and high
demand components. A hill-climbing heuristic is then
developed to balance the part removal sequence.
Examples are considered to illustrate the methodology.
The conclusions drawn from the study include the
consistent generation of optimal or near-optimal
solutions, the ability to preserve precedence, the speed of
the algorithm and its practicality due to the ease of
implementation.

Keywords: Disassembly, disassembly line balancing,
combinatorial optimization, greedy algorithm, hill-climbing,
heuristics, product recovery.

1 Introduction
New, more rigid environmental legislation, increased

public awareness, and extended manufacturer
responsibility has caused a growing number of
manufacturers to begin recycling and remanufacturing their
post-consumed products after they have been disposed of
by consumers. In addition, the economic attractiveness of
reusing products, subassemblies or parts instead of
disposing of them has further fueled this effort. Recycling
is a process performed to retrieve the material content of
used and non-functioning products. Remanufacturing, on
the other hand, is an industrial process in which worn-out

products are restored to like-new conditions. Thus,
remanufacturing provides the quality standards of new
products with used parts.

With the goal of minimizing the amount of waste sent to
landfills, product recovery obtains materials and parts from
old or outdated products through recycling and
remanufacturing (including reuse of parts and products).
There are many attributes of a product that enhance
product recovery; examples include: ease of disassembly,
modularity, type and compatibility of materials used,
material identification markings, and efficient cross-
industrial reuse of common parts/materials. The first crucial
step of product recovery is disassembly.

Disassembly is a methodical extraction of valuable
parts/subassemblies and materials from discarded products
through a series of operations. After disassembly, reusable
parts/subassemblies are cleaned, refurbished, tested and
directed to the part/subassembly inventory for
remanufacturing operations. The recyclable materials can
be sold to raw-material suppliers, while the residuals are
sent to landfills.

Due to its role in product recovery, disassembly has
gained a great deal of attention in the recent literature. A
disassembly system faces many unique challenges; for
example, it has significant inventory problems because of
the disparity between the demands for certain parts or
subassemblies and their yield from disassembly. The flow
process is also different. As opposed to the normal
"convergent" flow in regular assembly environment, in
disassembly the flow process is "divergent" (a single
product is broken down into many subassemblies and
parts). There is also a high degree of uncertainty in the
structure and the quality of the returned products. The
conditions of the products received are usually unknown
and the reliability of the components is suspect. In
addition, some parts of the product may cause pollution or

may be hazardous. These parts tend to have a higher
chance of being damaged and hence may require special
handling, which can also influence the utilization of the
disassembly workstations. Various demand sources may
also lead to complications in disassembly line balancing.
Disassembly line balancing is critical in minimizing the use
of valuable resources (such as time and money) invested in
disassembly and maximizing the level of automation of the
disassembly process and the quality of the parts (or
materials) recovered.

In this paper, we solve the disassembly line balancing
problem (DLBP) using a greedy algorithm and a
subsequent hill-climbing heuristic. While exhaustive
search consistently provides the problems’ optimal
solution, its exponential time complexity quickly reduces
the practicality of this type of search. The combination of
the greedy algorithm and the hill-climbing heuristic,
however, is instrumental in rapidly obtaining near-optimal
solutions to the DLBPs intractably large solution space.
This technique is so rapid, in fact, that it should lend itself
to real-time solution of the DLBP on a dynamic
disassembly line as components arrive for disassembly on
mixed-model and mixed-product lines. The greedy
algorithm considered here is based on the First-Fit
Decreasing (FFD) algorithm effectively used in computer
processor scheduling and enhanced to preserve
precedence relationships within the product being
disassembled. The FFD is further modified to a multi-
objective greedy algorithm that seeks to minimize the
number of workstations while attempting to remove
hazardous and high demand product components as early
as possible. A hill-climbing heuristic is then developed to
balance the part removal sequence (i.e., ensure that the idle
times at each workstation are similar). Herein referred to as
the Adjacent Element Hill Climbing (AEHC) heuristic, the
AEHC only compares tasks assigned in adjacent
workstations. This is done both to conserve search time
(by not investigating all tasks in all workstations) and to
only investigate swapping tasks that will most likely result
in a feasible sequence (since the farther apart the
positional changes, the less likely that precedence will be
preserved for both of the tasks and for all of the tasks
between them). Examples are considered to illustrate the
implementation of the methodology. The conclusions
drawn from the study include the consistent generation of
optimal or near-optimal solutions, the ability to preserve
precedence relationships, the superior speed of the
method, and its practicality due to the ease of
implementation in solving disassembly line balancing
problems.

2 Literature review
There are many steps involved in product recovery [4].

The first crucial step is disassembly. Disassembly is a

methodical extraction of valuable parts/subassemblies and
materials from post-used products through a series of
operations [1] [9]. After disassembly, re-usable
parts/subassemblies are cleaned, refurbis hed, tested and
directed to the part/subassembly inventory for
remanufacturing operations. The recyclable materials can
be sold to raw-material suppliers and the residuals are
disposed of.

Gungor and Gupta presented the first introduction to the
disassembly line balancing problem [5] [6] [8] and
developed an algorithm for solving the DLBP in the
presence of failures with the goal of assigning tasks to
workstations in a way that probabilistically minimizes the
cost of defective parts [7]. Tang et al. developed an
algorithm to facilitate disassembly line design and
optimization [12]. McGovern et al. applied combinatorial
optimization techniques to the DLBP [11].

3 Notation
 The following notation is used in the remainder of the
paper:

CT cycle time
F balance for a given solution sequence
F* current best balance
I total idle time for a given solution sequence
Ij total idle time of workstation j
Imax maximum possible total idle time
Imin minimum possible total idle time
ISSk binary value; 1 if k th part is in solution

sequence, else 0
j workstation count (0,…, NWS)
k part identification (1,…, n)
n number of parts for removal
NWS number of workstations for a given

solution sequence
NWSj identification of workstations for a given

solution
NWSmax maximum possible number of workstations

for PRT
NWSmin minimum possible number of workstations

for PRT
PRT part removal time
PRTk time required to remove k th part

UPRT cardinality of the set of unique part removal

times
PSGk k th part in the solution sequence after

application of the greedy algorithm
PSHk k th part in the solution sequence after

application of the AEHC heuristic
PSSk k th part in sequence after sorting
PWSk workstation the k th part is assigned to
WSj elapsed time in workstation j

4 The DLBP model description
The particular application investigated in this paper

seeks to fulfill five objectives:

1. Provide a feasible disassembly sequence for the
product being investigated.

2. Minimize the number of disassembly
workstations and hence, minimize the total idle
time.

3. Balance the disassembly line (i.e., ensure the idle
times at each workstation are similar).

4. Remove hazardous components early in the
disassembly sequence.

5. Remove high demand components before low
demand components in the case of equal part
removal times.

The result is an integer, multi-criteria decision making
problem with an exponential search space. Testing a given
solution against the precedence constraints fulfills
objective 1. Minimizing the sum of the workstation idle
times, which will also minimize the total number of
workstations, attains objective 2. This objective is
represented as:

 Min Z =)(
1

∑
=

−
NWS

j
jWSCT (1)

Line balancing seeks to achieve Perfect Balance (all idle
times equal to zero). When this is not achievable, either
Line Efficiency (IE) or the Smoothness Index (SI) is used as
a performance evaluation tool, Elsayed and Boucher [3].
We use a measure of balance that combines the two and is
easier to calculate [11]. SI rewards similar idle times at each
workstation, but at the expense of allowing for a large
(suboptimal) number of workstations. This is because SI
compares workstation elapsed times to the largest WSj
instead of the CT as this method does. IE rewards the
minimum number of workstations, but allows unlimited
variance in idle times between workstations because no
comparison is made between WSjs. The balancing method
used here simultaneously minimizes the number of
workstations while aggressively ensuring that idle times at
each workstation are similar. The method is computed
based on the minimum number of workstations required as
well as the sum of the square of the idle times for all the
workstations. This penalizes solutions where, even though
the number of workstations may be minimized, one or more
have an exorbitant amount of idle time when compared to
the other workstations. It provides for leveling the
workload between different workstations on the
disassembly line. Therefore, a resulting minimum
performance value is the more desirable solution indicating
both a minimum number of workstations and similar idle

times across all workstations. This objective is represented
as:

 Min Z = 2

1

)(∑
=

−
N W S

j
jWSCT (2)

With Perfect Balance indicated by:

 Min Z = 0 (3)

Note that mathematically, this objective function
effectively makes objective 2 redundant due to the fact that
it concurrently minimizes the WSjs.

In addition, we find:

 NWSmax = n (4)

 NWSmin =

 ∑
=

CT

PRT
n

k
k

1 (5)

)(
1

∑
=

−=
N W S

j
jWSCTI (6)

Problem assumptions include:

1. Part removal times are deterministic
2. Part removal times are constant
3. Each product undergoes complete disassembly
4. All products contain all parts with no additions,

deletions, or modifications
5. All the parts are assigned
6. Each part is assigned to one and only one

workstation
7. The sum of the part removal times of all the parts

assigned to a workstation must not exceed CT
8. The precedence relationships among the parts

must not be violated

5 The greedy algorithm and AEHC
heuristic

 A two-phased approach is used to provide a very fast,
near-optimal solution to the multi-objective DLBP. The first
phase rapidly provides a feasible solution to the DLBP and
minimum or near-minimum NWS using a greedy algorithm
based on the FFD algorithm. The second phase is then
implemented to compensate for the DLBP greedy
algorithms’ inability to balance the workstations. This local
search quickly provides a near-optimal and feasible
balance sequence using a hill climbing heuristic, AEHC.

5.1 Greedy model description and the algorithm

 A greedy strategy always makes the choice that looks
the best at the moment. That is, it makes a locally optimal
choice in the hope that this choice will lead to a globally
optimal solution. Greedy algorithms do not always yield
optimal solutions, but for many problems they do [2]. The
DLBP greedy algorithm was built around the FFD
algorithm. The FFD algorithm looks at each element in a
list, from largest to smallest (PRT in the DLBP), and puts
that element into the first workstation in which it fits.
When all of the work elements have been assigned to a
workstation, the process is complete. The greedy FFD is
further modified with priority rules to meet multiple
objectives. The most hazardous parts are prioritized to the
earliest workstations, greedy ranked large removal time to
small. The remaining non-hazardous parts are greedy
ranked next, large removal times to small. In addition,
selecting the part with the larger demand ahead of those
with lesser demands breaks any ties for parts with equal
part removal times. This is done to prevent damage to
these more desirable parts. The DLBP greedy algorithm
provides an optimal or near optimal minimum number of
workstations; the more constraints, the more likely the
minimal number of workstations is found. The level of
performance (minimal NWS) tends to increase with the
number of precedence constraints.

The specific details for this implementation are as
follows. The DLBP greedy algorithm first sorts the list of
parts. The sorting is based on part removal times, whether
or not the part contains hazardous materials, and the
subsequent demand for the removed part. Hazardous parts
are put at the front of the list for selection into the solution
sequence. The hazardous parts are ranked from largest to
smallest part removal times. The same is then done for the
non-hazardous parts. Any ties (i.e., two parts with equal
part removal times) are not randomly broken, but rather
ordered based on the demand for the part, with the higher
demand part being placed earlier on the list.

Once the parts are sorted in this multi-criteria manner,
the parts are placed in workstations in FFD greedy order
while preserving precedence. Each part in the sorted list is
examined from first to last. If the part had not previously
been put into the solution sequence (as described by ISSk),
the part is put into the current workstation if idle time
remains to accommodate it and as long as putting it into
the sequence at that position will not violate any of its
precedence constraints. If no workstation can
accommodate it at the given time in the search due to
precedence constraints, the part is maintained on the
sorted list (i.e., its ISSk value remains 0) and the next part
(not yet selected) on the sorted list is considered. If all
parts have been examined for insertion into the current
workstation on the greedy solution list, a new workstation

is created and the process is repeated. The following is the
DLBP greedy procedure (post-sorting).

PROCEDURE_GREEDY{
 prt_ctr = 0;
 j = 0 ;
 FOR ∀ k {
 WHILE ((ISS PSSprt_ctr) ∨
 (PRTPSSprt_ctr > Ij) ∨
 (PROCEDURE_PREC_FAIL)){
 IF (prt_ctr < n - 1){
 prt_ctr = prt_ctr + 1;
 }
 ELSE{
 j = j + 1;
 prt_ctr = 0;
 }
 }
 Ij = Ij – PRTPSSprt_ctr;
 PSGk = PSSprt_ctr;
 PWSk = j;
 ISS PSSprt_ctr = 1;
 prt_ctr = 0;
 }
 F = PROCEDURE_CALC_BALANCE;
 RETURN;
}

While being very fast and generally very efficient, the
FFD-based greedy algorithm is not always able to
optimally minimize the number of workstations. In addition,
there is no capability to balance the workstations; in fact,
the FFD structure lends itself to filling the earlier
workstations as much as possible, often to capacity, while
later workstations have progressively greater and greater
idle times. This results in extremely poor balance. This
limitation led to the development of the AEHC to fulfill
objective 3.

5.2 Hill climbing description and the heuristic

The second phase of the two-phase approach to the
multi-objective DLBP is implemented to compensate for the
DLBP greedy algorithms’ inability to balance the
workstation assignments. The second phase quickly
provides a near-optimal and feasible balance sequence
using a hill-climbing local search heuristic, AEHC. Hill-
climbing is an iterated improvement algorithm, basically a
gradient descent/ascent. It makes use of an iterative
greedy strategy, which is to move in the direction of
increasing value. A hill-climbing algorithm evaluates the
successor states and keeps only the best one [10]. AEHC
is designed to consider swapping each task in every
workstation with each task in the next adjacent workstation
in search of improved balance. It does this while
preserving precedence and not exceeding CT in any WSj.

Only adjacent workstations are compared to enable a rapid
search and since it is deemed unlikely that parts several
workstations apart can be swapped and still preserve the
precedence of all of the tasks in-between.

The neighborhood definition and search details of the
AEHC are as follows. After the DLBP greedy algorithm
generates a minimum NWS, feasible solution, the AEHC
heuristic is applied to improve the balance. The AEHC
does this by going through each task element (part) in
each workstation and comparing it to each task element in
the next adjacent workstation. If the two task elements can
be exchanged while preserving precedence, without
exceeding either workstations available idle time, and with
a resulting improvement in the overall balance, the
exchange is made and the resulting solution sequence is
saved as the new solution sequence. This process is
repeated until task elements of the last workstation have
been examined. The heuristic is given below in pseudo-
code format.

PROCEDURE_HILL_CLIMB{
 rt_ctr = 0;
 PROCEDURE_COPY (∀ PSGk, Ij, F, NWS,à∀ best);
 WHILE (PWSrt_ctr = 0){
 rt_ctr = rt_ctr + 1;
 }
 DO{
 prt_rt_start = rt_ctr;
 F* = best.F;
 prt_lft = 0;
 FOR ∀ j ∈ NWS{
 WHILE (PWSprt_lft = j){
 prt_rt = prt_rt_start;
 WHILE (PWSprt_rt = j + 1){
 PROCEDURE_COPY (∀ best, à∀ temp);
 PROCEDURE_SWAP (prt_rt, prt_lft, j, temp);
 IF ((temp.Ij > 0) ∧
 (temp.Ij+1 > 0) ∧
 (temp.F < best.F) ∧
 (PROCEDURE_PRECEDENCE_PASS (
 (∀ temp, prt_rt, prt_lft))){
 PROCEDURE_COPY (∀ temp à∀ best);
 }
 prt_rt = prt_rt + 1;
 }
 prt_lft = prt_lft + 1;
 }
 prt_rt_start = prt_rt;
 }
 }
 WHILE (best.F < F*);
 PROCEDURE_COPY (∀ bestà PSHk, Ij, F);
 RETURN;
}

As is the norm with greedy algorithms, the DLBP greedy
process is run once to determine a solution. Hill-climbing,
however – like many combinatorial optimization techniques
– is typically continuously run on subsequent solutions
for as long as is deemed appropriate or acceptable by the
user or until it is no longer possible to improve, at which
point it is assumed that the (local) optimum has been
reached [10]. Repeating the AEHC method in this way
provides improved balance over time. The AEHC was
tested both ways; run only once after the greedy solution
was generated, as well as run until the local optimum was
obtained. A single AEHC iteration has several benefits,
especially since the problem sets investigated in this paper
were relatively small and lent themselves to good solutions
after only one iteration. Also, the AEHC was seen to
provide its largest balance performance improvement in
just one iteration. AEHC approaches or reaches the local
optima the first time it is run. Additionally, a single iteration
of AEHC is recommended since the process proposed in
this paper is aimed at a real-time solution of the DLBP on a
dynamic mixed-model and mixed-product disassembly line.

6 Numerical results
 The developed algorithms were investigated on a

variety of test cases to confirm their performance and to
optimize parameters. Both the DLBP greedy algorithm and
the AEHC were used sequentially to provide a solution to
the disassembly line balancing problem presented by
Gungor and Gupta [8] where the objective is to completely
disassemble a given component consisting of n
subassemblies on a disassembly line operating at a speed
which allows CT seconds for each workstation to perform
its required disassembly tasks. This provided an
application to an actual disassembly line balancing
problem. This practical and relevant example consists of
the data for the disassembly of a personal computer (PC)
as shown in table 1. It consists of 8 subassemblies with
part removal times of PRT = {14, 10, 12, 18, 23, 16, 20, 36}.
The disassembly line is operating at a speed that allows 40
seconds (CT = 40) for each workstation.

Table 1. Knowledge base of the personal computer example

Task Part Removal
Description

Time Hazardous Demand

1 PC top cover 14 No 360

2 Floppy drive 10 No 500

3 Hard drive 12 No 620

4 Back plane 18 No 480

5 PCI cards 23 No 540

6 RAM modules (2) 16 No 750

7 Power supply 20 Yes 295

8 Motherboard 36 No 720

The DLBP greedy algorithm and the AEHC obtained an
optimal solution for this problem and did so very quickly.
The greedy algorithm alone was able to successfully find
one of the four equivalent, optimal solutions (table 2). The
AEHC found no better solution nearby and returned the
original, optimal solution sequence. The speed for the C++
implemented program on this problem was less than 1/100th
of a second for both the DLBP greedy algorithm and the
AEHC on a 2.5GHz P4 x86 family computer.

Table 2. The optimal disassembly sequence solution

Workstation

1 2 3 4

1 14

5 23

3 12

6 16

2 10

8 36

7 20 Pa
rt

 r
em

ov
al

 s
eq

ue
nc

e

4 18

T
im

e
to

 r
em

ov
e

pa
rt

 (
in

se

co
nd

s)

Total
time

37 38 36 38

Idle time

3 2 4 2

The optimality of the NWS minimization and the
balancing is demonstrated by the solution consisting of a
total of four workstations with 3 + 1 seconds per
workstation of idle time. Therefore, the obtained solution
was optimal in number of workstations and also provided
idle times at each workstation of at least 5% but not more
than 10% of the total disassembly time allocated to each
workstation of 40 seconds. This solution is consistent with
the solution found by M cGovern et al. [11].

The first three objectives (generate a feasible
disassemble sequence, minimize the number of
workstations, and balance the disassembly line) were
achieved by the DLBP greedy algorithm and the AEHC.
The last two objectives (remove hazardous components
early in the disassembly sequence and remove high
demand components before low demand components)
were preempted by rigid enforcement of the precedence
constraints. The DLBP greedy algorithm and the AEHC
heuristic consistently and rapidly found an optimal
solution in what approaches an exponentially large search
space (potentially as large as 8! or 40,320).

The developed DLBP greedy algorithm and the AEHC
heuristic were then used on a test case to further
demonstrate their performances as well as their limitations.
This was done by using part times consisting exclusively
of prime numbers. They were further selected to ensure

that no combinations of these part removal times allowed
for any equal summations in order to reduce the number of
possible optimal solutions. For example, part removal times
1, 3, 5 and 7 and CT = 16 would have minimum idle time
solutions of not only one 1, one 3, one 5 and one 7 at each
workstation, but various additional combinations of these
as well since 1 + 7 = 3 + 5 = ½ CT. Subsequently, the
chosen instances were made up of parts with removal times
of 3, 5, 7 and 11 and CT = 26. As a result, the optimal
balance for all subsequent instances would consist of a
perfect balance of precedence preserving combinations of
3, 5, 7 and 11 at each workstation with idle times of 0. To
further complicate the data (i.e., provide a large, feasible
search space), only one part was listed as hazardous and
this was one of the parts with the largest part removal time.
This was done so that only the hazardous sequencing
would be demonstrated, while providing no solution
sequence advantage to the DLBP greedy algorithm/AEHC
heuristic. In addition, the demand was made equal for all
the parts except for one to demonstrate demand
sequencing, again while providing no advantage for the
DLBP greedy algorithm/AEHC heuristic. Also, there were
no precedence constraints placed on the sequence, a
deletion that further challenges the methods’ ability to
attain an optimal solution. Finally, a small n was selected
which decreases the NWS and tends to exaggerate less
than optimal performance. The final test data consisted of
12 parts; 4 subassemblies with 4 unique part removal times
of 3, 5, 7 and 11. The disassembly line is operated at a
speed that allows 26 seconds (CT = 26) for each
workstation (Table 3a). For any n parts, the following can
be calculated:

 nNWS =max
 (7)

UPRT

n
NWS =min

 (8)

U

U

PRT
PRTnCT

I
)1(

max

−
= (9)

 0min =I (10)

Since 4=UPRT in this paper, each PRT is

generated by:

≤<

≤<

≤<

≤<

=

nk
n

n
k

n

n
k

n

n
k

PRT k

4
3

,11

4
3

2
,7

24
,5

4
0,3

 (11)

This data set forced the DLBP greedy algorithm to
obtain the near-optimal solution of 4 workstations, versus
the optimal 3. Unlike the previous case study example
however, this data did allow the AEHC to obtain a better-
balanced solution nearby and demonstrate hazardous
material and high demand item sequencing (Tables 3b, 3c,
and 3d).

Table 3. Solution generation to local optima using
manufactured data

a)

Original Data

Part ID 1 2 3 4 5 6 7 8 9 10 11 12

PRT 3 3 3 5 5 5 7 7 7 11 11 11

Hazard N N N N N N N N N N N Y

Demand 0 0 0 0 1 0 0 0 0 0 0 0

b)

Sorted (greedy)

Part ID 12 11 10 7 8 9 5 4 6 1 2 3

PRT 11 11 11 7 7 7 5 5 5 3 3 3

Hazard Y N N N N N N N N N N N

Demand 0 0 0 0 0 0 1 0 0 0 0 0

c)

DLBP Greedy Solution

Part ID 12 11 1 10 7 8 9 5 4 6 2 3

PRT 11 11 3 11 7 7 7 5 5 5 3 3

WS 1 1 1 2 2 2 3 3 3 3 3 4

Hazard Y N N N N N N N N N N N

Demand 0 0 0 0 0 0 0 1 0 0 0 0

d)

AEHC Solution (to local optima)

Part ID 12 11 1 10 5 8 3 7 4 6 2 9

PRT 11 11 3 11 5 7 3 7 5 5 3 7

WS 1 1 1 2 2 2 3 3 3 3 3 4

Hazard Y N N N N N N N N N N N

Demand 0 0 0 0 1 0 0 0 0 0 0 0

The speed was again less than 1/100th of a second for
both the DLBP greedy algorithm and the AEHC. Although
not an optimal solution, this contrived problem was still
successfully solved by the greedy algorithm to within 11%
of the optimal number of workstations (when compared to
the worst case) and by the single iteration AEHC to within
8.3% of the optimal balance (when compared to the worst
case). The problem was solved to within 8.1% of the
optimal balance by the DLBP greedy algorithm/AEHC

heuristic method (Figure 1) with the AEHC run until no
better solutions were found (local optima) which only
required one additional iteration.

1
2

3
4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
al

an
ce

 p
er

fo
rm

an
ce

 c
o

m
p

ar
ed

 t
o

w

o
rs

t
ca

se

Worst case, greedy, AEHC, and optimal

Figure 1. DLBP greedy algorithm/AEHC heuristic
performance

Larger n or the inclusion of precedence constraints will
increasingly move the DLBP greedy algorithm/AEHC
heuristic towards the optimal solution. Note that a single
search by the AEHC yields a solution effectively as well as
the local optima search, but in potentially significantly less
time. Also note that the first task listed in the greedy
solution is part number 12 (PRT of 11 seconds), which is
the only part labeled as hazardous (objective 4), and that
the first part listed in the greedy solution with a PRT of 5
seconds is part number 5, which has the highest demand of
the three parts having equal part removal times (objective
5). Though in this example hazardous and high demand
item positions are maintained by the AEHC, this may not
always be the case. The AEHC is designed to search
without regard for hazardous materials since these items
would not be expected to drift excessively (due to the
adjacent nature of this search) and since the AEHC
exclusively seeks the best balance. Although the AEHC
also searches without regard for high demand items for the
same reasons, their sequence position tends to stay the
same or even improve (i.e., move to an earlier removal time
in the disassembly sequence) since the higher demand
items are initially ahead of the lower demand items (with
equal part removal times) from the greedy placement and
hence will be the first looked at to be mo ved forward in the
disassembly sequence.

7 Conclusions
A very fast, near-optimal, two-phase approach to the

multi-objective DLBP was developed and presented in this

paper. The first phase rapidly provides a feasible solution
to the DLBP using a greedy algorithm based on the FFD
algorithm and modified to meet multiple objectives. The
DLBP greedy algorithm provides a near-optimal minimum
number of workstations, with the level of optimality
increasing with the number of constraints. The second
phase quickly provides a near-optimal and feasible balance
sequence using a hill-climbing heuristic referred to as
AEHC. AEHC only completes a pair-wise workstation
comparison to allow for rapid search and since it is deemed
unlikely that tasks several workstations out can be
swapped and still preserve precedence of all the tasks in-
between. Although a near-optimum technique, the DLBP
greedy algorithm/AEHC heuristic quickly found optimal
solutions, or solutions within about ten percent of optimal
in an exponentially large search space. The AEHC
balancing method worked well, generating perfect balance
solutions when able, while keeping within ten percent of
the optimal balance otherwise. The DLBP greedy
algorithm/AEHC heuristic appears well suited to the multi-
criteria decision making problem format. Also, the multi-
criteria DLBP greedy algorithm and the single iteration
AEHC algorithm lend themselves to real-time solution of
the DLBP on a dynamic mixed-model and mixed-product
disassembly line. In addition, the DLBP greedy
algorithm/AEHC heuristic are ideally suited to integer
problems, a requirement of many disassembly problems,
which generally do not lend themselves to rapid or easy
solution by traditional optimum solution generating
mathematical programming techniques.

References
[1] L. Brennan, S. M. Gupta, and K. N. Taleb, “Operations

planning issues in an assembly/disassembly
environment”, International Journal of Operations
and Production Planning, Vol 14, No. 9, pp. 57-67,
1994.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, The MIT Press,
Cambridge, MA, 2001.

[3] E. A. Elsayed, and T. O. Boucher, Analysis and
Control of Production Systems, Prentice Hall, Upper
Saddle River, NJ, 1994.

[4] A. Gungor, and S. M. Gupta, “Issues in
environmentally conscious manufacturing and
product recovery: a survey”, Computers and
Industrial Engineering, Vol 36, No. 4, pp. 811-853,
1999.

[5] A. Gungor, and S. M. Gupta, “Disassembly Line
Balancing”, Proceedings of the 1999 Annual Meeting

of the Northeast Decision Sciences Institute, Newport,
Rhode Island, March 24-26, pp. 193-195, 1999.

[6] A. Gungor, and S. M. Gupta, “A Systematic Solution
Approach to the Disassembly Line Balancing
Problem”, Proceedings of the 25th International
Conference on Computers and Industrial
Engineering, New Orleans, Louisiana, March 29-April
1, pp. 70-73, 1999.

[7] A. Gungor, and S. M. Gupta, “A solution approach to
the disassembly line problem in the presence of task
failures”, International Journal of Production
Research, Vol 39, No. 7, pp. 1427-1467, 2001.

[8] A. Gungor, and S. M. Gupta, “Disassembly line in
product recovery”, International Journal of
Production Research, Vol 40, No. 11, pp. 2569-2589,
2002.

[9] S. M. Gupta, and K. N. Taleb, “Scheduling
disassembly”, International Journal of Production
Research, Vol 32, pp. 1857-1866, 1994.

[10] A. A. Hopgood, Knowledge-based systems for
engineers and scientists, CRC Press, Boca Raton, FL,
1993.

[11] S. M. McGovern, S. M. Gupta, and S. V. Kamarthi,
“Solving disassembly sequence planning problems
using combinatorial optimization”, Proceedings of the
2003 Annual Meeting of the Northeast Decision
Sciences Institute, Providence, Rhode Island, pp. 178-
180, March 2003.

[12] Y. Tang, M. Zhou, and R. Caudill, “A Systematic
Approach to Disassembly Line Design”, Proceedings
of the 2001 IEEE International Symposium on
Electronics and the Environment, Denver, Colorado,
May 7-9, pp. 173-178, 2001.

	Northeastern University
	January 01, 2003
	Greedy algorithm for disassembly line scheduling
	Seamus M. McGovern
	Surendra M. Gupta
	Recommended Citation

	01: 1737
	02: 1738
	03: 1739
	04: 1740
	05: 1741
	06: 1742
	07: 1743
	08: 1744

