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Abstract - Emission tomography imaging modality has 
given a new dimension to thefield of medicine and biology. 
The maximum a-posteriori (MAP) and maximum likelihood 
(') algorithms are the widely used reconshuction 
algorithms for emission tomography. However, the images 
reconstructed by MAP and M l  methods still suffer from 
artfacts such as noise, over-smoothing and streaking 
artfacts. These algorithms often fail to recognize the 
density class in the reconshvction and hence result in over- 
penalization causing blurring eflect. A good howledge of 
prior distribution is a must for MP-based method. 
Recently proposed median root prior (A4RP) algorithm 
preserves the edges in the image, bur the reconstructed 
image suffersfram step like streaking artfact. In this work, 
a fuzzy logic based approach is proposed for  the pixel-pixel 
nearest neighborhood interaction. The proposed algorithm 
consists of two elementary steps: (I) Edge detection -fuzzy 
rule based derivatives are usedfor the detection of edges in 
the nearest neighborhood window. (2) Fuzzy smoothing - 
penalization is performed only for those pixels for which 
edges are missing in the neighborhood window. Analysis 
shows that the proposed f u q  rule based reconsimction 
algorithm is capable of producing better estimates 
compared to the images reconshucted by M P  and MRP 
algorithms. The reconstructed images are sharper with 
small features being better resolved due to the naiure of the 
fuzzy potential function. 
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1 Introduction 
Penalized image reconstruction algorithms are central 

to image reconstruction in emission tomography (ET). A 
complete and descriptive understanding of iterative image 
reconstruction algorithms for emission tomography (ET) 
can be found in [1,2]. Good reconstruction demands large 
computational time and the knowledge of prior distribution. 
The iterative algorithms l i e ,  maximum likelihood (MI,) 
[1,2], maximum a-posteriori (MAP) [3,4,5], and MRF' [6,7] 
are capable of generating good quality images at the cost of 
artifacts like noise, over-smoothness and streaking effect 
[6] .  MAP-estimation involves controlling the desired 
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features of the solution (reconstructed image) via 
parameters of prior distribution. The prior knowledge 
(which is contained in the penalty term) helps in producing 
the desired effect in the reconstructed image. For example, 
smooth priors produce smooth reconstruction [3,4,5] where 
as edge-preserving priors [6,7] produce sharp 
reconstruction. 

Fuzzy techniques have been successfully applied in 
image processing applications such as image restoration 
[9], and interpolation [lo]. In the present work we have 
extended fuzzy concepts to image reconstruction for ET. 
The prior distribution is defmed by Gibbs distribution and 
the potential (which defmes the nature of nearest neighbor 
interactions) is modeled using fuzzy rules. Proposed fuzzy 
rule based potential consists of two major operations: fuzzy 
filtering followed by fuzzy smoothing. These operations are 
performed iteratively until the estimate converges and 
stabilizes. 

2 Reconstruction Algorithms for PET 
The measurements ' in PET, y,, m = 1 , . . . ,Mare 

modeled as independent Poisson random variables with 
mean k, p ,  , m = 1 ,..., M where,In,n=l ,.... N are 

the mean parameters of the emission process and p ,  is the 

probability that an annihilation in the nrh pixel is detected 
in mth detector. The l i e l i o o d  function i.e., the 
conditional probability for observing Y'y given the 
emission parameter A = I is the joint probability of the 
individual Poisson process i.e, 

N 

Reconstruction algorithm proceeds by finding the 
estimate I, which maximizes the objective function. In 
maximum a-posteriori (MAP) estimation, the objective 
function is taken as the posterior distribution function. The 
task is the determination of the estimate I ,  which 
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maximizes the posterior density function P ( A l y )  or 
equivalently the log of P(Aly ) .  Given a suitable prior 
P(A) , MAP-reconstruction can be formulated as, 

2, = max [log P(y / A) + log P(d) ]  (2:) 
a20 

The image field is assumed as Markov random :field 
(MRF) [4] and by Hammeneley-Clifford theorem [ 1 I], 
image d is characterized by Gibbs distribution, 

where, Z is the normalizing constant for the 
distribution, p is the Gibbs hyper-parameter, w., is the 
weight of pixel kQn [3], Qn is the nearest neighbor set of 
pixel n and V(d,,d,)is termed as the potential at site n 
due to the nearest neighbor element I. 

The equation (2)  is difficult to solve due to the 
complicated nature of the prior. Green [3] has proposed one 
step late (OSL) approximation for an iterative update to the 
MAP-problem and is given by, 

(4) 

It should be noted that, MAP estimate given by eqn. 
(4) tends to ML estimate when the prior distribution tends 
to uniform distribution. This is understandable because the 
uniform distributed prior gives equal probability for any 
estimate to be a solution. 

The next step is the proper modeling of the interacting 
potential V(A3,,dz)between the pixel at site n and its 
neighbors [ENn. A large number of potentials (see [3,4,fi]) 
have been suggested in literature to produce desired image 
characteristics. It is a general nature of these potentials 
function to smooth the edges irrespective of the density 
class, producing over-smooth reconstruction. 

3 Proposed Potential Function 
The previous section has highlighted the importance 

of pixel-phel interacting potential function. A fuzzy logic 
based potential is proposed for edge-preserving 
reconstructed images. This consists of two basic operations: 

fuzzy filtering followed by fuzzy smoothing. Fuzzy 
derivatives are used for the detection of edges in the nearest 
neighborhood window (which is equivalent to recognizing 
nearby density classes). Fuzzy smoothing penalizes those 
pixels for which no edge is detected in the neighborhood. 
The proposed fuzzy logic is borrowed kom Ville et. al. who 
used it for image restoration [9]. We have extended the 
fuzzy algorithm to suit image reconstruction in PET. 
Nevertheless the idea is expanded, improved and adapted 
for PET image reconstruction. 
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Figure 1. 3x3 neighborhood of a central pixel (ij), 
showing the directional derivative along e. 

3.1 Fuzzy Derivatives for Edge Detection 
Consider a 3x3 neighborhood window of a pixel (ij) 

as shown in Fig.1. A simple derivative at central pixel (ij) 
in the direction D (D E dir, d+N,S,E,W,NT,NW,SE,SW) is 
defined as the difference between the pixel at (ij) and its 
neighbor in the direction D and is defmed by V( i ,  j)6. At 
k' iteration, the derivative V' (i, j )  is defined as, 

v~(i,,)~=lA'(*,*)-A~(i,j)l~ (5 )  

where, k'(i,j)represents the pixel value at (ij) for 
iteration k and A'(*,*) is the pixel intensity at the 

immediate neighboring location in the direction f i  . 

Consider an edge passing through the neighborhood of 
pixel (ij) in the direction North-Soutb. The value of the 
derivative V'(i,j)k will be large. In addition to 
V k ( i , j ) k  being large, the derivative of the neighboring 
pixels perpendicular to direction of the edge, V* (i - 1,j)k 
and V' (i + 1,j)k should also be large, if there is an edge 
passing through (ij) (see Fig. 1). The reasoning is based on 
the observation that a small fuzzy derivative most likely is 
caused by noise, while a large fuzzy derivative is caused by 
an edge in the image. Therefore, if two out of three 
derivative values are small, it is safe to assume that no edge 
is present at the location (ij). In such a case, penalization is 
carried out on the pixel (ij) to remove noise. 
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For identifymg edge in a particular direction, three 
elementary derivatives are chosen. For example, to detect an 
edge along h direction, the derivatives are: V' ( i ,  j)k , 
V k ( i - l , j ) h  and V ' ( i + l , j ) h  for a 3x3 window. For 

values in all other directions. The following rule is used for 
penalization : 

if V:( i ,  j ) b  is small, then Ak (i, j ) f i  = V:( i ,  j ) b  

b = ,6 the fuzzy derivative is defmed as follows: else, A* ( i ,  j ) b  = o (8) 

V k ( i , j )  and V k ( i - 1 , j )  are smallor 

V k ( i ,  j )  and V k ( i + l ,  j )  are smallor 
V k  (i - 1, j )  and V' ( i  + 1, j )  are small 

where, A'( i , j )b  is the feedback at site (ij) due to 

the adjacent pixel in the direction Ij. Eight such rules are 
used to get the contribution from all the eight directions. 
Hence, the total correction term A; (i ,  j )  for pixel at (ij) 
considering all the directions after Ph iteration is given by, 

lj 

then, V: (i, j ) W  is small 
i 

Else,V;(i, j ) W i s l a r g e  
1 

(6 )  A;(ii, j ) = - z A ' ( i ,  8 8  j ) b  (9) 

Similarly, fuzzy derivatives V:( i ,  j ) b  are defmed Replacing the error term in eqn.(4), 

by the proposed correction term 
for all directions i.e, {E, N, S , N W ,  SW, NE,SE) . a(v('~7'~))l 

a 4  c W"1 
IrQ. 

A;(n), the OSL-algorithm gets modified to, 
3.2 Membership Function 

We make use of fuzzy set small to compute the value 
that expresses the degree to which the fuzzy derivative is 
small. Membership function for the property small for site N (1 0) y" = 1 

D 
(ij) along the direction h at Ph iteration is defined as, x:-, p ,  + -A: (n)  

(7) where, coordinates (ij) in the correction term is 
replaced by a single coordinate n where, n = (i - 1)& + j . 

small, i f V k ( i , j ) < V L ( i , j )  
large, otherwise 

M k ( i ,  j ) k =  

where, In the iterative image reconstruction procedure, the fmal 
correction term is fed back to update the pixel aAer each 

v k  . . ~ 
iteration. The iterations are continued &til acceptable 
convergence is obtained. A b ( t , j ) ~ = m e c i i a n j ~ k ( i  -1, j ) , V k ( i , ~ ) , V ~ ( i + 1 , j ) }  

Due to the iterative name of the MAP algorithm, the 
proposed membership function small gets updated with 
each iteration. Similarly membership function is defined for 
all the derivatives V:( i ,  j ) b  along all the directions viz. 
{E,N,S,NW,SW, NE,SE}. 

3.3 Fuzzy Penalization 
The final step in the computation of fuzzy filter is the 

defuzzificatiou. We are interested in obtaining correction 
term A* ( i , . j )  , which can be added to pixel value at location 

Fuzzy rules are also extended for 5x5 neighborhood 
window to study the effect of window size on the image 
quality. The sensitivity of edge detection depends upon the 
number of derivatives used for edge detection. To enhance 
the detectivity of edges, five elementary derivatives per 
direction are taken. 3:s rule is used for edge detection. The 
membership function will have the same form except that 
the median is taken over all the five elementary derivatives. 
Fuzzy derivative is calculated using five elemenmy 
derivatives per direction. The rest of the method is similar 
to that for 3x3 window. 

(ij). The idea is to cancel out the effect of one derivative 
value which turns out to be high due to noise. When a 
particular derivative is large, and the neighboring 
derivatives are also large, then there is an edge and hence 

4 

4.1 Simulated PET System 

Proposed Potential Function 

no panelization has to be carried out for that pixel. On the 
other hand, when a particular derivative is large, and the 
neighboring derivatives are not large, then the large value of 
the derivative could be due to noise. The effect of noise is 
removed by penalizing the pixel based on the derivative 

The algorithm has been tested on a simulated PET 
system. The PET system consists of a ring detector with 64 
detectors and the object space is decomposed into 64x64 
square pixels, A,, elecbon-posi~on annihilation event 
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occurring inside a pixel is governed by a number of physical 
phenomena such as attenuation, scattering, absorption and 
detector characteristics. All these physical processes have a 
bearing on the probability matrix. In this study, we mrume 
that the probability of an emission in box n and its 
detection in tube m depends only on the geometry of the 
measurement system. In such a case, an annihilation event 
in box n is detected in a tube m with the probability pm 
proportional to the angle of view ikom the center of the box 
n in to the detector tube m, i.e, p ,  = 8, In , Shepp et. 
al. [Z] have shown that the choice ofp, based only on the 
geometry of the measurement system is reasonable, and that 
the results of the reconstruction do not depend critical1.y on 
the choice of prim . Before the reconstruction begins, the 
probability matrix P=lp.,], n=Z ,..., N and m=Z ,..., A t  is 
precomputed and stored. 

For simulating measurement data, the well knom 
Monte Carlo procedure is used [I] .  The mathematical 
phantom used is made up of nine elliptic objects having 
different sizes, orientations and density values. The image 
of the phantom is shown in Fig. 3(a). We used a sauce 
image with 100,000 emission counts. 

4.2 Algorithm Evaluation 
The proposed algorithm has been studied with ?ix3 

and 5x5 neighborhood windows. The images reconstructed 
using the proposed fuzzy method are compared with ima::es 
reconstructed by MRP and M A P  methods. The WP- 
algorithm with potential V, = xIeNn (2, 

withp = 2.5x104is used in this study. It has been found 
that p = 2.5x104gives best estimate. The performances of 
the proposed algorithms are evaluated using two different 
image-based quantitative criteria as given below: 

Residual Error - This measures the deviation of .the 
generated pseudo-projections of the reconstructed image 
from the observed projection data y,. Residual error p(,l') 
at Ph iteration is given by, 

Fig. 2 plots the residual error of the reconstructed 
images using the proposed algorithm (with 3x3 and 5x5 
window), M A P  and MRP algorithms. From these plots it is 
clear that the proposed algorithm has the lowest residual 
error compared to MAP and MRP algorithms. Particularly, 
the proposed algorithm with 5x5 window has produced the 
lowest residual error. This is because 5x5 window enhances 
the detectivity of edges. 
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Figure 2: Residual Error Plot for MAP, MRP and proposed 
fuzzy algorithm with 3x3 and 5x5 window. 

original 

Figure 3: (a), @), (c), (d) and (e). (0, (s), 0 are the 
reconstruction using MAP, MRP, proposed algorithm with 
3x3 and 5x5 window after SO and 100 iterations 
respectively. For comparison original phantom is also 
shown. 

Visual Inspection - Final and the most important test is the 
visual inspection of the reconstructed images. The 
reconstructed images using MAP, MRP, and proposed 
algorithm (for 3x3 and 5x5) after 50 and 100 iterations 
respectively are shown in Fig. 3. For quality assessment, 
the original test phantom is also shown in Fig. 3. The 
images reconstructed using the proposed algorithm ( Fig. 
3(c),(g),(d),(h)) are more appealing and rich in edges 
compared to those reconstructed using MAP ( Fig. 3(a),(e)) 
and MRP (see fig. 3(b),(f)) algorithms. 
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It is evident i?om the reconstructed images that M A P  
over smooths the reconstruction while MRP is capable of 
preserving small details at the cost of streaking effect [7]. 
The images reconstructed by tbe proposed algorithm 
preserve the edges and the finer details, and are not over 
smoothened. 

5 Conclusions 
We have presented a new approach for better edge 

preserving reconstruction for PET modality. This is based 
on the application of fuzzy rule based techniques to model 
the potential (which accounts for the nearest neighbor 
interaction) in the image reconstruction problem. Two 
basic steps are performed namely fuzzy filtering and fuzzy 
smoothing. Fuzzy filtering is used for the detection of edges 
in the reconstruction while f izzy smoothing is used to 
penalize only those pixels for which the edges are absent in 
the nearest neighborhood. These operation are continued 
iteratively until acceptable convergence is obtained. The 
computer simulated experimental PET studies show that the 
proposed technique is promising. It is found that residual 
error is low for the proposed algorithm. 
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