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Abstract - Remanufacturing, recycling, and disposal 
recovery operations require the performance of 
disassembly activities. The disassembly line is the best 
choice for automated disassembly of returned products, 
however, finding the optimal balance is computationally 
intensive with exhaustive search quickly becoming 
prohibitively large. In this paper, a greedy algorithm is 
presented for obtaining optimal or near-optimal 
solutions to the disassembly line balancing problem. The 
greedy algorithm is a first-fit decreasing algorithm 
further enhanced to preserve precedence relationships. 
The algorithm seeks to minimize the number of 
workstations while accounting for hazardous and high 
demand components. A hill-climbing heuristic is then 
developed to balance the part removal sequence. 
Examples are considered to illustrate the methodology. 
The conclusions drawn from the study include the 
consistent generation of optimal or near-optimal 
solutions, the ability to preserve precedence, the speed of 
the algorithm and its practicality due to the ease of 
implementation. 

Keywords: Disassembly, disassembly line balancing, 
combinatorial optimization, greedy algorithm, hill-climbing, 
heuristics, product recovery. 

1 Introduction 
New, more rigid environmental legislation, increased 

public awareness, and extended manufacturer 
responsibility has caused a growing number of 
manufacturers to begin recycling and remanufacturing their 
post-consumed products after they have been disposed of 
by consumers. In addition, the economic attractiveness of 
reusing products, subassemblies or parts instead of 
disposing of them has further fueled this effort. Recycling 
is a process performed to retrieve the material content of 
used and non-functioning products. Remanufacturing, on 
the other hand, is an industrial process in which worn-out 

products are restored to like-new conditions. Thus, 
remanufacturing provides the quality standards of new 
products with used parts. 

With the goal of minimizing the amount of waste sent to 
landfills, product recovery obtains materials and parts from 
old or outdated products through recycling and 
remanufacturing (including reuse of parts and products). 
There are many attributes of a product that enhance 
product recovery; examples include: ease of disassembly, 
modularity, type and compatibility of materials used, 
material identification markings, and efficient cross-
industrial reuse of common parts/materials. The first crucial 
step of product recovery is disassembly. 

Disassembly is a methodical extraction of valuable 
parts/subassemblies and materials from discarded products 
through a series of operations. After disassembly, reusable 
parts/subassemblies are cleaned, refurbished, tested and 
directed to the part/subassembly inventory for 
remanufacturing operations. The recyclable materials can 
be sold to raw-material suppliers, while the residuals are 
sent to landfills. 

Due to its role in product recovery, disassembly has 
gained a great deal of attention in the recent literature. A 
disassembly system faces many unique challenges; for 
example, it has significant inventory problems because of 
the disparity between the demands for certain parts or 
subassemblies and their yield from disassembly. The flow 
process is also different. As opposed to the normal 
"convergent" flow in regular assembly environment, in 
disassembly the flow process is "divergent" (a single 
product is broken down into many subassemblies and 
parts). There is also a high degree of uncertainty in the 
structure and the quality of the returned products. The 
conditions of the products received are usually unknown 
and the reliability of the components is suspect. In 
addition, some parts of the product may cause pollution or 



may be hazardous. These parts tend to have a higher 
chance of being damaged and hence may require special 
handling, which can also influence the utilization of the 
disassembly workstations. Various demand sources may 
also lead to complications in disassembly line balancing. 
Disassembly line balancing is critical in minimizing the use 
of valuable resources (such as time and money) invested in 
disassembly and maximizing the level of automation of the 
disassembly process and the quality of the parts (or 
materials) recovered. 

In this paper, we solve the disassembly line balancing 
problem (DLBP) using a greedy algorithm and a 
subsequent hill-climbing heuristic. While exhaustive 
search consistently provides the problems’ optimal 
solution, its exponential time complexity quickly reduces 
the practicality of this type of search. The combination of 
the greedy algorithm and the hill-climbing heuristic, 
however, is instrumental in rapidly obtaining near-optimal 
solutions to the DLBPs intractably large solution space. 
This technique is so rapid, in fact, that it should lend itself 
to real-time solution of the DLBP on a dynamic 
disassembly line as components arrive for disassembly on 
mixed-model and mixed-product lines. The greedy 
algorithm considered here is based on the First-Fit 
Decreasing (FFD) algorithm effectively used in computer 
processor scheduling and enhanced to preserve 
precedence relationships within the product being 
disassembled. The FFD is further modified to a multi-
objective greedy algorithm that seeks to minimize the 
number of workstations while attempting to remove 
hazardous and high demand product components as early 
as possible. A hill-climbing heuristic is then developed to 
balance the part removal sequence (i.e., ensure that the idle 
times at each workstation are similar). Herein referred to as 
the Adjacent Element Hill Climbing (AEHC) heuristic, the 
AEHC only compares tasks assigned in adjacent 
workstations. This is done both to conserve search time 
(by not investigating all tasks in all workstations) and to 
only investigate swapping tasks that will most likely result 
in a feasible sequence (since the farther apart the 
positional changes, the less likely that precedence will be 
preserved for both of the tasks and for all of the tasks 
between them). Examples are considered to illustrate the 
implementation of the methodology. The conclusions 
drawn from the study include the consistent generation of 
optimal or near-optimal solutions, the ability to preserve 
precedence relationships, the superior speed of the 
method, and its practicality due to the ease of 
implementation in solving disassembly line balancing 
problems. 

2 Literature review 
There are many steps involved in product recovery [4]. 

The first crucial step is disassembly. Disassembly is a 

methodical extraction of valuable parts/subassemblies and 
materials from post-used products through a series of 
operations [1] [9]. After disassembly, re-usable 
parts/subassemblies are cleaned, refurbis hed, tested and 
directed to the part/subassembly inventory for 
remanufacturing operations. The recyclable materials can 
be sold to raw-material suppliers and the residuals are 
disposed of. 

Gungor and Gupta presented the first introduction to the 
disassembly line balancing problem [5] [6] [8] and 
developed an algorithm for solving the DLBP in the 
presence of failures with the goal of assigning tasks to 
workstations in a way that probabilistically minimizes the 
cost of defective parts [7]. Tang et al. developed an 
algorithm to facilitate disassembly line design and 
optimization [12]. McGovern et al. applied combinatorial 
optimization techniques to the DLBP [11]. 

3 Notation 
 The following notation is used in the remainder of the 
paper: 

CT     cycle time 
F      balance for a given solution sequence  
F*     current best balance 
I      total idle time for a given solution sequence 
Ij      total idle time of workstation j 
Imax     maximum possible total idle time 
Imin     minimum possible total idle time 
ISSk     binary value; 1 if k th part is in solution  

sequence, else 0 
j      workstation count (0,…, NWS) 
k       part identification (1,…, n) 
n      number of parts for removal 
NWS    number of workstations for a given  

solution sequence 
NWSj    identification of workstations for a given  

solution 
NWSmax   maximum possible number of workstations  

for PRT 
NWSmin   minimum possible number of workstations  

for PRT 
PRT    part removal time 
PRTk    time required to remove k th part  

UPRT  cardinality of the set of unique part removal  

times 
PSGk    k th part in the solution sequence after  

application of the greedy algorithm 
PSHk    k th part in the solution sequence after  

application of the AEHC heuristic 
PSSk    k th part in sequence after sorting 
PWSk    workstation the k th part is assigned to 
WSj     elapsed time in workstation j 



4 The DLBP model description 
The particular application investigated in this paper 

seeks to fulfill five objectives: 

1. Provide a feasible disassembly sequence for the 
product being investigated. 

2. Minimize the number of disassembly 
workstations and hence, minimize the total idle 
time. 

3. Balance the disassembly line (i.e., ensure the idle 
times at each workstation are similar). 

4. Remove hazardous components early in the 
disassembly sequence. 

5. Remove high demand components before low 
demand components in the case of equal part 
removal times. 

The result is an integer, multi-criteria decision making 
problem with an exponential search space. Testing a given 
solution against the precedence constraints fulfills 
objective 1. Minimizing the sum of the workstation idle 
times, which will also minimize the total number of 
workstations, attains objective 2. This objective is 
represented as: 

 Min Z = )(
1

∑
=

−
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j
jWSCT  (1) 

Line balancing seeks to achieve Perfect Balance (all idle 
times equal to zero). When this is not achievable, either 
Line Efficiency (IE) or the Smoothness Index (SI) is used as 
a performance evaluation tool, Elsayed and Boucher [3]. 
We use a measure of balance that combines the two and is  
easier to calculate [11]. SI rewards similar idle times at each 
workstation, but at the expense of allowing for a large 
(suboptimal) number of workstations. This is because SI 
compares workstation elapsed times to the largest WSj 
instead of the CT as this  method does. IE rewards the 
minimum number of workstations, but allows unlimited 
variance in idle times between workstations because no 
comparison is made between WSjs. The balancing method 
used here simultaneously minimizes the number of 
workstations while aggressively ensuring that idle times at 
each workstation are similar. The method is computed 
based on the minimum number of workstations required as 
well as the sum of the square of the idle times for all the 
workstations. This penalizes solutions where, even though 
the number of workstations may be minimized, one or more 
have an exorbitant amount of idle time when compared to 
the other workstations. It provides for leveling the 
workload between different workstations on the 
disassembly line. Therefore, a resulting minimum 
performance value is the more desirable solution indicating 
both a minimum number of workstations and similar idle 

times across all workstations. This objective is represented 
as: 

 Min Z = 2
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With Perfect Balance indicated by: 

 Min Z = 0 (3) 

Note that mathematically, this objective function 
effectively makes objective 2 redundant due to the fact that 
it concurrently minimizes the WSjs. 

In addition, we find: 

 NWSmax = n (4) 

 NWSmin = 

















 ∑
=

CT

PRT
n

k
k

1  (5) 

 )(
1

∑
=

−=
N W S

j
jWSCTI  (6) 

Problem assumptions include: 

1. Part removal times are deterministic 
2. Part removal times are constant 
3. Each product undergoes complete disassembly 
4. All products contain all parts with no additions, 

deletions, or modifications 
5. All the parts are assigned 
6. Each part is assigned to one and only one 

workstation 
7. The sum of the part removal times of all the parts 

assigned to a workstation must not exceed CT 
8. The precedence relationships among the parts 

must not be violated 

5 The greedy algorithm and AEHC 
heuristic 

 A two-phased approach is used to provide a very fast, 
near-optimal solution to the multi-objective DLBP. The first 
phase rapidly provides a feasible solution to the DLBP and 
minimum or near-minimum NWS using a greedy algorithm 
based on the FFD algorithm. The second phase is then 
implemented to compensate for the DLBP greedy 
algorithms’ inability to balance the workstations. This local 
search quickly provides a near-optimal and feasible 
balance sequence using a hill climbing heuristic, AEHC. 



5.1 Greedy model description and the algorithm 

 A greedy strategy always makes the choice that looks 
the best at the moment. That is, it makes a locally optimal 
choice in the hope that this choice will lead to a globally 
optimal solution. Greedy algorithms  do not always yield 
optimal solutions, but for many problems they do [2]. The 
DLBP greedy algorithm was built around the FFD 
algorithm. The FFD algorithm looks at each element in a 
list, from largest to smallest (PRT in the DLBP), and puts 
that element into the first workstation in which it fits. 
When all of the work elements have been assigned to a 
workstation, the process is complete. The greedy FFD is 
further modified with priority rules to meet multiple 
objectives. The most hazardous parts are prioritized to the 
earliest workstations, greedy ranked large removal time to 
small. The remaining non-hazardous parts are greedy 
ranked next, large removal times to small. In addition, 
selecting the part with the larger demand ahead of those 
with lesser demands breaks any ties for parts with equal 
part removal times. This is done to prevent damage to 
these more desirable parts. The DLBP greedy algorithm 
provides an optimal or near optimal minimum number of 
workstations; the more constraints, the more likely the 
minimal number of workstations is found. The level of 
performance (minimal NWS) tends to increase with the 
number of precedence constraints. 

The specific details for this implementation are as 
follows. The DLBP greedy algorithm first sorts the list of 
parts. The sorting is based on part removal times, whether 
or not the part contains hazardous materials, and the 
subsequent demand for the removed part. Hazardous parts 
are put at the front of the list for selection into the solution 
sequence. The hazardous parts are ranked from largest to 
smallest part removal times. The same is then done for the 
non-hazardous parts. Any ties (i.e., two parts with equal 
part removal times) are not randomly broken, but rather 
ordered based on the demand for the part, with the higher 
demand part being placed earlier on the list. 

Once the parts are sorted in this multi-criteria manner, 
the parts are placed in workstations in FFD greedy order 
while preserving precedence. Each part in the sorted list is 
examined from first to last. If the part had not previously 
been put into the solution sequence (as described by ISSk), 
the part is put into the current workstation if idle time 
remains to accommodate it and as long as putting it into 
the sequence at that position will not violate any of its 
precedence constraints. If no workstation can 
accommodate it at the given time in the search due to 
precedence constraints, the part is maintained on the 
sorted list (i.e., its ISSk value remains 0) and the next part 
(not yet selected) on the sorted list is considered. If all 
parts have been examined for insertion into the current 
workstation on the greedy solution list, a new workstation 

is created and the process is repeated. The following is the 
DLBP greedy procedure (post-sorting). 

PROCEDURE_GREEDY{ 
      prt_ctr = 0; 
      j = 0 ; 
      FOR ∀ k { 
            WHILE ((ISS PSSprt_ctr) ∨  
                           (PRTPSSprt_ctr > Ij) ∨  
                           (PROCEDURE_PREC_FAIL)){ 
                  IF (prt_ctr < n - 1){ 
                        prt_ctr = prt_ctr + 1; 
                  } 
                  ELSE{ 
                        j = j + 1; 
                        prt_ctr = 0; 
                  } 
            } 
            Ij = Ij – PRTPSSprt_ctr; 
            PSGk = PSSprt_ctr; 
            PWSk = j; 
            ISS PSSprt_ctr = 1; 
            prt_ctr = 0; 
      } 
      F = PROCEDURE_CALC_BALANCE; 
      RETURN; 
} 
 

While being very fast and generally very efficient, the 
FFD-based greedy algorithm is not always able to 
optimally minimize the number of workstations. In addition, 
there is no capability to balance the workstations; in fact, 
the FFD structure lends itself to filling the earlier 
workstations as much as possible, often to capacity, while 
later workstations have progressively greater and greater 
idle times. This results in extremely poor balance. This 
limitation led to the development of the AEHC to fulfill 
objective 3. 

5.2 Hill climbing description and the heuristic 

The second phase of the two-phase approach to the 
multi-objective DLBP is implemented to compensate for the 
DLBP greedy algorithms’ inability to balance the 
workstation assignments. The second phase quickly 
provides a near-optimal and feasible balance sequence 
using a hill-climbing local search heuristic, AEHC. Hill-
climbing is an iterated improvement algorithm, basically a 
gradient descent/ascent. It makes use of an iterative 
greedy strategy, which is to move in the direction of 
increasing value. A hill-climbing algorithm evaluates the 
successor states and keeps only the best one [10]. AEHC 
is designed to consider swapping each task in every 
workstation with each task in the next adjacent workstation 
in search of improved balance. It does this while 
preserving precedence and not exceeding CT in any WSj. 



Only adjacent workstations are compared to enable a rapid 
search and since it is deemed unlikely that parts several 
workstations apart can be swapped and still preserve the 
precedence of all of the tasks in-between. 

The neighborhood definition and search details of the 
AEHC are as follows. After the DLBP greedy algorithm 
generates a minimum NWS, feasible solution, the AEHC 
heuristic is applied to improve the balance. The AEHC 
does this by going through each task element (part) in 
each workstation and comparing it to each task element in 
the next adjacent workstation. If the two task elements can 
be exchanged while preserving precedence, without 
exceeding either workstations available idle time, and with 
a resulting improvement in the overall balance, the 
exchange is made and the resulting solution sequence is 
saved as the new solution sequence. This process is 
repeated until task elements of the last workstation have 
been examined. The heuristic is given below in pseudo-
code format. 

PROCEDURE_HILL_CLIMB{ 
   rt_ctr = 0; 
   PROCEDURE_COPY (∀ PSGk, Ij, F, NWS,à∀ best); 
   WHILE (PWSrt_ctr = 0){ 
      rt_ctr = rt_ctr  + 1; 
   } 
   DO{ 
      prt_rt_start = rt_ctr; 
      F* = best.F; 
      prt_lft  = 0; 
      FOR ∀ j ∈ NWS{ 
         WHILE (PWSprt_lft = j){ 
            prt_rt = prt_rt_start; 
            WHILE (PWSprt_rt = j + 1){ 
             PROCEDURE_COPY (∀ best, à∀ temp); 
             PROCEDURE_SWAP (prt_rt, prt_lft,  j, temp); 
               IF ((temp.Ij > 0) ∧  
               (temp.Ij+1 > 0) ∧  
               (temp.F < best.F) ∧  
               (PROCEDURE_PRECEDENCE_PASS ( 
                     (∀ temp, prt_rt, prt_lft))){ 
                  PROCEDURE_COPY (∀ temp à∀ best); 
               } 
               prt_rt = prt_rt + 1; 
            } 
            prt_lft = prt_lft  + 1; 
         } 
         prt_rt_start = prt_rt; 
      } 
   } 
   WHILE (best.F < F*); 
   PROCEDURE_COPY (∀ bestà PSHk, Ij, F); 
   RETURN; 
} 

As is the norm with greedy algorithms, the DLBP greedy 
process is run once to determine a solution. Hill-climbing, 
however – like many combinatorial optimization techniques 
– is typically continuously run on subsequent solutions 
for as long as is deemed appropriate or acceptable by the 
user or until it is no longer possible to improve, at which 
point it is assumed that the (local) optimum has been 
reached [10]. Repeating the AEHC method in this way 
provides improved balance over time. The AEHC was 
tested both ways; run only once after the greedy solution 
was generated, as well as run until the local optimum was 
obtained. A single AEHC iteration has several benefits, 
especially since the problem sets investigated in this paper 
were relatively small and lent themselves to good solutions 
after only one iteration. Also, the AEHC was seen to 
provide its largest balance performance improvement in 
just one iteration. AEHC approaches or reaches the local 
optima the first time it is run. Additionally, a single iteration 
of AEHC is recommended since the process proposed in 
this  paper is aimed at a real-time solution of the DLBP on a 
dynamic mixed-model and mixed-product disassembly line. 

6 Numerical results 
 The developed algorithms were investigated on a 

variety of test cases to confirm their performance and to 
optimize parameters. Both the DLBP greedy algorithm and 
the AEHC were used sequentially to provide a solution to 
the disassembly line balancing problem presented by 
Gungor and Gupta [8] where the objective is to completely 
disassemble a given component consisting of n 
subassemblies on a disassembly line operating at a speed 
which allows CT seconds for each workstation to perform 
its required disassembly tasks. This provided an 
application to an actual disassembly line balancing 
problem. This practical and relevant example consists of 
the data for the disassembly of a personal computer (PC) 
as shown in table 1. It consists of 8 subassemblies with 
part removal times of PRT = {14, 10, 12, 18, 23, 16, 20, 36}. 
The disassembly line is operating at a speed that allows 40 
seconds (CT = 40) for each workstation. 

Table 1. Knowledge base of the personal computer example 
 

Task Part Removal 
Description 

Time Hazardous Demand 

1 PC top cover 14 No 360 

2 Floppy drive 10 No 500 

3 Hard drive 12 No 620 

4 Back plane 18 No 480 

5 PCI cards 23 No 540 

6 RAM modules (2) 16 No 750 

7 Power supply 20 Yes 295 

8 Motherboard 36 No 720 

 



The DLBP greedy algorithm and the AEHC obtained an 
optimal solution for this problem and did so very quickly. 
The greedy algorithm alone was able to successfully find 
one of the four equivalent, optimal solutions (table 2). The 
AEHC found no better solution nearby and returned the 
original, optimal solution sequence. The speed for the C++ 
implemented program on this problem was less than 1/100th 
of a second for both the DLBP greedy algorithm and the 
AEHC on a 2.5GHz P4 x86 family computer. 

Table 2. The optimal disassembly sequence solution 
 

Workstation  

1 2 3 4 

 

1 14    

5 23    

3  12   

6  16   

2  10   

8   36  
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time 

37 38 36 38 

Idle time 
 

3 2 4 2 

 

 

The optimality of the NWS minimization and the 
balancing is demonstrated by the solution consisting of a 
total of four workstations with 3 + 1 seconds per 
workstation of idle time. Therefore, the obtained solution 
was optimal in number of workstations and also provided 
idle times at each workstation of at least 5% but not more 
than 10% of the total disassembly time allocated to each 
workstation of 40 seconds. This solution is  consistent with 
the solution found by M cGovern et al. [11]. 

The first three objectives (generate a feasible 
disassemble sequence, minimize the number of 
workstations, and balance the disassembly line) were 
achieved by the DLBP greedy algorithm and the AEHC. 
The last two objectives (remove hazardous components 
early in the disassembly sequence and remove high 
demand components before low demand components) 
were preempted by rigid enforcement of the precedence 
constraints. The DLBP greedy algorithm and the AEHC 
heuristic consistently and rapidly found an optimal 
solution in what approaches an exponentially large search 
space (potentially as large as 8! or 40,320). 

The developed DLBP greedy algorithm and the AEHC 
heuristic were then used on a test case to further 
demonstrate their performances as well as their limitations. 
This was done by using part times consisting exclusively 
of prime numbers. They were further selected to ensure 

that no combinations of these part removal times allowed 
for any equal summations in order to reduce the number of 
possible optimal solutions. For example, part removal times 
1, 3, 5 and 7 and CT = 16 would have minimum idle time 
solutions of not only one 1, one 3, one 5 and one 7 at each 
workstation, but various additional combinations of these 
as well since 1 + 7 = 3 + 5 = ½ CT. Subsequently, the 
chosen instances were made up of parts with removal times 
of 3, 5, 7 and 11 and CT = 26. As a result, the optimal 
balance for all subsequent instances would consist of a 
perfect balance of precedence preserving combinations of 
3, 5, 7 and 11 at each workstation with idle times of 0. To 
further complicate the data (i.e., provide a large, feasible 
search space), only one part was listed as hazardous and 
this was one of the parts with the largest part removal time. 
This was done so that only the hazardous sequencing 
would be demonstrated, while providing no solution 
sequence advantage to the DLBP greedy algorithm/AEHC 
heuristic. In addition, the demand was made equal for all 
the parts except for one to demonstrate demand 
sequencing, again while providing no advantage for the 
DLBP greedy algorithm/AEHC heuristic. Also, there were 
no precedence constraints placed on the sequence, a 
deletion that further challenges the methods’ ability to 
attain an optimal solution. Finally, a small n was selected 
which decreases the NWS and tends to exaggerate less 
than optimal performance. The final test data consisted of 
12 parts; 4 subassemblies with 4 unique part removal times 
of 3, 5, 7 and 11. The disassembly line is operated at a 
speed that allows 26 seconds (CT = 26) for each 
workstation (Table 3a). For any n parts, the following can 
be calculated: 

 nNWS =max
 (7) 
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Since 4=UPRT  in this paper, each PRT is 
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This data set forced the DLBP greedy algorithm to 
obtain the near-optimal solution of 4 workstations, versus 
the optimal 3. Unlike the previous case study example 
however, this data did allow the AEHC to obtain a better-
balanced solution nearby and demonstrate hazardous 
material and high demand item sequencing (Tables 3b, 3c, 
and 3d). 

Table 3. Solution generation to local optima using 
manufactured data 

a) 

Original Data 

Part ID 1 2 3 4 5 6 7 8 9 10 11 12 

PRT 3 3 3 5 5 5 7 7 7 11 11 11 

Hazard N N N N N N N N N N N Y 

Demand 0 0 0 0 1 0 0 0 0 0 0 0 

 

b) 

Sorted (greedy) 

Part ID 12 11 10 7 8 9 5 4 6 1 2 3 

PRT 11 11 11 7 7 7 5 5 5 3 3 3 

Hazard Y N N N N N N N N N N N 

Demand 0 0 0 0 0 0 1 0 0 0 0 0 

 

c) 

DLBP Greedy Solution 

Part ID 12 11 1 10 7 8 9 5 4 6 2 3 

PRT 11 11 3 11 7 7 7 5 5 5 3 3 

WS 1 1 1 2 2 2 3 3 3 3 3 4 

Hazard Y N N N N N N N N N N N 

Demand 0 0 0 0 0 0 0 1 0 0 0 0 

 

d) 

AEHC Solution (to local optima) 

Part ID 12 11 1 10 5 8 3 7 4 6 2 9 

PRT 11 11 3 11 5 7 3 7 5 5 3 7 

WS 1 1 1 2 2 2 3 3 3 3 3 4 

Hazard Y N N N N N N N N N N N 

Demand 0 0 0 0 1 0 0 0 0 0 0 0 

 

The speed was again less than 1/100th of a second for 
both the DLBP greedy algorithm and the AEHC. Although 
not an optimal solution, this contrived problem was still 
successfully solved by the greedy algorithm to within 11% 
of the optimal number of workstations (when compared to 
the worst case) and by the single iteration AEHC to within 
8.3% of the optimal balance (when compared to the worst 
case). The problem was solved to within 8.1% of the 
optimal balance by the DLBP greedy algorithm/AEHC 

heuristic method (Figure 1) with the AEHC run until no 
better solutions were found (local optima) which only 
required one additional iteration. 
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Figure 1. DLBP greedy algorithm/AEHC heuristic 
performance 

Larger n or the inclusion of precedence constraints will 
increasingly move the DLBP greedy algorithm/AEHC 
heuristic towards the optimal solution. Note that a single 
search by the AEHC yields a solution effectively as well as 
the local optima search, but in potentially significantly less 
time. Also note that the first task listed in the greedy 
solution is part number 12 (PRT of 11 seconds), which is 
the only part labeled as hazardous (objective 4), and that 
the first part listed in the greedy solution with a PRT of 5 
seconds is part number 5, which has the highest demand of 
the three parts having equal part removal times (objective 
5). Though in this example hazardous and high demand 
item positions are maintained by the AEHC, this may not 
always be the case. The AEHC is designed to search 
without regard for hazardous materials since these items 
would not be expected to drift excessively (due to the 
adjacent nature of this search) and since the AEHC 
exclusively seeks the best balance. Although the AEHC 
also searches without regard for high demand items for the 
same reasons, their sequence position tends to stay the 
same or even improve (i.e., move to an earlier removal time 
in the disassembly sequence) since the higher demand 
items are initially ahead of the lower demand items (with 
equal part removal times) from the greedy placement and 
hence will be the first looked at to be mo ved forward in the 
disassembly sequence. 

7 Conclusions 
A very fast, near-optimal, two-phase approach to the 

multi-objective DLBP was developed and presented in this 



paper. The first phase rapidly provides a feasible solution 
to the DLBP using a greedy algorithm based on the FFD 
algorithm and modified to meet multiple objectives. The 
DLBP greedy algorithm provides a near-optimal minimum 
number of workstations, with the level of optimality 
increasing with the number of constraints. The second 
phase quickly provides a near-optimal and feasible balance 
sequence using a hill-climbing heuristic referred to as 
AEHC. AEHC only completes a pair-wise workstation 
comparison to allow for rapid search and since it is deemed 
unlikely that tasks several workstations out can be 
swapped and still preserve precedence of all the tasks in-
between. Although a near-optimum technique, the DLBP 
greedy algorithm/AEHC heuristic quickly found optimal 
solutions, or solutions within about ten percent of optimal 
in an exponentially large search space. The AEHC 
balancing method worked well, generating perfect balance 
solutions when able, while keeping within ten percent of 
the optimal balance otherwise. The DLBP greedy 
algorithm/AEHC heuristic appears well suited to the multi-
criteria decision making problem format. Also, the multi-
criteria DLBP greedy algorithm and the single iteration 
AEHC algorithm lend themselves to real-time solution of 
the DLBP on a dynamic mixed-model and mixed-product 
disassembly line. In addition, the DLBP greedy 
algorithm/AEHC heuristic are ideally suited to integer 
problems, a requirement of many disassembly problems, 
which generally do not lend themselves to rapid or easy 
solution by traditional optimum solution generating 
mathematical programming techniques. 
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