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Abstract – This paper presents a formalism for 
representing knowledge, intended for use in teaching 
interfaces. The driving concern in developing the 
formalism was to get an explicit method for sequencing 
the presentation of materials to be learned. The first 
criterion for doing the sequencing is that it satisfies a 
relation of constructability or learning support among the 
materials. If the relation is restricted to be a function then 
it is possible to represent it by a directed acyclic graph, 
as it happens in other constructive processes. The 
directed acyclic graph representation enables automatic 
generation of presentation sequences satisfying the 
learning support relation. It turns out that the formalism 
suggests other criteria in a natural way. These criteria 
may be added in a variety of ways to refine the 
presentation and enhance the responsiveness of the 
interface to learner needs.  

Keywords: Teaching interfaces, computer-aided 
instruction, e-learning, knowledge representation, 
constructive processes. 

1 Introduction 
  By a teaching interface one understands a 
specialized man-machine interaction system aimed to 
assist, facilitate and drive an user to the learning of some 
piece(s) of knowledge or the acquiring of some 
competence(s). Computer-aided instruction is an 
application that requires teaching interfaces, but it is not 
the only one. The growing complexity of computer 
applications requires that, in general, a teaching interface 
be present, implicitly in the form of a help system, or 
explicitly in the form of a tutorial. 

 To the best knowledge of the author, design of 
teaching interfaces relies on intuitive, non-formalized 
procedures for sequencing the presentation of materials or 
learning goals. This paper describes a formal method to 
structure teaching interfaces based on a building map 
from what is to be learnt next to what must be known 
now. A graph representation of this function suggests 
flexible and principled ways to do such sequencing. The 

formal method makes usual assumptions underlying non-
formalized procedures explicit and is flexible to 
accommodate changes in the assumptions. It seems 
amenable to straightforward software implementation. 

 The statement underlying this formal approach is 
that learning is a constructive process. Knowledge is built 
upon knowledge. This idea is formalized in Section 2 by 
introducing a constructability relation as a relation from a 
set to its proper subsets. Functional constructability 
relations have simpler properties and one uses them to 
define building maps. Building maps establish for each 
knowledge element one minimal necessary set of other 
elements to be in possession of the learner before the 
learning of the knowledge element is attempted. 

 Exploring the representation of a building map by a 
directed acyclic graph (DAG) is made in Section 3. It is 
observed that the possibilities of such representation go 
beyond furnishing solutions for sequencing matters in a 
first presentation. Section 4 covers some design and 
software implementation aspects. Section 5 concludes 
resuming the results and commenting on perspectives. 

2 Constructability relations 
 Let a knowledge domain K be described as a finite 
set of knowledge elements: 

 1 2{ , , , }NK k k k= … . (1) 

 One considers the situation of a learner who intends 
to learn K, having no prior knowledge of any element of 
K. It is clear that along the process, to learn an arbitrary 
element k K∈ , he or she must have undergone a learning 
or construction process for all the elements of a given 
(eventually empty) subset of K. A set as such will be 
called a support set for k. In general, given a domain K, 
more than one support set may exist for an element k.  



 Formally, one defines a constructability or learning 
support relation C over K as a binary relation among the 
elements of K and proper subsets of K: 

 ,k kCs s K∀ → ⊂ . (2) 

 With the meaning that in the context of the K 
domain the learner can attempt construction or learning of 
knowledge element k, if she has undergone a learning or 
construction process for all the elements of the subset s of 
K.  

 It is clear that knowledge of k itself cannot be a pre-
requisite for learning k. It makes no sense that k belongs 
to any of its support sets. As it makes no sense that to 
construct a thing, that thing should appear constructed in 
first place. This means that C must satisfy the implication: 

 ,k kCs k s∀ → ∉ . (3) 

 C can be seen as a relational mapping that assigns to 
each k one or several proper subsets of K, say, s1k, s2k, …, 
sNk. Learning of k can only happen after any of the s1k, s2k, 
…, sNk have been learnt. 

 Besides (3) C must satisfy another consistency 
condition: if knowledge element x belongs to a given 
support set of k then at least one support set of x must be 
included in the given support set of k. Let i and j be index 
variables over the support sets of k and x, respectively. 
Then C must satisfy the implication: 

 , ,ik ik jx jx iks x s s s s∀ ∈ → ∃ ⊂ . (4) 

 The elements of K mapped by C to the empty set 
alone will be called initials in K under C. These elements 
of K are assumed learnable without prior knowledge of 
other elements of K. The elements of K that do not belong 
to any subset in the range of C will be called terminals in 
K under C. If the learner acquires all the terminals in C 
then it may be said that he has learnt (all of) K. 

2.1  Functional constructability relations 
 In general construction processes C must be taken as 
a relational map. However, in the domain of interest, 
restricting C to be a functional map simplifies the analysis 
and the application of the formalism and does not seem to 
introduce any severe shortcomings. In this case, C 
becomes a function that assigns to each k a subset s(k) of 
K, the unique support set of k. Under C, previous learning 
of the elements of s(k) is a necessary condition to attempt 
the learning of k. 

 Taking C as functional map simplifies in particular 
the analysis of the induced order in K. For a functional 

relation C(k) = s(k) the conditions (2) and (3) can be 
written more compactly as:  

 , ( ) ( )k K s k K k s k∀ ∈ ⊂ ∧ ∉ . (5) 

Moreover, condition (4) becomes: 

 ( ), ( ) ( )k K x s k s x s k∀ ∈ ∀ ∈ ⊂ . (6) 

 It may be seen that a function C(k) = s(k) satisfying 
(5) and (6) induces a strict partial order in K, given by: 

 ( )x k x s k↔ ∈≺  . (7) 

 Two elements of K will be incomparable if neither 
belongs to the support set of the other. The initials and 
terminals in K under C will be respectively the minimal 
and maximal elements of this order. 

2.2 Building maps 
 A building map can indicate the order induced in K 
by a functional C concisely. This means that it is not 
necessary to indicate explicitly all the elements of s(k) for 
each k, to have a complete specification of C. 

 Let one consider the subset b(k) of s(k) defined by: 

 ( ) { | , }b k x y x y k= ¬∃ ≺ ≺  . (7) 

 The subset b(k) has the property of resuming all of 
s(k)  for the learning or construction of k. As soon as all of 
its elements have been learnt or constructed, the user can 
proceed to k. It will be called the building set for k. Let 
one now define a learning or building map B as one that 
assigns to each k in K a building set: 

  , : ( )k K B k b k∀ ∈ 6 . (8) 

 It may be seen that the process of taking the union of 
the building sets that result from iterating B on the 
elements of building sets it generates, departing from 
some k, must give s(k). With some ease of expression, s(k) 
may be said to be the transitive closure of B on k. 

3 The DAG representation  
 A building map B defined on a knowledge domain K 
may be represented by a directed acyclic graph (DAG). 
Each node of the DAG is to represent one element of K 
and an arrow exists from node x to node k if x∈ b(k). 
Figure 1 gives a simple example. One can observe that k1 
and k2 are initials, k5 is terminal. The building and support 
sets are as follows: 
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Figure 1 DAG representation of a hypothetical 5-element 
K domain and associated B map 

 To put the formal machinery working, let one 
suppose that a teaching interface over some knowledge 
domain K is to be designed. One must specify: 

 i) The elements of the knowledge domain K; 

 ii) An associated building map B for K. 

 This may be done in tabular form through a standard 
editor or it may be done through a dedicated graphical 
editor. The resulting data may be represented as a graph. 
The specification of B is to be checked for consistency 
regarding condition (5). This is equivalent to the graph 
having no cycles or being effectively a DAG. 

 Two advantages become apparent in having a 
building map represented by a DAG: 

 – It allows for easy visualization of the B map and of 
the underlying constructability or learning support 
function C for K. 

 – It allows for generating automatically sequences 
adequate to lead a user through the learning of K. 

 Each of these items will be reviewed in turn. 

3.1 Visualization of B and C 
 This seems a powerful tool both for learner and for 
designer. The learner may assess visually the magnitude 
and steps of the learning task and of his or her progress in 
learning. The designer may get insight in the structure of 
the knowledge domain and best learning paths. 

 To get the maximal benefit of this, the number of 
elements of K is under two constraints. It must allow for a 
readable image of the DAG under the visualization 
technology employed. Moreover, it must not be above 
medium human perceptual ability to reasonably cope with 
the number of different items present in an image. This 
gives an indication how should a given general domain of 
knowledge be split in K modules if the need arises. 

3.2 Sequencing the presentation of K 
 Let one note that there is a one-to-one 
correspondence between a building map and the DAG 
representing it. One can refer the set of nodes of the DAG 
representing the support set of k as the support nodes of 
the node k. A topological sort of a DAG [3] is a 
sequencing of its nodes such that no node comes first than 
the nodes in its support set. The following are two 
topological sorts of the DAG in Figure 1: 
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 If a topological sort of a DAG is used to sequence 
the presentation of the elements of K, then it is guaranteed 
that for all k, all the elements of s(k) are presented before 
k. This basic property being granted, the adequateness of a 
topological sort to present K is to be evaluated by the 
designer, given the particular context of knowledge and 
learning. A seemingly general criterion is that the time 
interval between the learning of some node and its 
application in the learning of another should be 
minimized. 

 Topological sorts of a DAG can be automatically 
generated. It seems easy to augment the generation 
algorithms with criteria to evaluate the properties of the 
sorts, as the minimal time interval referred.  

4 Design and software  
 The formalization of a knowledge domain proposed 
here has two connected aspects to be considered: 

 i) The choice of the number of elements of K and 
their granularity; 

 ii) The associated building map B for K. 

 The number of elements of K depends on the 
extension of the knowledge domain and the granularity 
chosen for the elements. As a rule, a learning element 
should neither overload the user capabilities for one step 
learning nor bore her because of its simplicity. 

 If, as pointed above, one wants to get maximal 
benefits from the learner visualizing the knowledge 



domain representation then the number of elements 
should not be so big that the learner feels lost or feels 
facing a hard learning task. In addition, performance and 
limitations of the visualization technology are of impact. 

 Besides specifying K, the designer must specify B. 
These two specifications may proceed entangled. It is of 
interest to consider the possibility that the need arises to 
revise the specifications. This means that (through 
interaction with users or monitoring their performance) 
one has detected a better specification for K and B 
resulting in a more learnable presentation or a more 
efficient teaching interface. Clearly, the formalism 
proposed eases this refinement because learning 
considerations underlie the knowledge representation. 

 The software needed to begin to use the formalism 
described here consists mainly in a (graphical) editor for 
the specifications of K and B. Associated algorithms for 
checking that a graph is a DAG, for visualizing it and for 
generating topological sorts are readily available, as in 
[1,2,4]. 

 The output of the editor to the teaching interface 
appears in first place to be the topological sort(s) chosen 
for presentation and a description of the DAG. The first 
will be used to sequence the presentation. The second may 
be used (together with the graph visualization software) to 
give the learner a vision of the task and progress made.  

5 Conclusions and perspectives 
 A method for designing systematically the 
presentation sequence of matters in a teaching interface 
has been presented. The method stands on representing a 
knowledge domain as a set of elements K with an 
associated building map B. The building map specifies for 
each element k of K a minimal necessary subset of K, the 
elements of which should be known in order that the 
learning of k may be immediately attempted. 

 A building map can be represented by a directed 
acyclic graph (DAG). Topological sorts of the DAG are 
reasonable presentations of K because they never present 
an element before those necessary to learn it. The designer 
may choose from the possible sorts that or those 
considered most suited to do the job of leading the learner 
through learning. The generator of the topological sorts 
may embed criteria to assist the designer in the choice. 
The topological sort chosen may be used by the teaching 
interface to do the sequence presentation. 

 Besides making explicit a rationale for sequencing 
matters and suggesting enlarging it, the method also 
suggests to use the visualization of the DAG to enhance 
the perception of both designer and learner of the overall 

learning task. For the last one, visualization may be used 
also to give feedback on progress. 

 For designers, the specification of a building map 
appears as the price to pay for using the method. This is a 
price but it is also an invitation to develop a more 
structured vision of the knowledge domain to be 
presented by the teaching interface and to measure the 
merits of the structuring. 

 The software module needed to begin using the 
method appears to be a building map and associated DAG 
representation editor, including processing functions on 
DAGs. It is also clear that the teaching interface should be 
made capable of using the editor’s outputs and functions. 

5.1 Perspectives 
 The use of this formalism presents two main 
perspectives of interest to refer here: making the interface 
adaptive and knowledge formalization.  

 If feedback from the user regarding his prior 
knowledge or his progress is made available, one can 
think of making the interface adapt to the level of 
knowledge and competencies demonstrated by the user 
and to her needs, in several ways. 

 The DAG representation gives also a systematic 
approach to gather feedback from the learner in order to 
establish his prior knowledge regarding the domain at 
stake. Having this feedback available allows for remaking 
the topological sort used for presentation in order that 
elements already known are not presented. In fact, this 
could be done for every user.   

 If one gathers feedback from the user at each 
learning step, then user failures may be used to initiate 
appropriate revising procedures or even to present matters 
in other ways. It should be noted that this last possibility 
makes appeal to non-functional building maps. 

 Also, if for some applications there is evidence that 
users become frustrated from attempts to use facilities 
they are not prepared to manipulate, then the described 
method could be in-built in the application interface, so 
that this would only open access to facilities upon having 
reasonable evidence of user proficiency. 

 Knowledge can be represented in many ways. The 
representation formalism proposed in this paper comes 
from concerns on making the task of learning a 
knowledge domain through a teaching interface as 
efficient as possible. It is not clear that knowledge 
representations geared to facilitating learning are the most 
concise or appear as structures people are acquainted 
with.  



 With regard to this, it is important to observe that 
deduction is also a constructive process. One may 
establish a correspondence between a set of formulae 
deductively built and a knowledge domain equipped with 
a relation of constructability or learning support. A 
formula in the deductive set corresponds to a knowledge 
element; an axiom corresponds to an initial; the set of 
formulae necessary to deduce a given formula 
corresponds to a support set. If all these sets are unique, 
then a correspondence between the formulae used in the 
last inference of a deduction and a building set holds. 

 This is not to mean that learning is or should be 
taken mainly as a deductive activity. What one would like 
to stress is that the similarity between axiomatic 
representations of knowledge and the formalism presented 
here may be explored. On one hand, an axiomatic 
representation of a knowledge domain may furnish a good 
start point to make a specification of a set of knowledge 
elements and a building map (or a learning support 
relation) for it. On the other hand, such a specification 
may constitute an important step to get an axiomatic 
description. 

 As a final comment, let one point that research in 
relational maps beyond the functional concept presented 
here, seems of interest both for the study of constructive 
processes in general and for the development of man-
machine interfaces. 
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