
A Learning-Oriented Knowledge Representation for
Teaching Interfaces *

Paulo J. Garrido

Industrial Electronics Department
University of Minho

 Portugal
pgarrido@dei.uminho.pt

* 0-7803-8566-7/04/$20.00  2004 IEEE.

Abstract – This paper presents a formalism for
representing knowledge, intended for use in teaching
interfaces. The driving concern in developing the
formalism was to get an explicit method for sequencing
the presentation of materials to be learned. The first
criterion for doing the sequencing is that it satisfies a
relation of constructability or learning support among the
materials. If the relation is restricted to be a function then
it is possible to represent it by a directed acyclic graph,
as it happens in other constructive processes. The
directed acyclic graph representation enables automatic
generation of presentation sequences satisfying the
learning support relation. It turns out that the formalism
suggests other criteria in a natural way. These criteria
may be added in a variety of ways to refine the
presentation and enhance the responsiveness of the
interface to learner needs.

Keywords: Teaching interfaces, computer-aided
instruction, e-learning, knowledge representation,
constructive processes.

1 Introduction
 By a teaching interface one understands a
specialized man-machine interaction system aimed to
assist, facilitate and drive an user to the learning of some
piece(s) of knowledge or the acquiring of some
competence(s). Computer-aided instruction is an
application that requires teaching interfaces, but it is not
the only one. The growing complexity of computer
applications requires that, in general, a teaching interface
be present, implicitly in the form of a help system, or
explicitly in the form of a tutorial.

 To the best knowledge of the author, design of
teaching interfaces relies on intuitive, non-formalized
procedures for sequencing the presentation of materials or
learning goals. This paper describes a formal method to
structure teaching interfaces based on a building map
from what is to be learnt next to what must be known
now. A graph representation of this function suggests
flexible and principled ways to do such sequencing. The

formal method makes usual assumptions underlying non-
formalized procedures explicit and is flexible to
accommodate changes in the assumptions. It seems
amenable to straightforward software implementation.

 The statement underlying this formal approach is
that learning is a constructive process. Knowledge is built
upon knowledge. This idea is formalized in Section 2 by
introducing a constructability relation as a relation from a
set to its proper subsets. Functional constructability
relations have simpler properties and one uses them to
define building maps. Building maps establish for each
knowledge element one minimal necessary set of other
elements to be in possession of the learner before the
learning of the knowledge element is attempted.

 Exploring the representation of a building map by a
directed acyclic graph (DAG) is made in Section 3. It is
observed that the possibilities of such representation go
beyond furnishing solutions for sequencing matters in a
first presentation. Section 4 covers some design and
software implementation aspects. Section 5 concludes
resuming the results and commenting on perspectives.

2 Constructability relations
 Let a knowledge domain K be described as a finite
set of knowledge elements:

 1 2{ , , , }NK k k k= … . (1)

 One considers the situation of a learner who intends
to learn K, having no prior knowledge of any element of
K. It is clear that along the process, to learn an arbitrary
element k K∈ , he or she must have undergone a learning
or construction process for all the elements of a given
(eventually empty) subset of K. A set as such will be
called a support set for k. In general, given a domain K,
more than one support set may exist for an element k.

 Formally, one defines a constructability or learning
support relation C over K as a binary relation among the
elements of K and proper subsets of K:

 ,k kCs s K∀ → ⊂ . (2)

 With the meaning that in the context of the K
domain the learner can attempt construction or learning of
knowledge element k, if she has undergone a learning or
construction process for all the elements of the subset s of
K.

 It is clear that knowledge of k itself cannot be a pre-
requisite for learning k. It makes no sense that k belongs
to any of its support sets. As it makes no sense that to
construct a thing, that thing should appear constructed in
first place. This means that C must satisfy the implication:

 ,k kCs k s∀ → ∉ . (3)

 C can be seen as a relational mapping that assigns to
each k one or several proper subsets of K, say, s1k, s2k, …,
sNk. Learning of k can only happen after any of the s1k, s2k,
…, sNk have been learnt.

 Besides (3) C must satisfy another consistency
condition: if knowledge element x belongs to a given
support set of k then at least one support set of x must be
included in the given support set of k. Let i and j be index
variables over the support sets of k and x, respectively.
Then C must satisfy the implication:

 , ,ik ik jx jx iks x s s s s∀ ∈ → ∃ ⊂ . (4)

 The elements of K mapped by C to the empty set
alone will be called initials in K under C. These elements
of K are assumed learnable without prior knowledge of
other elements of K. The elements of K that do not belong
to any subset in the range of C will be called terminals in
K under C. If the learner acquires all the terminals in C
then it may be said that he has learnt (all of) K.

2.1 Functional constructability relations
 In general construction processes C must be taken as
a relational map. However, in the domain of interest,
restricting C to be a functional map simplifies the analysis
and the application of the formalism and does not seem to
introduce any severe shortcomings. In this case, C
becomes a function that assigns to each k a subset s(k) of
K, the unique support set of k. Under C, previous learning
of the elements of s(k) is a necessary condition to attempt
the learning of k.

 Taking C as functional map simplifies in particular
the analysis of the induced order in K. For a functional

relation C(k) = s(k) the conditions (2) and (3) can be
written more compactly as:

 , () ()k K s k K k s k∀ ∈ ⊂ ∧ ∉ . (5)

Moreover, condition (4) becomes:

 (), () ()k K x s k s x s k∀ ∈ ∀ ∈ ⊂ . (6)

 It may be seen that a function C(k) = s(k) satisfying
(5) and (6) induces a strict partial order in K, given by:

 ()x k x s k↔ ∈≺ . (7)

 Two elements of K will be incomparable if neither
belongs to the support set of the other. The initials and
terminals in K under C will be respectively the minimal
and maximal elements of this order.

2.2 Building maps
 A building map can indicate the order induced in K
by a functional C concisely. This means that it is not
necessary to indicate explicitly all the elements of s(k) for
each k, to have a complete specification of C.

 Let one consider the subset b(k) of s(k) defined by:

 () { | , }b k x y x y k= ¬∃ ≺ ≺ . (7)

 The subset b(k) has the property of resuming all of
s(k) for the learning or construction of k. As soon as all of
its elements have been learnt or constructed, the user can
proceed to k. It will be called the building set for k. Let
one now define a learning or building map B as one that
assigns to each k in K a building set:

 , : ()k K B k b k∀ ∈ 6 . (8)

 It may be seen that the process of taking the union of
the building sets that result from iterating B on the
elements of building sets it generates, departing from
some k, must give s(k). With some ease of expression, s(k)
may be said to be the transitive closure of B on k.

3 The DAG representation
 A building map B defined on a knowledge domain K
may be represented by a directed acyclic graph (DAG).
Each node of the DAG is to represent one element of K
and an arrow exists from node x to node k if x∈ b(k).
Figure 1 gives a simple example. One can observe that k1
and k2 are initials, k5 is terminal. The building and support
sets are as follows:

1 1

2 2

3 3 1

4 4 1 2

5 2 3 4 5 1 2 3 4

() ()
() ()
() () { }
() () { , }
() { , , }; () { , , , }

b k s k
b k s k
b k s k k
b k s k k k
b k k k k s k k k k k

= = ∅
= = ∅
= =
= =
= =

k 1 k 2

k 3 k 4

k 5
K

Figure 1 DAG representation of a hypothetical 5-element
K domain and associated B map

 To put the formal machinery working, let one
suppose that a teaching interface over some knowledge
domain K is to be designed. One must specify:

 i) The elements of the knowledge domain K;

 ii) An associated building map B for K.

 This may be done in tabular form through a standard
editor or it may be done through a dedicated graphical
editor. The resulting data may be represented as a graph.
The specification of B is to be checked for consistency
regarding condition (5). This is equivalent to the graph
having no cycles or being effectively a DAG.

 Two advantages become apparent in having a
building map represented by a DAG:

 – It allows for easy visualization of the B map and of
the underlying constructability or learning support
function C for K.

 – It allows for generating automatically sequences
adequate to lead a user through the learning of K.

 Each of these items will be reviewed in turn.

3.1 Visualization of B and C
 This seems a powerful tool both for learner and for
designer. The learner may assess visually the magnitude
and steps of the learning task and of his or her progress in
learning. The designer may get insight in the structure of
the knowledge domain and best learning paths.

 To get the maximal benefit of this, the number of
elements of K is under two constraints. It must allow for a
readable image of the DAG under the visualization
technology employed. Moreover, it must not be above
medium human perceptual ability to reasonably cope with
the number of different items present in an image. This
gives an indication how should a given general domain of
knowledge be split in K modules if the need arises.

3.2 Sequencing the presentation of K
 Let one note that there is a one-to-one
correspondence between a building map and the DAG
representing it. One can refer the set of nodes of the DAG
representing the support set of k as the support nodes of
the node k. A topological sort of a DAG [3] is a
sequencing of its nodes such that no node comes first than
the nodes in its support set. The following are two
topological sorts of the DAG in Figure 1:

 1 1 2 4 3 5

2 2 4 1 3 5

S k k k k k
S k k k k k

=< >
=< >

, , , ,
, , , ,

 .

 If a topological sort of a DAG is used to sequence
the presentation of the elements of K, then it is guaranteed
that for all k, all the elements of s(k) are presented before
k. This basic property being granted, the adequateness of a
topological sort to present K is to be evaluated by the
designer, given the particular context of knowledge and
learning. A seemingly general criterion is that the time
interval between the learning of some node and its
application in the learning of another should be
minimized.

 Topological sorts of a DAG can be automatically
generated. It seems easy to augment the generation
algorithms with criteria to evaluate the properties of the
sorts, as the minimal time interval referred.

4 Design and software
 The formalization of a knowledge domain proposed
here has two connected aspects to be considered:

 i) The choice of the number of elements of K and
their granularity;

 ii) The associated building map B for K.

 The number of elements of K depends on the
extension of the knowledge domain and the granularity
chosen for the elements. As a rule, a learning element
should neither overload the user capabilities for one step
learning nor bore her because of its simplicity.

 If, as pointed above, one wants to get maximal
benefits from the learner visualizing the knowledge

domain representation then the number of elements
should not be so big that the learner feels lost or feels
facing a hard learning task. In addition, performance and
limitations of the visualization technology are of impact.

 Besides specifying K, the designer must specify B.
These two specifications may proceed entangled. It is of
interest to consider the possibility that the need arises to
revise the specifications. This means that (through
interaction with users or monitoring their performance)
one has detected a better specification for K and B
resulting in a more learnable presentation or a more
efficient teaching interface. Clearly, the formalism
proposed eases this refinement because learning
considerations underlie the knowledge representation.

 The software needed to begin to use the formalism
described here consists mainly in a (graphical) editor for
the specifications of K and B. Associated algorithms for
checking that a graph is a DAG, for visualizing it and for
generating topological sorts are readily available, as in
[1,2,4].

 The output of the editor to the teaching interface
appears in first place to be the topological sort(s) chosen
for presentation and a description of the DAG. The first
will be used to sequence the presentation. The second may
be used (together with the graph visualization software) to
give the learner a vision of the task and progress made.

5 Conclusions and perspectives
 A method for designing systematically the
presentation sequence of matters in a teaching interface
has been presented. The method stands on representing a
knowledge domain as a set of elements K with an
associated building map B. The building map specifies for
each element k of K a minimal necessary subset of K, the
elements of which should be known in order that the
learning of k may be immediately attempted.

 A building map can be represented by a directed
acyclic graph (DAG). Topological sorts of the DAG are
reasonable presentations of K because they never present
an element before those necessary to learn it. The designer
may choose from the possible sorts that or those
considered most suited to do the job of leading the learner
through learning. The generator of the topological sorts
may embed criteria to assist the designer in the choice.
The topological sort chosen may be used by the teaching
interface to do the sequence presentation.

 Besides making explicit a rationale for sequencing
matters and suggesting enlarging it, the method also
suggests to use the visualization of the DAG to enhance
the perception of both designer and learner of the overall

learning task. For the last one, visualization may be used
also to give feedback on progress.

 For designers, the specification of a building map
appears as the price to pay for using the method. This is a
price but it is also an invitation to develop a more
structured vision of the knowledge domain to be
presented by the teaching interface and to measure the
merits of the structuring.

 The software module needed to begin using the
method appears to be a building map and associated DAG
representation editor, including processing functions on
DAGs. It is also clear that the teaching interface should be
made capable of using the editor’s outputs and functions.

5.1 Perspectives
 The use of this formalism presents two main
perspectives of interest to refer here: making the interface
adaptive and knowledge formalization.

 If feedback from the user regarding his prior
knowledge or his progress is made available, one can
think of making the interface adapt to the level of
knowledge and competencies demonstrated by the user
and to her needs, in several ways.

 The DAG representation gives also a systematic
approach to gather feedback from the learner in order to
establish his prior knowledge regarding the domain at
stake. Having this feedback available allows for remaking
the topological sort used for presentation in order that
elements already known are not presented. In fact, this
could be done for every user.

 If one gathers feedback from the user at each
learning step, then user failures may be used to initiate
appropriate revising procedures or even to present matters
in other ways. It should be noted that this last possibility
makes appeal to non-functional building maps.

 Also, if for some applications there is evidence that
users become frustrated from attempts to use facilities
they are not prepared to manipulate, then the described
method could be in-built in the application interface, so
that this would only open access to facilities upon having
reasonable evidence of user proficiency.

 Knowledge can be represented in many ways. The
representation formalism proposed in this paper comes
from concerns on making the task of learning a
knowledge domain through a teaching interface as
efficient as possible. It is not clear that knowledge
representations geared to facilitating learning are the most
concise or appear as structures people are acquainted
with.

 With regard to this, it is important to observe that
deduction is also a constructive process. One may
establish a correspondence between a set of formulae
deductively built and a knowledge domain equipped with
a relation of constructability or learning support. A
formula in the deductive set corresponds to a knowledge
element; an axiom corresponds to an initial; the set of
formulae necessary to deduce a given formula
corresponds to a support set. If all these sets are unique,
then a correspondence between the formulae used in the
last inference of a deduction and a building set holds.

 This is not to mean that learning is or should be
taken mainly as a deductive activity. What one would like
to stress is that the similarity between axiomatic
representations of knowledge and the formalism presented
here may be explored. On one hand, an axiomatic
representation of a knowledge domain may furnish a good
start point to make a specification of a set of knowledge
elements and a building map (or a learning support
relation) for it. On the other hand, such a specification
may constitute an important step to get an axiomatic
description.

 As a final comment, let one point that research in
relational maps beyond the functional concept presented
here, seems of interest both for the study of constructive
processes in general and for the development of man-
machine interfaces.

References
[1] G. di Battista, P. Eades, R. Tamassia, and I. G.
Tollis, Graph Drawing: Algorithms for the visualization
of graphs. Prentice-Hall, 1999.

[2] I. Herman, G. Melançon, and M. S. Marshall,
“Graph visualization and navigation in information
visualization: a survey”, IEEE Transactions on
Visualization and Computer Graphics, Vol 6, No. 1, pp.
24-43, 2000.

[3] B. R. Preiss, Data structures and algorithms with
object-oriented design patterns in Java, 1998, at
http://www.brpreiss.com/books/opus5/html/book.html,
2004.

[4] R. Sedgewick, Algorithms in C++, Addison-
Wesley, Boston, MA, 2002.

