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Abstract- This paper proposed a novel way to design and 
analysis nonlineor controllers to deal with the tracking 
problem of a nheeled mobile robots(WMR) with 
noriholonomic constrainfs. One af the nonlinear coiitrollers 
is adopted to control the sysfem wifh position orid torque 
frocking requirements simultaneously. Anoiher one is 
chosen to follow the pafh considering wiih posifion, torque 
and acfuatar ajwamics by backsfepping control. Both oj 
feedhack sysfenis are shown to he expoirenfially stable via 
Laypunov stabiliv analysis. In order to guarantee the high- 
peflormance operation of brushless DC motors (BLDCM 
in  such applications, the nonlinear model ore accounted for 
increasing the precision actions through accurocy sketching 
nonlinear behmiours. The perjonnance of controllers are 
veri$ed through simulotions. 
Keywords-Wheeled mobile robot, nonlinear control, 
stability analysis, nonlinear system, dynamic model. 

1.Introduction 
In recent years, there has been enormous activity in 

the study of a class of nonholonomic systems, namely, 
wheeled mobile robot systems called. Specifically, due to 
the structure of the goveming differentials equations of the 
underactuated nonlinear system, the regulation problem 
can’t be solved via a smooth, time-invariant pure state 
feedback law due to the implications of Dixon’s condition 
[I]. However, the models under investigation are basically 
kinematic ones. Recently, one method for dynamic models 
has been proposed in [3], which integrates a kinematic and a 
torque controller into the dynamic model of a nonholonomic 
mobile robot by using backstepping approach. Meng etc.[2] 
develop a fault tolerant adaptive control methodology 
switching among several controllers to maintain acceptable 
performance. 

In a driect-drive servo system, the load is directly 
coupled to the rotor, and therefore, the torque generated by 

the motor is directly transmitted to the load. Hemant et 
a1.[9] have designed an adaptive control methodology on 
BLDCM. The modeling problem of a BLDCM has been 
addressed by numerous authors ,e.g.,[lO], [I 11, whose result 
are based on the assumption that the reluctance variations 
are negligible. 

This paper is organized as follows. The problem 
formulation on this paper is introduced in Section 2. In 
Section 3, the nonlinear model of brushless DC motor is 
presented. System constrains, kinematics and dynamics, 
including rigid body and two wheel dynamics are addressed 
in Section 4. In Section 5 ,  nonlinear controllers are 
developed. Simulations and discussions are proposed in 
Section 6. Finally, conclusions are drawn in Section 7. 

2. Problem formulation 
The nonlinear control problem for dynamic model of 

wheeled mobile robot with nonholonomic constraint and 
actuator dynamics is addressed in this paper. Figure 1 draws 
the conceptual diagram o f  the differential type of the 
wheeled mobile robot working in an indoor environment. 
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Figure 1 Schematic of the mobile robot 

Where b denotes the displacement from each of the driving 
wheels to the axis of symmetry. d : the displacement from 
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point 4 to the process. r : the radius of the driving wheels. 
c :  a constant equal to r / 2 6 .  m, : the mass of the mobile 
robot without the driving wheels and the rotors of the 
wheels. mw : the moment of each driving wheel plus the rotor 
of its motor. : the moment of inertia of the mobile robot 
without the driving wheels and the rotors of the motors 
about a vertical axis through the interaction of the axis of 
symmetry with the driving wheel axis. I ,  : the moment of 
inertia of each driving wheel.and the motor rotor about the 
wheel axis. I .  : the moment of inertia of inertia of each 
driving wheel and the motor rotor about a wheel diameter. 

There are two front driving wheels and a tail auxiliary 
wheel on the mobile robot. The vehicle is assumed to be the 
rigid body. Figure 2 depicts the control block diagram of the 
wheeled mobile robot control system. 
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Figure 2 Block diagram of the wheeled 
mobile robot control system 

The dead-reckoning system of the WMR is composed 
by odometries and rate-gyro. Odometry is a central part of 
almost all mobile robot navigation systems. The syr:tem's 
performance is decided by the system modeling and 
controller design. The actual limitation is the assumption 
that WMR moves with a slow speed if the WMRs 
kinematic model is the main design consideration. 
Therefore, WMRs can not accelerate their speed easily and 
win very narrow bandwidth on the system's response with 
controllers designed by a kinematics model. However, more 
and more applications need fast and accuracy behavior on 
home, ofice or industrial field. For this reason, the purpose 
in this paper designs more accuracy and efficiency 
nonlinear controllers. 

The physical control structure is divided into two parts. 
The first part is low level control. A TI DSP is the main 
processor to deal with control of both servo motors. The 
second part is high level control. Algorithms with more 
complex computations are executed in Personal Digital 
Assistant (PDA) system. The PDA is also equipped with the 
A/D and DiA module to facilitate communication vis USB 
between the two parties. 

3. Nonlinear Model of a brushless DC 
motor 
Brushless DC motors are similar in performance and 
application to brush-type DC motors. Both have a speed vs. 
torque curve which is linear or nearly linear. The motors 
differ, however, in construction and method of 
commutation. A brush-type permanent magnet DC motor 
usually consists of an outer permanent magnet field and an 
inner rotating armature. 

The servo controller and drive use the encoder 
feedback signal to continuously adjust the motor torque so 
that the desired position is maintained. This is referred to as 
a closed loop servo system. The electronics required to 
operate a brushless motor and "close the loop" are therefore 
more complex and expensive than micro-stepping or dc 
motor controls. 

The nonlinear dynamic model is proposed by 
Neyam et. a1.[10]. In the absence of magnetic saturation, it 
is convenient to formulate the dynamic behaviour of 
BLDCM as follows 

with 
/ ( L , r ) + g ( L ) u ( t )  (1) 

where U denotes the actuator control command. L E  R' , is 
the armature currents. f(~,r):R' --f R' and 
g ( x ) :  R' + ~ 3 "  are smooth vector fields, which satisfies 

feedback linearizable property 

4. Constraint Equation and SYSTEM 
Model OF WMR 
4.1 Constrain Equations 

There are three constrains. The first one is that the 
mobile robot can not move in a lateral direction, i.e., 

x2 cos)-x, sin) = 0 

(2) 
where the coordination of point is po in the fixed 
reference coordinated frame X - Y ,  and ) is the heading 
angle of the mobile robot measured from X axis. The other 
two constrains are that the two driving wheels roll without 
slipping: 

pos)+$sin)+ b& rtf' 

(3) 
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+s( + $sin 4- b& r e  
(4) 

where e, and 0, are the angular positions of the two driving 
wheels, respectively. By using the techniques of differential 
geometry, it can be shown that, among the three constrains, 
two of them are nonholonomic and the third one is (14) 
holonomic. 

equation (Eq. 3) from equation (Eq. 4). 
To obtain the holonomic constraint, we subtract 

2b& r (@- 4) 
( 5 )  

Integrating the above equation and properly chosen the 
initial condition of ( , 0, and e,, we have 

, = c ( w , )  
(6) 

which is clearly a holonomic constrain equation. The two 
nonholonomic equations are 

+sin(-4cos+ = 0 

(7) 

(8) 

x, cos(+ x2 sin( = cb(& e) 

The Lagrange equation is used to develop the system 
. dynamic model. Kinematic nonholonomic constrained 

equation is derived in the matrix form as : 

where 
A ( q ) & O  (9) 

1 sin( cos( 0 0 
cos( -sin( cb cb 

q = [ x l , o , , e J  

(10) 
( denotes the heading angle, b,cdenote W M R  constant 
parameters, and s, represents angular position of the wheel 

The dynamic model is expressed as 
M ( q ) @ -  V ( q 9 4 &  E(q)r-Ar(q) i  

(11) 
where A ( q )  is defied in M ( q ) ,  V ( q , & ,  E ( q ) ,  r 
and L are well defined matrices according to the system 
dynamic equation. 
4.2 Kinematic Model 

The control variations of the WMX are composed 
of the velocity of the rigid body and tbe angular velocity of 
the heading angle. We derive the variations as 

where 4 denotes the heading angle of WMR. x,y , the 
position relative to origin of WMR. K, : positive constant. 

The Eq. (12) is performed with the following form as 

with 
& W , ( q ) u  (15) 

According to Eq. (IS), appropriate selections of w ~ , ~  
and p will result in the required motion for the vehicle. 
Given the valves of w,, and p ,  the right and lefi wheel 
speeds of the vehicle can be obtained from 

W, = 4 + A  (16) 
' V , = w ( l - p )  (17) 

4.3 Dynamic equations 
The Lagrange formulation is used to establish 

equations of motion for the mobile robot. The total 
kinematic energy of the mobile based and two wheels 
written explicitly 

K = :m( 1 4 + &)+ m,cd( & &)( &cos( C ( B ,  - o ~ ) ) -  +in( c (  S, -e2))) 

(18) 
where 

m = m, + m ,  

I=I,+Zm,b'+ZI.  
Lagrange equations of motion for the nonholonomic mobile 
robot system are 

(19) 
where 4r is the generalized coordinate defined in equation 

(12) 
.. 

(13) (Eq. 9), r, is the generalized force, are the elements of 
W, + WI matrix A ( ~ )  in equation (Eq. lo), and 4 and /2, are the 

Lagrange multipliers. Substituting the total kinematic 
energv m, 18, into Eo, 19. we 

where W, and w, denote the angular velocity of the wheeled. 
w and p can be used to control any vehicle movement. -. \ - L  

Thus, the slow-speed dynamics of the vehicle is expresses 
by 
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The kinematic constraints are assumed to be expressed 
Eq. (9). With respect to the dynamics of mobile robot ,Eq. 
(24). the following propelties are known: 
( 4 2  (Mq) - 2V( q . a ) x  = 0 

(b)3Mm,M, s.t.O<M, <lIM(q)ll<MM <m VqER"  

(C)3V, s.t. ~ ~ V ( q , x ) ~ ~ < V , ~ ~ x ~ ~  Vq,xER" 
which are exploited in driving the proposed control laws. 

VX E R" 

5. Nonlineair controller design 
5.1 Nonlinear Control without Actuator 
dynamics 

Lemma 1: Consider the mobile robot with nonlinear 
actuator dynamics expressed by Eq. (1),(9) and (24). The 
tracking error vector e 

e = wR& (25) 

with 
x - X d  

e = [ q ~ , e , l T ,  C R ~ =  

Then the time derivative of the error 
we, - v + v, cos e, 

(26) 

According to Barbalat's lemma, l i m b  0 when &E L" . 
l+DI 

The nonlinear kinematic controller is proposed by 

Lemma 2: Let e E R'and e is bounded. Therefore, the 
Yutaka et a1.[12]. 

control input ,; is designed as bellow 
v,cose,+k,e, (27) 

"' =[ w, + k,v,e, +k,vr sine, 
where k, , k* and k, denotes positive constant. V ,  : the 
desired velocity. Thus, the system is exponentially stable. 

Theorem 1: Consider the system described by (24) 
with the control law given by the solution rd of the 
following algebraic equation 

r ~ = E ' ( q ) ( M ~ + V ( q , d k ) d k + a ( q ) . l - X ~ e - K ~ d f  (28) 
with 

1 

e = q - q , ,  & = & - A e ,  s=&&=&Ae 

where rd denotes the desired torque command, both K ,  and 

K~ are positive definite diagonal matrices, and qd E R "  and 

& R" are the desired trajectories of mobile robot position 
and velocity variables. q, E R" and & E  R" are the reference 
trajectories of mobile robot position and velocity variables, 
respectively. E * ( ~ ) = ( E ( ~ ) ~  E ( ~ ) ) (  ~ ( ~ ) l  is a pseudo 

inverse matrix. Then, the system is shown to be 
exponentially stable. 
Proof: Appendix A 

Corollary 1: From Lemma 1, Lemma 2 and Theorem 
1, the desired position & is defined by Eq. (15) and & 
transform to the control space 

Then the virtual control torque derived as 
&= K* (k ( 4 b C  +J. ( q M )  

I d  = E' (4)( M(q)K&+ F( q , + f u ) ) K , y  + A ( 4 )  .l - K,e- K,df (30) 

(29) 

According the proof of theorem I ,  the system is 
exponentially stable. 
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Figure 3 Nonlinear virtual torque control 

Figure 3 is generated by Eq. (25) and Eq. (15). 
Actually, the implementation is suffering from solving the 
inverse torque problem when we neglect the nonlinear 
actuator dynamics. In this case, the linear relationships 
between output velocity, torque and voltage are assumed. 
Actually, the nonlinear relationships can be dinged ant by 
experimental. Therefore, the fnllowing backstepping design 
methodology for system and actuator dynamics is adopted 
to derive a nonlinear position tracking controller for mobile 
robots in the case in which the system parameters are 
known. 

5.2 Nonlinear Control with Actuator dynamics 
Lemma 3: The angular position of the rotors and 

generalized displacement in articulation coordinates are 
related by 

with 
& J,u (31) 

where U is defined by Eq. (15). 

armature current vector is described by 

where B denotes an 2 x 2  positive definite constant 
diagonal matrix of gear ratios. K L ,  an 2 x  2 positive defmite 
constant diagonal matrix of actuator torque coefficients. 

Corollary 2: Consider the Lemma 3 and Eq. (S), the 
heading angle of the WMR is represented as 

Thus , by Barbalat's lemma ,& 0 as t + m when U E L" 
Delinition 1: The actuator dynamics of the wheel is 

descnied by Eq.(l). After cascading two dynamic equations 
of the actuators, f and g are defined as 

Relation between the joint's torques vector and the 

T = BK,L (32) 

&c[l -1]J,u (33) 

S '  

f ( L , r )  = diag(j; (L, ,r ,))  , g ' ( L )  = diog (g, (L, )), i = 1,2 (34) 
where L~ is defined in Eq. (1). 

Theorem 2: Consider the system described by Eq. 
(24), which satisfies Theorem 1 and Corollary 2, with the 
control law given by the solution r, of the following 
algebraic equation: 

rd =E'(q) (M(q)~+i+Y(q,R)R+A(q) l -K,e-K,s)  

U* =g'* (L,)(~f'(L, ,r , ) -K;'B~'sr~'-K;'B-'K,BKLL?) 

(35) 
where u'=[v,,vlJ' depicts the input signal of the voltage 
command to BLDCMs. ,q, K,,  K ,  , r and A are positive 
defmite diagonal matrices, and & L -&, %E Lz nL" is the 
bounded current error of mobile robot BLDCM's variables, 
respectively. g" ( L ~ )  : a pseudo inverse matrix. 

Proof: Appendix B 

exponentially stable. 
After the stability analysis, the system is shown 

Figure 4 Block diagram of nonlinear backstepping control 

6. Simulation and discussion 
The Simulation has been performed to investigate the 

effectiveness of the proposed controllers and to obtain 
guidelines for experimentation. For this purpose, a realistic 
model of the experimental setup, a wheeled mobile robot, 
has been used. The system parameters were selected based 
upon their actual values and are given in Table I .  

In fust simulation, the unit step response is used for 
evaluation the performance of the nonlinear controller. The 
initial pose of the robot is q(o)=[o 0 0 0Ir. When time 
arrives 0.19 s, a position of mobile robot changes (,,o) to 

(,,I) with t is from 0.01s to 1.2 s. Observing figure 5 ,  no 

torque limitation is set, it reveals the good performance. 
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Figure 5 The drawing of unit step response 

In second simulation, the initial pose of the path is 
q, =[o o o 01' , the initial state matrix with 

q(0)=[-0.5 -0.5 0.01 o.o~]T . The default values of 

N=diog(0.0001 0.0001 0.00001 0.OOOOl) , and the 
sampling interval is T = 0.01 seconds. The WMR travels 
along a sinusoidal path with variational linear velociy such 
that Ad = 0.001 m and A B  = 0.001 . The robot is expected to 

measurement error is given by 

noise matrices are set by 

...... . . . i . . .  

Figure 6 The tracking control result for sinusoidal path 

...... . . . i . . .  

Figure 6 The tracbg control result for smusoidal path 

In the simulations conducted for this paper, nonlinear 
control strategies hybrid with different dynamical models 
has been followed. The advantage of this approach :is that 
the stability can he proof in these condsider nordinear 
models for a robot such as WMR. The control algorithms 
and the robot dynamics were all implemented using Maltab. 

7. Conclusions 
This paper bas developed the nonlinear controllers in 

the case of dynamic model of a WMR with nonholonomic 
constraints and actuator dynamics. The analysis of the 
stability shows the system with proposed nonlinear 
controllers is exponentially stable. Moreover, simulation 
results have verified that the proposed nonlinear control is 

feasible and effective. Also, the presented methods offers 
one of the novel ways to design nonlinear controllers with 
nonholonomic constrains and actuator dynamics 
theoretically and systematically. 

APPENDIX A - Proof of Theorem 1 

derived as below 
Take (Eq. 28) into (E@. 24), the system error function is 

M(q)& (v (4.4. K.,) s + K,e = 0 

(al) 
Choice aLyapunov function ~ = l ~ r . ~ ( ~ ) ~ + - ~ ~ k , ~  I 

G% sT (-( Y (4.4 + k,)s - k,e) + 2(~TA'@(q)~) 1 

2 2 

+ (s - he) k,e 

=-s'k,s-hek,e 

then, & -pll.f#* , p > o is exponentially stable. 
APPENDIX B - Proof of Theorem 2 

error dynamics: 

(a21 

Substituting Eq. (34) into Eq. (24) yields the following 

M(q)&t ( Y  ( 4 . 4  + k , )  s + k,e = fh 

(bl) 
Note that the effect of mobile dynamics emerges as a 
nonzero t%, as the controller reduces to a passivity-based 
controller. 

1 1 Let v, =-s'M(q)s+-e'k,e 
2 2 

where k, is positive constant, then 
(b2) 

I&=-srhi-eThe+% 

(b3) 
Using backstepping methodology 
v2 , which is a Lyapunov function for the closed loop 
system, is selected as 

1 

where r is positive definite 

The control torque is selected as 

Take 

(W v2 = v, +-pi- & 

3 a,,a, > 0 +am 114 < v2 < 0, II.f#* 

r, = E' (q ) (  M(q) @+ v(q,&) + A ( 4 )  1 - 4 -  4 s )  (b5) 
time derivative and substitute Eq. (b5) into Eq. (b4) 

+=-sTk,s-erAk2e 

+ [sTr-' + BK, (f ( L, T )  + g (L).( I ) ) ]  r & 

(b6) 
Choice control law 

. ( t )  = g'* ( L ~ ) ( - ~ ' ( L , , , ~ ~ )  -K;'B-'sr-' - K ; ' B - ' K ~ ~  (37) 
Take control law into the above equation, one can rewrite 

4 = -srk,s - erM2e - ( J ( L ,  r )  + g ( ~ ) u  ( t )  - e) r t h  

= - s'k,s - eTAk2e - %rK7% 

(b8) 
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5-PllPII) 2 P>O Intelligent Robots and Systems IROS pp. 1236-1241, 
Nov, 1991 The system is exponentially stable in the Lyapunov 

sense. 
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