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Abstract - This paper presenfs a distributed control 
framework based on human immunity fa  manage, 
coordinate and schedule ajleef of agents employed in an 
automated fransport sysfem. Through the study of 
immunology, each agent is abswacted as an independent 
agent operating in a multi-agent sysfem thaf cam'es local 
information, searches for solufion space and exhibits 
robust behavior fo  accomplish tasks. The infernal 
behaviors of fhe AIS agents, which ore decided by their 
perception of the environment, are shrdied to describe 
their strategies in performing various operations. 
Simulations are presented fo  examine fhe significance of 
each behavioral stale in every necessary action or sfep 
and fl7e impacts of these slates on the overallperformaiwe 
of the transporf sysfem. The resulfs of the simulafians 
illustrate the imporfance of each behavioral stafe rrnd 
their inter-relationship in establishing a truly  
decentralized and non-deterministic transport sysfem. 

Keywords: Artificial Immune System, automatmsd 
transport system, behavioral state, agent, cooperation. 

1 Introduction 
The human immune system protects the human body 

from attack by foreign antigens such as viruses mid 
bacteria. It uses specialized organs designed to respond to 
antigens entering the body's tissues and the mobile force 
of immune cells in the bloodstream to respond rapidly to 
attack [l]. The immune system is therefore a highly 
distributed multi-agent system having complex and 
sophisticated mechanisms for its regulation. The 
properties of self-regulation and decentralization impart a 
high degree of robustness that has created great interest in 
implementing engineering systems [2-51. This biological 
metaphor is known as Artificial Immune System (AIS). 

AIS adapts and implements the properties and 
mechanisms of the human immnne system, such as 
specificity, diversity, memory and discrimination, io 
perform complicated tasks. These properties are 
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extremely beneficial in developing various engineering 
systems with the characteristics of self-organization, 
adaptive control, fault tolerance, memory management 
and abnormality detection, etc. The theoretical framework 
of AIS has been widely studied in the field of Mificial 
Intelligence (AT). Some typical studies include distributed 
intrusion detection systems [2], autonomous agent 
controls [3], mine detection systems [4] and fault 
tolerance systems [ 5 ] .  

Inspired from these appealing properties of AIS, an 
immunity-based control framework is proposed for multi- 
agent transport systems commonly used for automated 
material handling. Our control framework is designed for 
organizing and controlling the autonomous agents that 
operated as transportation vehicles such as autonomous 
guided vehicles in a material handling system. These 
agents are deployed for automated and flexible delivery of 
cargoes and materials, for example, in container terminals, 
airport cargo terminals, automated warehouses, hospital 
complexes and distribution centers. Despite the ultimate 
usefulness of these agents in fulfilling the task of 
automated material handling, a generic control for such a 
multi-agent transport system will have lasting benefits to 
accommodate and adapt to various operations in the 
dynamic real-world environment. 

This paper presents a distributed control framework 
based on the biological theory of immunology to manage, 
coordinate and schedule a fleet of agents employed in an 
automated transport system. Compared to most existing 
multi-agent transport systems that utilize a centralized 
control paradigm, the proposed control framework is fully 
decentralized. Each agent has its own behaviors and they 
cooperate via information communication and sharing in 
order to achieve common goals. Through the study of the 
human immune system characteristics, each agent is 
abstracted as an independent agent operating in a multi- 
agent system that carries local information, searches for 
solution space and exhibits robust behavior to accomplish 
tasks. 
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2 Human immune system 
The immunity system protects a human body against 

foreign antigens by recognizing, eliminating and 
remembering foreign macromolecules and cell through 
self and non-self recognition [6]. Immunity is classified 
into innate immunity and acquired immunity [7]. Innate 
immunity is inhom and unchanging whereas acquired 
immunity is developed during the lifetime of a person. 
Innate immunity provides resistance to a variety of 
antigens during their fust exposure to a human body. This 
general defense mechanism is known as primary immune 
response'which is slower and less protective. At the same 
time antigen-specific acquired immune system is activated 
to eliminate the antigen with a stronger response. The 
immune cells have special binding areas, known as 
receptors that can structurally determine and react with 
specific foreign antigens. When an antigen binds to the 
immune cells, this interaction sensitizes the proliferation 
and differentiation of the population of immune cells 
specific to a particular kind of antigen. Some immune 
cells will become memory cells for tackling the 
reoccurrence of the same antigen in the future after the 
elimination. Hence, a more rapid and stronger response 
will result in the subsequent exposure to the same antigen. 
This is called the secondary response. 

3 The AIS-based control framework 
The AIS-based control as depicted by Figure 1 is 

proposed for distributed autonomous multi-agent 
operations such as intelligent transport system. We 
assumed a fleet of transportation vehicles, known as 
agents, that operates in a workplace just as what the 
immune system does. The immune system is a collection 
of immune cells, tissues and molecules with different 
functionalities that mediate resistance to infections [6]. 
Our framework consists of agents with various 
capabilities in dealing with different problems in a 
dynamic environment. Comparing with the human 
immune system, the agents and their duties as referred in 
our control framework are equivalent to the immune cells 
and antigens respectively. An agent specification is shown 
in Figure 1 with an architecture, which was introduced in 
[8], detailing the autonomous operational mechanism 
based on the biological metaphor. 

In the AIS-based control, agents are assumed to have 
no knowledge and experience in operating in the 
workplace in the beginning. In general, all agents under 
this AIS-based control framework have the ability to 
detect the surrounding environment within its sensory 
circle, and exchange information or communicate with 
other agents that are in close proximity defined by the 
communication circle. Each agent has different capability 
sets that determine the level of intelligence in tackling 
various tasks. Each task, on the other hand, has a 
complexity chain to signify what capabilities are essential 
to complete the task. 

Figure 1. An AIS-based intelligent transport system 

Upon deployment in a workplace, agents will 
explore the surrounding environment by undergoing 
pseudo-random motions. The agent experiences the 
workplace and decides its responses by perception of the 
environment withiin its sensory circle. The means of 
exploration allows agents to identify non-self and thus 
approach tasks. The AIS agents employ binding affmity 
[9] in task recognition to identify and approach targeted 
tasks. The binding affinity is enumerated by the distance 
between an agent and a particular task, frequency of task 
occurrence and agent familiarity with such a task. This 
mechanism for distinguishing between self and non-self is 
the prime function of the immune system. By 
discriminating the non-self, immune cells cany out 
pattem recognition by their receptors to identify a 
particular type of antigens [6 ] ,  [7]. Specificity matching 
function [9] introduced in ow AIS control framework is 
an analogue to the recognition of antigens structurally. 
This function aims to verify the feasibility of an agent to 
handle a particular task through string matching of its 
capability set with the task complexity chain. 

A vehicle-based transport system pe r fom a number 
of task components such as handling, distributing, loading 
and towing of material. The AIS control framework 
intends to classify each task components into different 
unique categories. In relation to the human immune 
system, three responses have been identified that allow 
AIS agents to manipulate different responses to cope with 
various problems. These responses include non-specific, 
acquired and passive responses [XI. Non-specific 
responses in general deal with simple and frequently 
encountered tasks. Acquired response is essential to 
specific and distinct tasks that need special talents and 
more advanced skills. Passive response is to deal with 
cooperative work through communication among the 
agents. The acquired skills and information obtained from 
capability manipulation or communication is stored in 
either short-term or long-term memory. 
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4 The immunity-based strategic 
behavioral control 
The aim to develop an intelligent transport system 

based on the AIS novel is its ability and efficiency in 
solving complicated problems. The immune sysi:em 
composed of simple agents demonstrate complex 
collective behavior. These immune agents operate ;and 
cooperate in a fully non-deterministic and distributed 
manner. To develop such a decentralized system, it: is 
crucial to understand the mechanisms of the immune 
agents in fighting against antigens. We therefore develop 
an intelligent transport system, based on the AIS conixol 
framework, with agents having the behaviors inspired by 
the immune cells. 

Figure 2. A state transition diagram of individual agent 

The AIS agents are employed with full autonomy in 
decision-making and communication. They imitate the 
behaviors of immune cell in achieving goals whase 
individual elements are very simple. The interrial 
behaviors of these AIS agents are determined by their 
perception of the environment, and such behaviors 
characterize their strategies in performing various 
operations. The state transition diagram as shown in 
Figure 2 defies the behaviors of an individual AIS agent 
for determining responses or movements strategically in 
various situations. Different behavioral states for the AIS 
agents which are derived based on the immune cells' 
behaviors are identified below: 

Explore state - Explore state describes an agent 
exploring the environment and searching for jobs in a 
random manner. Agent explores the surrounding 
environment within its sensory range by undergoing 
pseudo-random motions. The new information, such i is  

task location, that detected in this state will be store in 
short-term memory until they have been tackled. During 
this state, agent mainly searches for tasks around. It gairis 
knowledge of the environment through sensing and 
communicating with other agents. Besides discovering, an 
agent is in an active mode and is always ready to tackle 
tasks. If no immediate tasks to be tackled are detected, an 
agent in the explore state is ready to join cooperative 
work when a request signal is sent by other agenls 
through communication. 

Disperse state - In biological immunity, an 
immune cell will stimulate other cells in response to a 
particular kind of antigen upon antigen recognition. When 
the concentration of the responded cells is too high, 
special signals will then be sent to suppress the activated 
cells in order to balance and regulate the antibody 
concentration [7]. According to this concept, a wandering 
zone is defined as a region where no tasks can be located 
or detected within that area with respect to the location of 
an agent. Concentration constraint is therefore applied in 
this zone to disperse the number of agents. A separation- 
distance is kept among agents to enhance the searcbing 
efficiency in the exploration stage. Figure 3 shows the 
wandering zone of Agent A. As an example, if the 
concentration constraint of the system is two agents, when 
the number of agents within Agent A's wandering zone is 
four as illustrated in Figure 3, Agent A will therefore try 
to keep away from the other agents to attain the 
concentration constraint. 

Figure 3. Wandering zone of agent A 

Agitate state - Agitate state indicates an agent is 
stimulated by a job or other agents around its local area 
and hence the agent moves toward such stimulation 
signals. During exploration, agent will be stimulated by 
all the jobs within its sensory range. An agent determines 
which of those detected jobs should approach by 
comparing their binding affiity. The higher is the 
affinity, the greater the chance an agent would approach 
such a job. Hence, in the Agitate state, an agent is 
stimulated by and moves toward a goal either through 
detection or via communication. Once a situation has been 
ratified or a goal being achieved, an agent is in an 
aggressive mode and can no longer be activated by other 
stimulations. 

Achieve state - Achieve state indicates that an 
agent is handling and completing a job. After this state, 
the goal will be achieved and deleted from the agent's 
memory. 

Idle state - Some of the tasks cannot be solely 
handled by a single agent and they required cooperation 
among a number of agents. Since agents operate 
independently in an AIS-based system, there is no central 
controller that schedule and plan the agents' maneuver to 
perform a task. When an agent encounters a cooperative 
work, it will become idle and wait for other agents help. 

Request state - Request allows an agent who is in 
the Idle state to send signals asking for help. This request 
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signal is a stimulation to activate other agents who are in 
the Explore and Disperse states. As mentioned above, an 
AIS-based system does not operate in a centralized 
manner, agents gain information mainly through sensing 
and communicating with each other. Hence, no central 
plans or strategies are defmed to control the cooperative 
work in the AIS-based system. Agents cooperate by 
demonstrating complex collective behavior which is 
entirely emerged from communications. 

Reply state -Reply state describes an agent who 
receives a stimulation signal that is sent hy others. This 
agent is then activated by the signal and reply to the 
sender by offering its help. 

Cooperate state - Cooperate state signifies an 
agent is participating in a cooperative work. Only 
successful cooperation can lead to the entering of the 
Cooperate state. If an agent has replied to a stimulation 
signal, this does not imply that a successful cooperation 
has been achieved until the agent has joined in the 
teamwork and started to work with others. 

Through the above behavioral states derived from 
human immunity, agents are able to recognize the 
strategic plans of each other. Mutual understanding and 
agreement between agents can he achieved hy exhibiting 
such strategic behavioral control based on their 
corresponding behavioral states. Hence, a control 
framework that achieves superior performance in terms of 
flexibility, scalability, robustness and self-organization of 
a multi-agent system implementing a truly automated 
transport system of the future can be developed. 

5 Simulations 
In addition to describing the theoretical development 

of the immune strategic behavioral control framework, a 
simulation study of an intelligent transport system 
operated by a fleet of AIS agents in a warehousing 
environment is undertaken. The simulation stndy 
examines the significance of each behavioral state and the 
impacts of these states on the overall performance of the 
transport system. These behaviors generate complex 
strategies to perform complicated operations in a non- 
deterministic manner. The strategic control is categorized 
into three main areas, which are exploration, 'achievement 
and cooperation, to testify how simple plan is evolved 
into a complicated operation hy our strategic behavioral 
control framework. 

The performance of the AIS-based multi-agent 
transport system is demonstrated in three different 
aspects. The AIS agents cany out material handling 
operations of searching and completing different tasks 
located all over the warehouse. The fust simulation, Case 
1, includes simple tasks with the same complexity level 
that can be handled by non-specific response. Contrarily, 
the second simulation, Case 2, tasks are more complicated 
and have different complexity levels. These tasks need to 

be completed hy the acquired response where agents will 
gain new knowledge by capability manipulation upon task 
completion. The thud simulation, Case 3, highlights the 
cooperation ability of the immune strategic behavioral 
control. In this case, all tasks involve teamwork. A group 
of agents is therefore required to achieve a goal by 
cooperation. 

5.1 Overall efficiency 
The significance of the different behavioral states is 

illustrated in Figure 4. These behavioral states determine 
the primitive behaviors of the AIS agents. Agents perform 
these hasic strategies to achieve goals in all situations. 
The results of Figure 4 are measured in number of state 
occnrrence per agent. These results indicate the Explore 
state is the most significant state among the others. Since 
agents that are deployed to the warehouse with no prior 
information regarding the environment and tasks, 
exploration is the fundamental state that enables the 
agents to learn ahout and search tasks within the 
environment. In addition, through exploring the 
environment, an agent gains extra information through 
communicating with other agents. Commuuication is 
therefore the second important characteristic in the AIS- 
based system. 
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Figure 4. Significances of each behavioral state 

The importance of exploration and communication 
are far more than the other states. This indicates that AIS- 
based agents spend most of their time in searching for 
tasks and learning their workspace. That is an ordinary 
phenomenon for a non-deterministic distributed multi- 
agent system. While the number of exploration and 
communication are greater than the other states, existence 
of a steady state situation of the AIS-based transport 
system can he found. As shown in Figure 4, all the 
primitive behaviors become steady when the numher of 
agents employed in the system is more than twenty. The 
degree of exploration and communication has also 
significantly decreased when the steady condition is 
approached. A saturation point where an optimal number 
of agents required for effective operation using the AIS- 
based control framework can be derived. 

Figure 5 M e r  illustrates the numher of steps taken 
by each AIS agent through responses manipulation for the 
three cases described above. Similar to Figure 4, steady 
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states are obtained in all cases as shown in Figure 5. A 
noticeable decrease in the number of steps taken by the 
agents is observed. The first two cases have a bctter 
performance than the last case. This is because in Case 3, 
agents need to participate in teamwork which requires 
more effort to complete all the tasks. On the other hand, 
the performances of the first two cases show similar 
results. Case 1 consists only simple tasks that can be 
handled directly by non-specific response whereas Case 2 
consists complex and difficult tasks. They require agents 
to gain new capability in order to be tackled. This justifies 
the efficiency of the responses manipulation in acquiring 
new knowledge to handle unfamiliar task by our AIS- 
based control is attained. Hence, the proposed transport 
system based on an AIS approach has the flexibility ;and 
efficiency of a multi-agent system with simple behaviors 
that exhibits complex strategies. 
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Figure 5. Performances of the AIS-based transport systtm 

5.2 Exploration 
Explore and Disperse states are the two main 

behaviors that govem exploration. Figure 6 shows the 
interrelationship of these two states for the three c a w  
studied. The average number of state occurrence per agent 
is taken to testify how exploration is evolved from the 
Explore and Disperse states when agents deal with 
different types of problems presented in a workplace. A 
direct proportional trend is resulted in Case 1 and 2 
between the Explore with Disperse states and Disperse 
states with the number of agents deployed when all jo'bs 
are done. This is a phenomenon to which no cooperative 
task is existed. As the number of agents increased, 
dispersion would take place more frequently. Hence, the 
number of occurrence of the Explore state is decreased 
when the number of agents and Disperse state increased. 

As cooperation is required in Case 3, the 
concentration of agents within the same proximity is 
much higher. In this case, dispersion is more essential to 
scatter the agents once they have completed a cooperative 
task in order to maintain the exploration efficiency. The 
amount of the Disperse state in this case is therefore much 
higher than the Explore state even with small number of 
agents deployed. Hence, the Disperse state is an essential 
behavior to avoid overcrowding and allow efficient 
exploration activity. 
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Figure 6. Behavioral states 

5.3 Achievement 

Figure 7. Behavioral states 
for exploration for achievement 

In achieving goals, AIS agents act aggressively and 
adopt the Agitate state once they have detected a task. An 
agent will then complete the task in the Achieve state. The 
average number of state occurrence per agent is taken in 
Figure 7 to indicate how agents behave in achieving goals 
and how often an agitated agent can successfully tackle a 
targeted task in the three different situations. 

In the frst  two cases, agents achieve goals only 
through responses manipulation. A straightforward 
sequence of agitate when a task is found, achieve the 
targeted task and complete the task is resulted. Hence, the 
results for Case 1 and 2 have a similar trend where some 
of the points are almost overlapped. With an increasing 
number of agents deployed, the number of Achieve and 
Agitate states that each agent comes across is therefore 
decreased. This is mainly due to the increase in workforce 
where the number of tasks completed per agent is 
reduced. Moreover, the amounts of the Agitate and 
Achieve states are proportional to each other. This 
implies that the achievement rate of non-cooperative task 
depends on the agent searching ability to look for a goal 
as the agent will become agitated once a task is found. 

Case 3 on the other hand requires cooperation 
between agents; therefore the number of Agitate state that 
an agent comes across is much greater than the number of 
Achieve state. As a group of agents is essential to handle 
one task, the number of Agitate state is therefore 
increased significantly. This also leads to a drop in the 
achievement rate per agent and hence the number of 
occurrence of the Achieve state in Case 3 is much lower 
when compared to Case 1 and 2. 

5.4 Cooperation 
Reply, Request, Idle and Cooperate states are the 

main behaviors evolved into a cooperative work. Figure 8 
illustrates the results of the interrelationships of Request 
with Reply states and Idle with Cooperate states. The two 
c w e s  show a very similar result. An agent who is 
handling a task that required joint effort will become idle 
if the number of workers is not enough. In the meantime, 
the agent will send signals to request for assistance. The 
numbers of Idle and Request states are therefore almost 
the same. On the other hand, the number of Reply state is 



greater than the number of Cooperate state. This is 
because agents who received signal requesting for help 
during exploration will reply to the signal, move forward 
to the task and cooperate with other agents to complete 
the task. As a cooperative task needs to be completed by 
at least two agents, the number of Reply state is therefore 
more than the number of Cooperate state. Also, a reply to 
a signal does not imply a successful cooperation. 

A reduction of agents being idle and request for help 
is resulted when the number of agents is increased (Figure 
8). There is a noticeable difference in the rate of decline 
of the number of agents when twenty-four agents are 
deployed. This reveals the optimal number of agents 
necessary for effective cooperation in our simulated AIS- 
based system. According to the result, a significant 
improvement is observed when the number of agents 
employed is greater than twenty-four. A steady 
improvement is also obtained beyond the optimal point 
which is mainly due to the constant increase of workforce. 
We can conclude that the AIS-based behavioral control is 
able to obtain effective cooperation with a certain number 
of agents deployed. An optimal solution, which m y  
differ for various systems, indicates the most favorable 
number of agents required is therefore predictable. This in 
turn can prevent any shortage or wastage of input which 
hinder the system overall performance and efficiency. 

Figure 9 illustrates the peaks measured in the 
number of occurrence of the Cooperate state in relation to 
the Request and Reply states. Request and Reply states 
are treated as input parameters. The results are obtained 
by translating and scaling Gaussian distributions with the 
two variables which demonstrates the proportion of time 
that an agent should participate in performing cooperative 
task. The maximum number of Cooperate state occurs 
when the probability of request is almost zero and reply is 
approximately 0.3. This implies that for effective 
cooperation, AIS agents only spend about one thud of 
their time joined in teamwork. They have high 
adaptability in handling different kinds of job and 
accommodating with other collaborators. Under the AIS- 
based control, agents are functioning with great 
flexibility. Hence, coalition can be resulted with no 
requirement of centralized coordination. 

Figure 8. Behavioral states 

Figure 9. The probability of 
the occurrence of an agent’s 

state in uerforminz 

6 Conclusion 
This paper presents a distributed control framework 

based on the biological theory of immunology to manage, 
coordinate and schedule a fleet of agents employed in an 
automated transport system. Different behavioral states 
for the AIS agents that are derived based on the behavior 
of human immune cells have been identified to describe 
the strategies of the agents. The intemal behaviors of the 
AIS agents, which are decided by their perception of the 
environment, are studied in detail to describe their 
strategies in performing various operations. These 
operations include cooperation among agents that are 
driven by the communication and self-regulation concepts 
of the human immune mechanisms. 

In addition to describing the theoretical development 
of the immune strategic behavioral control framework, the 
paper presents a simulation study of an intelligent 
transport system operated by a fleet of AIS agents in a 
warehousing environment. The simulation study aimed to 
examine the significance of each behavioral state in every 
necessary action or step and the impacts of these states to 
the overall performance of the transport system. The 
results of the simulation illustrated bow the immune 
strategic behavioral-based control enhances the system 
overall efficiency. 
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