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Abstract - This paper deals with the daily imaging 
scheduling problem for  a low-orbit, earth observation 
satellite, which belongs fa  a class of single-machine 
scheduling problems. Its salient features include 
sequence-dependent setup effects, job-assembly 
characteristics, and time window constraints. Instead of 
looking for the global optimal solutions, we adopt a 
promising evolutionary approach. Tabu Search. to solve 
this scheduling problem. Numerical results demonsbwte 
that the approach is effective and efficient in applications 
to the realproblems. 
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1 Introduction 
This paper deals with the daily imaging scheduling 

problem for a low-orbit, earth observation satellite, 
ROCSAT-I1 [9].  The daily imaging scheduling problem 
considers various imaging requests with different reward 
opportunities, changeover efforts between two 
consecutive imaging tasks, cloud coverage effects, and the 
resource availability of the spacecraft. It belongs to a 
class of single-machine scheduling problems with salient 
features of sequence-dependent setup times, job-assembly, 
and the constraint of operating time windows. 

The ROCSAT-I1 daily imaging scheduling problem is 
NP-hard in computational complexity [ 5 ] .  For problems 
of such high complexity, dynamic programming and 
exhaustive search techniques are either too time- 
consuming or impractical for optimal solutions. Rule- 
based or heuristic approaches can reduce the computation 
time drastically but the resultant optimality is not 
guaranteed. Mathematical programming approaches, such 
as Lagrangian relaxation [4], have the advantage of 
computational efficiency when the optimization problems 
are decomposable. In many cases, the computational 
times increase almost linearly with the problem size. 
However, a heuristic is usually needed to modify the dual 
solution into a feasible solution. Tabu search [l] is a 
meta-heuristic designed for tackling hard combinatorial 
optimizations problems. Contrary to random search 
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approaches such as simulated annealing (SA) where 
randomness is extensively used, Tabu search is based on 
intelligent searching to embrace more systematic guidance 
of adaptive memory and leaming. 

The daily imaging scheduling problem of an earth 
observation satellite involves dispatching a set of imaging 
tasks to cameras on the satellite. Verfaillie et al. [8] 
considered this problem as a valued constraint satisfaction 
problem and solved by a Russian doll search (RDS) 
algorithm. Tounsi and David [6] modified the algorithm 
with the idea of successive search method. Experiment 
results show that their algorithm improves the 
performance by 11% over the traditional algorithm. 

Vasquez and Hao [7] formulated the daily imaging 
scheduling problem of SPOT 5 [lo] as a generalized 
version of the multi-dimensional knapsack model 
including a large number of binary and ternary logical 
constraints. They proposed a Tabu search algorithm by 
integrating important features of a neighbourhood, 
dynamic Tabu tenure mechanism, techniques for 
constraints handling, intensification, and diversification to 
determine which photographs to be taken. 

Lin et a1 [2], [3] adopted the Lagrangian relaxation 
and snbgradient optimization technique to solve the daily 
imaging scheduling problem of ROCSAT-11. Based on 
the dual solution, a greedy heuristic is developed to re- 
allocate imaging tasks to a feasible schedule. This greedy 
heuristic is quick and easy to implement. However, it 
could probably be trapped in a local optimum. Intelligent 
search techniques such as Tabu search can help escape 
from the local optimal trap. 

In this paper, we adopt the Tabu search approach to 
generate a sound satellite imaging schedule within 
allowable computation time. Our Tabu search algorithm 
consists of three Tabu steps: exploration, intensification, 
and diversification, which use the same Tabu-search- 
engine. Figure 1 shows the framework of our Tabu 
search algorithm. 
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Exploration is the basis of the Tabu search algorithm. 
It explores efticiently and extensively over constraint- 
related search spaces. The results include the kernel 
schedule, defined as the best schedule found within 
exploration step, and the flipping information of decision 
variables. These results are then used to create the search 
spaces for intensification and diversification steps. 

Intensification focuses on the search to exploit regions 
of the space that the search history suggests to be 
promising. On the other hand, diversification undertakes 
to explore regions that differ from regions previously 
visited. In  our algorithm, intensification forces the search 
to exploit exclusively the areas around the kernel schedule. 
Diversification drives the search to explore areas that are 
either new or not frequently visited. 

The remainder of this paper is organized as follows. 
Section 2 presents the ROCSAT-I1 daily imaging 
scheduling problem formulation. Solution methodology is 
described in Section 3. Section 4 conducts the numerical 
experiments and demonstrates its ability in the 
applications to ROCSAT-II imaging scheduling. Finally, 
in Section 5 concluding remarks are made. 

2 ROCSAT-I1 Imaging Schedulingg 
Let us define some notations before modeling the 

satellite imaging scheduling problem. 
Notations 
T : scheduling time horizon; 
I 
J 
i :job index,jcJandJ=IJI; 
4 
I 

: time period index, + l , . . , , T ;  
: collection of imaging job requests; 

: collection of tasks of jobj ;  
: collection of all tasks, I = U Ii ; 

id  

i, k 
Pi 
ck? 
S!d 

M 
D 

: task index, i, k d  and I=lA; 
: imaging (processing) time of task i; 
: unit cost of setup from processing tasks k to i; 
: setup time from processing tasks k to i; 
: image storage capacity of Solid State Recorder; 
: available power before the imaging operations 

: imaging mode of task i, mi E {Panchromatic 

: image size of task i; 
: power required for processing task i; 
: power required for setup from task k to i ;  

begin; 

(PAN), Multi-Spectral (MS), PAN+MS); 

a,, : a step function indicating that task i is 
1, 'dt 2 hi; 
0, 'dt < h i ;  

processed, where ai, = 

P, : a binary variable indicating job j is complete, 
0, if +I) = 1, V i  c I j ;  

where pj = { 
, otherwise; 

YE, : decision variable for setup from processing 
l ,Vt>hj  - s k i ;  

0, otherwise; 
tasks k to i, where ykit = 

Define a task to be a basic operation of image 
acquisition over an area of the earth. Since an imaging 
request may need more than one tasks, let a job be the 
collection of all the tasks to fulfill the request. Some 
assumptions are made as follows. 

I .  

2. 
3. 

4. 

A task can belong to a job only and can only be 
processed at most once during the time horizon. 
Only a task is processed or Setup at a time. 
All the imaging requests are released and given at the 
beginning of the scheduling time horizon. 
There are N distinct areas with cloud coverage above 
them during the scheduling time horizon. 

Initial Setup Constraint: Assume that the initial state of 
the satellite is setup to a dummy task, 0, where, sot = 0 ,  
CO, = 0 ,  and vo, = 0 ,  vi E I . As there is one and only one 
task that can be setup from task 0, we have 

Seruu Constraints: An imaging operation cannot 
commence its processing before completing its setup. We 
have 

I 

1=0 
I i r  

a,, = IYII(,-$k,)3 'di, 1. (2) 

Machine Cauacitv Constraints: Since there is only one 
camera equipped with the satellite, at any time, there is at 
most one task being processed or setup on the satellite, 
that is, 

Storape Caoacitv Conslraint: The images acquired are 
first stored on board until they can be downloaded towards 
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a ground station. As the total available memory on board 
is limited, this may impose constraints on the selection of 
images as well as their scheduling. The total size of 
images taken should be less than the available image 
storage capacity before imaging operations take place. 

(4) 

Power Consumption Construin/: The total power 
consumption for imaging and setup operations should he 
less than the available power, D. 

Window of Cloud Coveruee: The mission of ROCSAT-I1 
is to acquire substantially cloud-free images. We 
accomplish this by employing cloud coverage prediction 
data sets from the weather forecast data from Central 
Weather Bureau (CWB). Any task that intends to take 
images of a cloud-covered area is considered invalid. 

b , a [ w ~ - p , , w ~ j  Vi,n=l , . ._ ,  N .  (6) 

Binary Cons/ruints: As the variables a, fi, and y are all of 
either 0's or l's, the following binary constraints should 
be satistied. 

a , ~ { 0 , 1 } ,  V ~ E I J .  (7-1) 
Pj E {0,1}, Yi E J .  (7-2) 

Yki ,  E(0,1} ,  V k , i E I , t .  (7-3) 

The objective of our satellite imaging scheduling 
problem has three folds: (i) to minimize the weighted 
number of incomplete jobs, (ii) to maximize the suitability 
benefits of imaging within the window of opportunity, 
and (iii) to minimize the total setup costs incurred. 
Mathematically, it is formulated as 

subject to constraints (1) to (7). 

In (P), the first term is for the weighted number of 
incomplete jobs, the second for preferences of placements 
within the window of opportunity, and the third for the 
costs incurred by setup operations. For tackling the job- 
assembly effects, the weighted number of incomplete jobs 
is decoupling into the weighted number of incomplete 
tasks. Hence, a new mathematical formulation is defined 
as (P'), which serves as a lower bound of (P) and is 
solved by our Tabu search algorithm. 

. . .  

subject to constraints (1) to (7), 

3 Tabu Search Scheduling 

'3.1 Unconstrained and Constrained Search Space 

Define the unconstrained search space S to be 
composed of all binary vectors of I elements, where S = 

{ ( a j , ,  azr,  . . ., a ,  ) E  {O,ly ). Note that the size of S may 
be huge for large number of I. Moreover, a solution has 
to satisfy all the constraints. Denote C he the constrained 
search space that is composed of all binary vectors of I 
elements, satisfying the initial setup constraint, setup 
constraints, machine capacity constraints, and windows of 
cloud coverage, i.e., 
C= {s E S I s satisfies constraints ( I )  to (3), (6), and (7)). 

Vasquez and Hao [7] indicate that high quality sub- 
optimal solutions are located at the frontier of feasibility. 
Often these solutions are difficult to reach uniquely from 
the feasible side. A more effective way is to allow the 
search to oscillate around the feasibility frontier, 
increasing the chance to reach good solutions. Hence, we 
relax the constraints of storage capacity (3) and power 
consumption (4) to accelerate the search. 

3.2 Neighborhood and Move 

Define neighborhood function N: C +  (2 ' -0)  as 
follows. Let s=(alr.a2 ,,..., ~ , , ) E c .  s'=(a;,,a; ,,.__, a;,) is 
a neighbour of s, i.e. s' E N ( s ) ,  if and only if the following 
conditions are satisfied ( I )  There exists one and only one 
task i such that U, = O  and a;, = I  (Isi iI)  ; and (2) 
sf =(a;,& ,..., a;,). c. 

Thus, s' can be obtained by adding an imaging task, 
say a,,, into s and at the same time removing some tasks 
from s to maintain the feasibility of the resultant schedule 
SI. Let mv(i)= (a,, : O +  1)U (akr : 1 + ~ , k  E ~ , k  # i )  
denote such a move. The number of possible moves from 
a schedule s equals the number of variables in s with its 
value equal to 0. N(s) 
has exactly IZI neighbouring schedules. 

From the definition of decision variable a ,  , the 
switch of its value from 0 to 1 represents not only which 
image but also determine the time to take the image. 

Let z = {a;, = o I U;, E s, I < i 5 I } .  
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3.3 Tabu List Management 

A Tabu list Tis to prevent the search from short-term 
cycling. For example, 1 + 0 + 1 + 0 +. . . , Each time 
when a move mv(i)= (ai, : 0 + 1) U (a& : 1 + O,k E I , k  # i )  

carries out, the moves m v ( j ) = ( a j ,  : O + I )  and 

mv(k)= (ab : 0 + 1) will be the classified Tabu for some 
following iterations (Tabu tenure) to avoid resetting the 
values of aj, and a ,  from 0 to 1. The number of 
iterations, iterfin). during which a move mv(ni). m = j ,  k, 
is the classified Tabu is dynamically defined as below [ 6 ] .  

iter(m) = a x  freq(m), a is a constant 

where freq(m) is the number of times that a,,,, has been 
flipped from 1 to 0 from the beginning of the search. 
Therefore, the Tabu tenure of a move depends on the 
flipping frequency of the decision variable, which is to 
penalize a move that repeats too often. 

In order to implement the Tabu list, a vector @ of I 
elements is used. ’ Each element @(i) (1 < i 5 I )  records the 
sum of i m ( i )  and the cument number of iterations. In this 
way, it is very easy to know if a move mv(i) is a Tabu or 
not at iteration 1. If @(i) > I ,  in$;) is a forbidden move; 
otherwise, mv(i) is a possible move. 

3.4 Resolution of Constraint Violation 

1.2.1 1-0 be the set of indices of ker‘ that are equal to 
0 and 1-1 those equal to 1. 

1.2.2 I c_ L O  contains the indices of elements where 
flipping of these elements does not affect the 
elements of Ll even after repairing the 
constraint violations. 

1.2.3 D collects the indices of elements having a 
flipping frequency lower than the average. 

1 . 3 1 -  0 , s c k e r ‘  

2.1 Call Tabu-Search-Engine with I 
Step 2: // Intensification 

2.2 It 0 , s -  (0,O ,..., 0) 
Step 3: //Diversification 

3.1 Call Tabu-Search-Engine with D 
3.2 It 0 ,  k e r * c  (0,O ,..., 0 ) , s c  best solution found 

from step 3.1 
3.3 c o u n f t  counr+l 

// end of while 
Step 4: // Output s*. 

if (not ‘$ai, = = I, I 5 i 5 I within s*) 

else 

// end of if 

then do output << “the schedule is infeasible” 

do output << “the schedule is feasible” 

Tabu-Search-Engine 

Step 0 //Assumption 
0.1 Lets and s* be respectively the current and the 

best schedules. 
During the iterative searching in Tabu-Search-Engine, 0.2 krc 0 , j r e q t  {O,O,.’..,O) 

0.3 

Step 1: //Searching 

Let ni(s) be the set of candidate moves from s the storage capacity constraint (3) and power consumption 
constraint (4) are relaxed. That is, after the searching the 
neighborhoods of current schedule s, the storage capacity 
and power consumption constraints may be violated by 
the resultant schedule. Each time when there is any 

(%f(s) induces a particular search space C I, or 0). 

while there are possible moves exist in N(s)  
1.1 Compute the best move mv(i) (break ties randomly). 

// m<i) c arg ,m!n &), f(*): primal function. 
constraint violation, the scheduled task is removed to rah(r)  

minimize the cost and a new setup relationship is then 
built. Continue this step until no relaxed constraint is 
violated. 

3.5 Tabu Search Imaging Scheduling Algorithm 

The stopping criterion is defined by a maximum 
number of iterations allowed. It is proportional to the 
problem size. Each Tabu step is triggered and stops 
automatically by the Tabu list management, whenever no 
more moves are admissible. The Tabu search algorithm is 
given below. 

Tabu Search Imaging Scheduling Algorithm (TSISA) 

Step 0: //Initialization 
0.1 

0.2 counr c 0 // Iteration number 

IC 0 Le?-*, s, and s a t  {O,O, . .., 0) 
//Initialize the Tabu list, k e P ,  s, and s* 

nhlle coum < count-mar 
Step 1: //Exploration 

1.1 Call Tabu-Search-Engine with c 
1.2 Compute I, D with freq and ker’ 

1.2 s t s+mv(i), P.eq( i ) t t ,  I c I U (mv( i ) ) ,  

1.3 // Resolve the violations on storage capacity 
constraint and power consumption constraint (for 
Exploration and Intensification). 
while there is any relaxed constraint violation 
1.3.1 Remove task i* from s, where i* is the index of 

ker c ker U s 

ai.( E s and s e arg man [ f ( s ) - f ( s  \ (pi.,})]. 
1.3.2 Adjust setups among the remaining tasks i n s  
// end of while 
1.3.3 if /[s)< f ( s * )  then s* t s 

ll end of while 

4 Numerical Experiments 
Numerical experimentation is conducted to assess the 

performance of the proposed satellite daily imaging 
scheduling algorithm. Features of job assembly, setup 
effects, cloud coverage, and opportunity windows are 
considered in the test cases. The algorithm is first tested 
with a projected ROCSAT-I1 daily imaging scenario to 
demonstrate its applicability to the realistic problem. 
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Algorithmic properties of both computational efficiency 
and optimality are further explored with respect to job- 
assembly, setup effects, and time window constraints, 
respectively. In order to demonstrate the efficiency and 
effectiveness of our approach, the scheduling algorithm 
based on Lagrangian relaxation approach [2], [3] is 
adopted as the comparative algorithm. 

We implement both the Tabu search and Lagrangian 
relaxation algorithms in C language. All the experiments 
are conducted in a PC with dual INTEL Xeon-2.4GHz 
CPUs with 1 GB memory. 

4.1 ROCSAT-11 Daily Imaging Scheduling 

Consider a test scenario of the daily imaging 
scheduling problem of ROCSAT-XI. As shown in Fig. 2, 
there are five imaging jobs, Jobs 1-5, which are 
composed of nine tasks. These five imaging jobs consider 
the conditions of wide-spread tasks (Job I ) ,  large-area 
tasks (Job 2) ,  separate-but-in-a-same-strip tasks (Job 3), 
cross-stripped tasks (Job 4), and consecutive tasks (Job S), 
respectively. The time window of each task is determined 
by the geographical limitation of the task. The setup time 
between any two tasks is proportional to their 
geographical distance, and the setup cost is twice the 
value of the corresponding setup time. The parameters 
and coefficients of  the cost functions are listed in TABLE 
1. The scheduling time horizon is of 100 time periods. 
Two cloud coverage areas areassumed with totally 4 time 
periods of invalid imaging operations. 

I ,  I 
114 116 118 120 122 124 126 

Longitude (deg E) 

Fig. 2.  A Projected Case (Source: NSPO) 

Define imaging loading as the ratio of total processing 
times over the scheduling horizon. Three test cases of 
light, heavy and overloaded imaging loads are designed. 
The required imaging time is 67 time periods for the light- 
loaded case, 80 for the heavy-loaded case, and 93 for the 
overloaded one. 

TABLE 1 . 5  JOBS, 9 TASKS IN 100 TIME PEMODS 
%ti-t.* 

Numerical results of these three test cases are 
summarized in TABLE 2.  The proposed Tabu search 
approach gets sound schedules for light and heavy loading 
cases, respectively. No feasible schedule is obtained for 
the overloaded case. TABLE 2 also shows the 
comparison results of both our proposed approach and the 
Lagrangian relaxation approach. Note that the proposed 
Tabu search approach is superior to Lagrangian relaxation 
approach in optimality but with little increase in 
computation time. 

~~ ~ . ~~~~ TABLE ~~~~~~ 2. Comparison Results 
T.bu sumh bp&C Rl1U.ti.m 

Srbcdulcd PMVl CPUTmX khdulcd m CPUame 
Roblen 

UgNlOld 9 67 -2s.O 1.1670 7 67 -306.0 0.4461 

H I W W  7 80 -306.0 9.8655 I SO - 3 0 4 8  0.4931 

"bid 6 84 -241.016. 0.9IZ5 9 17 -161.0. 0.535 

*: hka.,bk 

4.2 Algorithmic Features 
In order to further explore the algorithmic features of 

our satellite daily imaging scheduling algorithm, 19 test 
cases are designed and simulated. All the test data are 
based on a realistic problem (case No. 5 in TABLE 3) as 
their baseline data set. The baseline problem considers 25 
imaging jobs (J = 25) with 100 tasks (I = 100) to be 
scheduled within a time frame of 600 seconds (T = 600) 
when the satellite traverses the vicinity of the target area. 
The setup time and cost between any two consecutive 
tasks are randomly generated with mean setup time and 
variance to he one second, respectively. For each imaging 
task, its opportunity window, suitability function, and 
imaging mode are all randomly generated. The imaging 
size and power consumption factors of each task are 
assumed to he identical. They are 1 for PAN, 1.5 for MS, 
and 2 for PAN+MS. The power required to setup from 
task k to task i, is set to he vb = l.Oxsb, V k, i. For all 
cases, their corresponding coefficients in the objective 
function are set to A, = 150, V j ,  B, = 15, V i, and CS = 
2.0xsk,, V k, i. Each test case is simulated with 10 
scenarios randomly. The loading of each test case is set to 
66.7%. Simulation results are summarized in TABLE 3. 
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The results of Group I indicate that there are no 
significant differences in optimality for different numbers 
of jobs. Also, the number of jobs has no impacts on the 
computational time. We therefore conclude that number 
of jobs has no direct impacts on both the optimality and 
the computational time. In order to study the setup effects 
on the satellite scheduling algorithm, five test cases are 
designed in Group 11. Results indicate that the costs 
become worse and the computational times become larger 
as the increase of setup times. The effects due to different 
lengths of time windows are designed and studied in 
Group 111. Note that the average costs become worse 
when the lengths of time windows decrease. However, 
the impact of computational time is not significant. 

In summary, most of the CPU times spent in the 
regular cases (in the same size of the baseline problem) 
are less than 385 seconds. The costs in most of the test 
cases are less than those of the Lagrangian relaxation 
approach. Therefore, we conclude that this daily imaging 
scheduling algorithm is quite efficient for realistic 
applications to provide a sound imaging schedule to the 
earth observation satellite. 

5 Conclusions 
This paper presents the development of a daily 

imaging scheduling system of an earth observation 
satellite, ROCSAT-11. The daily imaging scheduling 
problem of satellite belongs to single machine scheduling 
problems with salient features of sequence-dependent 
setup, job-assembly, and constrained operating time 
windows. It is formulated as an integer programming 
problem, which is NP-hard in computational complexity. 
We have developed an effective Tabu search algorithm to 
solve this problem. This Tabu search algorithm combines 
some ideas to make the searching effective and efficient. 
Those ideas include constrained neighborhood searching, 
greedy-based flipping process, and frequency-based 
dynamic Tabu tenure. Intensification and diversification 

steps are used to avoid of being trapped in local optimum. 
Numerical results on three test scenarios of the daily 
imaging scheduling problem of ROCSAT-I1 and 19 
realistic problems have shown the effectiveness of this 
algorithm. Comparison results also show our algorithm is 
superior to the Lagrangian relaxation approach in 
optimality but with little increase of computational time. 

Future research may extend the algorithm to include 
realistic issues such as seasonal refreshment and 
coordination between multiple satellites. On the other 
hand, the developed algorithm deals with the scheduling 
problem assuming no machine failure and exclusions of 
imaging with cloud coverage. Extensions to this research 
may handle these stochastic issues. 
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