

Performance Evaluation of Double Action Q-Learning in
Moving Obstacle Avoidance Problem

Abstract - This paper describes the performance
evaluation of Double-Action Q-learning in solving the
moving obstacle avoidance problem. The evaluation is
focused on two aspects: 1) obstacle avoidance, and 2) goal
seeking; where four parameters are considered, namely,
sum of rewards, no. of collisions, steps per episode, and
obstacle density. Comparison is made between the new
method and the traditional Q-learning method.
Preliminary results show that the new method has the sum
of rewards (negative) 29.4% and 93.6% less than that of
the traditional method in an environment of 10 obstacles
and 50 obstacles respectively. The mean no. of steps used
in one episode is up to 26.0% lower than that of the
traditional method. The new method also fares better as
the number of obstacles increases.

Keywords: Q-learning, reinforcement learning, temporal
differences, obstacle avoidance

1 Introduction
 Reinforcement Learning (RL) defines a class of

problem solving approaches by which the learner (agent)
must learn through a series of exploratory searches and
reinforcement in the form of delayed rewards from the
environment [1], [2]. It maximizes the immediate reward,
and the cumulative reward in the long run, from which the
agent learns to approximate an optimal behavioral strategy
by continuously interacting with the environment [3]. This
enables the agent to learn to adapt gradually in unknown or
dynamically changing environments.

Q-learning by Watkins [4] is one such solution to the RL
problem. It is a simple model-free approach that allows the
agent to learn to act optimally in the Markovian domain,
and it is easy to implement and has a relatively low
computation cost. In the problem of moving obstacle
avoidance (OA), the environment is dynamically changing,
regardless of the agent’s action. This violates the
assumption of Markov Decision Process (MDP) that only
the action of the agent can change the state of the
environment. Although the learning feature of RL may
enable it to adapt to the change gradually, it can only
converge to the changed environment but not learn to act
while the environment changes. For this reason, we are
motivated to consider not only the action of the agent but
also the predicted action taken by the environment (or

objects in the environment). As such, the agent can learn to
react with the most appropriate action whatever the
environment may be.
 In this paper, we will describe the principle of the
Double-Action Q-learning (DAQ-learning) method and
evaluate it with respect to its obstacle avoidance and goal
seeking capabilities. Its performance is also compared with
traditional Q-learning in terms of sum of rewards, no. of
collisions, steps per episode and obstacle density.
Preliminary results show that the new method has the sum
of rewards (negative) 29.4% and 93.6% less than that of the
Q-learning in an environment of 10 obstacles and 50
obstacles respectively. The mean no. of steps used in one
episode is up to 26.0% lower than that of the traditional
method. The new method also fares better as the number of
obstacles increases. The rest of this paper is organized as
follows. DAQ-learning is detailed in Section 2. Following
that, the evaluation approach is presented in Section 3.
Evaluation results and data analysis are depicted in Section
4, and the conclusion can be found in Section 5.

2 Double-Action Q-learning
 According to Sutton [5], reinforcement learning is to
learn an appropriate mapping from situations to actions
(policy) in which the reward is maximized. To carry out the
mapping and maximize the reward, an MDP model is often
used and the value function is built to achieve such a
purpose. Q-Learning is one of the methods derived from
MDP, where the agent tries to take an action according to
the policy used and the Q-value in the particular state. In
the next time step, it evaluates the action by the reward or
penalty it has received and the expected value of the current
state. The Q-learning method has been proven to converge
to the optimal action-value with probability 1 as each action
is executed in each state an infinite number of times [1] [6].
Its update rule is defined as below: []),(),(max),(),(11 tttattttt asQasQrasQasQ −++← ++ γα (1)

where st is the old state, st+1 is the new state, a is the chosen
action in state st, α is the learning rate, and γ is the discount
rate. In a dynamically changing environment (DCE), the
MDP model may not be sufficient in describing all its
dynamics. This is because in a DCE, the next state is not
solely affected by the agent but can also be affected by the
change of the environment. As traditional Q-Learning is
based on the MDP model, it basically does not apply in a

Daniel C. K. Ngai, and Nelson H. C. Yung, Senior Member, IEEE
Laboratory for Intelligent Transportation Systems Research,

Department of Electrical & Electronic Engineering,
The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China,

E-mail: ckngai@eee.hku.hk

DCE. In such an environment, the update rule of the Q-
Learning method may cause the Q-value to fluctuate. This
effect could be visualized in the simulation results depicted
in Section 4. The DAQ-learning was proposed to solve this
problem [7]. It has two fundamental differences compared
with MDP. First, a new state is defined over the
relationship between the agent and an obstacle in the
environment. As such, the environment can be considered
as having different obstacles, static or not, with each
obstacle having its own properties and its own state with
respect to the agent. The states of all obstacles added
together form the environment. Second, the environment
can change by itself, disregard whether the agent acts or not.
In this method, both the observer and the environment can
take actions and cause the change in state. As both parties
are changing, what an observer observes is the net change
after both parties have acted.

 In DAQ-learning, the Q-value is updated iteratively
and the agent learns to act in different states. The
corresponding modified Q-learning update rule for DAQ-
learning is:

⎥⎦
⎤

⎢⎣
⎡ −++

←

),,()',','(max

),,(),,(

2121*

','

2121

21
aasQaasQr

aasQaasQ

aa
γα

, (2)

where a1 is the action taken by the agent and a2 is the action
taken by the environment. However, as a2’ is the action that
will be taken by the environment in the current time step, it
is not controlled by the agent and therefore maximize the
equations on a2’ is not meaningful. Instead, the predicted
a2’ should be used to update the Q-values. If the agent
knows the probability distribution of a2’, the expected value
can also be used as an alternative. However, this update
rule may be used only if we can predict the action taken by
the environment accurately. If the prediction is not accurate,
the Q-value may not converge and thus the agent may fail
to act appropriately. One less aggressive approach is to use
the mean value of)',','(max 21

'1
aasQ

a
 over all a2’. That is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−++

←

∑
),,(

)'(

)',','(max

),,(),,(

21
2

'

21

'

2121

2
1

aasQ
acount

aasQ
r

aasQaasQ

a a
γα

, (3)

where count(a2’) is the number of a2’ available in the
system. The term mean value of)',','(max 21

'1
aasQ

a

 over all

a2’ is used because it is difficult at this stage for the agent
to know exactly what action the environment will take in
the next time step. As a result, it would be more appropriate
for the agent to choose the mean value of the Q value as the
discounted future state-action value in the update rule. Fig.
1 shows the algorithm of the DAQ-learning method. In this
algorithm, the agent needs to consider two actions (one
from itself and the other from the environment) before it
can choose the action with the highest expected future
rewards. To know the action that is taken by the
environment in the next time step, the agent must be able to
predict. The prediction module can be realized

independently of the RL process, through using historical
information of the environment, as discussed in Section IV.

Fig. 1 The DAQ-learning algorithm

 During the learning cycle, the agent needs to be
aware of what actions have been taken by the environment
before the Q-values can be updated. This is performed by
an action determination module. After knowing the action
that has been taken by the environment, the agent can
update it’s Q-value according to (3). In the OA problem,
we need to plan and control the agent’s motion to ensure
that it can avoid collisions with moving obstacles. By using
DAQ-learning, states are interpreted as the relationship
between an obstacle and the agent. Therefore, if there is
more than one obstacle, multiple numbers of states will
exist. By applied DAQ-learning on each pair of obstacle-
agent relationship, the RL process can be made more
efficient. Laurent and Piat [8], [9] have proposed a similar
approach called the parallel Q-learning to solve the block-
pushing problem. They have tried different methods to
combine Q-value from different blocks, such as taking the
maximum Q-value over all blocks, or taking the sum of all
Q-values from all blocks. In our case, the latter is used in
combining the Q-values from different obstacle-agent
relationships, i.e.:

∑=
i

iii aasqasQ),,(),(211 , (4)

where Q(s,a) is the resultant Q-value for the entire
environment and qi(si,a1,ai

2) is the Q-value of the particular
type of object when the agent face that object along. The
action a2 is determined through the prediction module.

),(max 1
1

asQ
a

 is then chosen as the final decision of the OA

module. For the same type of objects, the agent uses the
same set of Q-value to represent them. Therefore, when
there are multiple obstacles which are of the same type in
the environment, the Q-value belonging to that type of
obstacles is updated multiple times in each time step. As
such, this technique has greatly enhanced the efficiency of
Q-learning. Fig. 2 depicts the architecture of the OA system.

Initialize Q(s,a1,a2) arbitrarily
Repeat (for each episode)
 Initialize s
 Repeat (for each step of episode):

Get a2 by predicting the action that will be taken by the
environment

 Choose a1 from s using policy derived from Q
 Take action a1
 Observe the new state s’ and r

Determine the action a2 that have been taken by the
environment

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−++

←

∑
),,(

)'(

)',','(max

),,(),,(

21
2

'

21

'

2121

2
1

aasQ
acount

aasQ
r

aasQaasQ

a a
γα

 s← s’
 until s is terminal

 In our case, a goal is established for the agent so that it
must reach the goal even if it has to pass through a crowd
of obstacles but not staying away from the obstacles. This
ability is called the Goal Seeking (GS) ability. In this paper,
we assumed that the agent knows the position of the goal so
that the GS module is able to provide indications on which
action can get closer to the goal. Other actions have their
Q-value gradually decreasing according to the distance that
they can minimize. The Q-values from the GS and the OA
modules are summed to form the final Q-value. The action
with the maximum final Q-value is selected as the final
decision. For evaluation purpose, we focus on the DAQ-
learning method and thus assume that the prediction and
action determination were accurate. The prediction
accuracy issue will be further discussed at the end of
section IV.

Fig. 2 Architecture of the obstacle avoidance system

3 Evaluation Approach

3.1 Evaluation focus
 The evaluation is focused on comparing the difference
between the proposed method and traditional Q-learning, in
their obstacle avoidance and goal seeking abilities. With
respect to the OA ability, the agent is evaluated on how
punishment is minimized (or reward is maximized), how
collision is minimized and how it copes with different
number of obstacles. However, if an agent can avoid
obstacles but can never reach its goal, it is useless. With
respect to the GS ability, the agent is evaluated on how the
number of steps required per episode to reach its goal is
minimized. In general, there is always conflict between
these two capabilities. In order to avoid collisions, one may
need to travel for an extra distance before the goal can be
reached. On the contrary, if one wants to reach the goal
quickly, some collisions may not be avoidable. Therefore, a
good approach would be the one that balances the two
capabilities.

3.2 Evaluation parameters
 According to the above, three parameters are used to
evaluate the performance of the two OA methods. They are:
1) sum of rewards, 2) no. of collisions and 3) no. of steps
per episode. Sum of rewards is the sum of all the rewards
after at the end of 2000 episodes. Larger negative value

means more collisions have occurred. A good learning
algorithm should have the number of collisions decreases as
the number of episode increases. In this paper, only one
type of obstacles is used and therefore the sum of rewards
is directly proportional to the number of collisions. The
number of steps required in each episode corresponds to the
steps taken by the agent to navigate from the origin to the
goal. A smaller value means that the agent can reach the
goal with a shorter path. It is bounded by the shortest path
between the origin and goal. The first two parameters are
directly related to the OA ability while the third one is a
measure of the goal seeking ability. A sophisticated OA
agent should be able to reduce its number of collisions,
maximize the reward and take the shortest path to reach the
goal. The agent that is able to fulfill all the above
requirements is thus a good problem solver in the moving
OA problem. To further evaluate the overall performance
of DAQ-learning, environments with different number of
obstacles are also used. All the obstacles are randomly
placed in the same area so that the obstacle density
increases with the number of obstacles linearly. As the
probability of collision increases as the obstacle density
increases, a high obstacle density environment can be used
to distinguish easily between well performed OA method
and other less well performed ones.

4 Evaluation Results and Data Analysis
 All the tests were carried out in a simulator built on
the Linux platform. In our simulation, the state indicating
the agent-object relationship is represented by the x and y
coordinates of the object with the agent placing in the
origin. The agent and the obstacles can choose one of the 5
actions: up, down, left, right, rest. A goal is given to the
agent and obstacles are randomly placed in between so that
the agent needs to navigate through the cluster of obstacles.
When collision occurs, both the obstacle and the agent are
brought back to their last position before collision and a
punishment of -10 is given to the agent. Two environments
of 10 and 50 obstacles respectively are used to test the two
methods. In both environments, the obstacle are of the same
type and will give the same amount of punishment (-10) to
the agent upon collisions. They can only move within a
certain boundary so that the obstacle density is relatively
fixed. In our tests, the agent (grey circle) is originally
placed at the upper left hand corner and its goal (not shown)
at the lower right hand corner. The grey line indicates path
that the agent has traversed. Initially, we present the
behavior of the two methods in the environment of 10
obstacles. Fig. 3 depicts an agent using the traditional Q-
learning method going through the crowd of obstacles
towards the goal. In Fig. 3a, the agent encountered an
obstacle on its right hand side. If the agents continue to
move to the right and the obstacle remains static, collision
will occur. As traditional Q-Learning does not consider the
action of the obstacle, the Q-value for the action going to
the right will have a relatively low value and thus the agent

select an action that have a higher value—move downward,
even if the obstacle was moving upward, and the move-
right action was possible.

(a) At time t (b) At time t+1 (a) At time t (b) At time t+1
Fig. 3. Q-learning method Fig.4.DAQ-learning method

 Fig. 4 showed a similar situation faced by the agent
using the DAQ-learning method. In Fig. 4a, an obstacle
was below the agent, which was moving to the left. As the
DAQ-learning method has already considered the action
that is taken by the obstacle, the agent moved downward
following the suggestion of the GS module, continue its
zigzag path. If the agent used Q-learning in the same
situation, it would move to the right instead. The difference
in responses of the two methods highlights the necessity of
considering obstacles’ action in a DCE. Fig. 5 depicts the
sum of rewards versus episode. After 2000 episodes, the
sum of reward of the new method is 29.4% less than that of
the traditional method. Fig. 6 depicts the no. of steps taken
in one episode of the two methods. A smaller value means
that the agent has chosen a shorter path. In this test, the
minimum number of steps needed to reach the goal from
the origin is 80 steps (shortest path). It can be seen that the
no. of steps taken in one episode of the new method has a
mean value of 3.11% less than that of the traditional
method. This also showed that the new method can keep its
route very near to the shortest path (80 steps) in most
episodes. On the contrary, traditional Q-learning requires
many more steps for the agent to accomplish the collision
avoidance task. This can be explained by the fact that Q-
learning does not consider obstacle actions, thus it is very
likely that the agent needs to take actions to avoid obstacles
more frequently although collision may not occur
necessarily in the next step (as in Fig. 3). As a result, the
agent engages in avoidance action regardless of what
actions the obstacles may take.

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1 201 401 601 801 1001 1201 1401 1601 1801

Episodes

S
um

 o
f

R
ew

ar
ds

Double Action Q-learning

Traditional Q-learning

Fig. 5 Sum of Rewards (10 Obstacles).

80

85

90

95

100

105

110

1 201 401 601 801 1001 1201 1401 1601 1801

Episodes

S
te

ps
 u

se
d

in
 o

ne
 E

pi
so

de

Double Action Q-learning

 (a) DAQ-learning

80

85

90

95

100

105

110

1 201 401 601 801 1001 1201 1401 1601 1801

Episodes

S
te

ps
 u

se
d

in
 o

ne
 E

pi
so

de

Traditional Q-learning

 (b) Traditional Q-learning

Fig. 6. No. of steps taken/episode (10 Obstacles).

(a) (b)

(c) (d)

Fig. 7. Agent using DAQ-learning to avoid collision with
multiple obstacles.

 To investigate how DAQ-learning responds when
dealing with multiple obstacles, the case of 10 and 50
obstacles in the environment were studied. In both cases,
the chance of collision is high. Fig 7 depicts the agent using
DAQ-learning to avoid collision with multiple obstacles. In
Fig. 7a, the agent predicted that the obstacle on its upper
right would block its path to the goal so it has chosen the
action to move to the right. Moreover, it predicted that the
obstacles in is bottom would move upward and cause
collision. Therefore, it moved either up or left. Eventually,
it has chosen to move left. In the next time step as shown in
Fig. 7b, although an obstacle is beneath it, the agent moved
downward in order to get closer to the goal and avoid
collision as it predicted that the obstacle would move to the
right. Such action also avoided collision with the obstacle
on its right. Fig 7c and 7d depict the agent avoided
collisions with other obstacles using similar approach. We
can see that as obstacle actions are considered in the DAQ-
learning method, the agent acted more intelligently in
solving the OA problem when compared with the
traditional Q-learning method. Fig. 8 depicts the sum of
rewards versus episode of both methods for the
environment with 50 obstacles. The new method has sum of
reward 93.6% less than that of the traditional method after

2000 episodes. When comparing with the case of 10
obstacles, sum of rewards has increased (more negative) by
417% for DAQ-Learning and 5565% for traditional Q-
Learning. The trend appears normal as the increase in the
no. of obstacles also causes the no. of collisions to increase.
On the other hand, DAQ-learning seems to avoid collision
much better than Q-learning in a densely populated
environment. Fig. 9 depicts the no. of steps taken in one
episode of the two methods in the environment with 50
obstacles. The no. of steps taken in one episode by the new
method has a mean value of 26.0% less than that of Q-
learning. When comparing the environment of 50 obstacles
with that of 10 obstacles, the values are 2.52% higher for
the DAQ-Learning and 34.2% higher for traditional Q-
Learning.

-12000

-10000

-8000

-6000

-4000

-2000

0

1 201 401 601 801 1001 1201 1401 1601 1801

Episode

S
um

 o
f

R
ew

ar
ds

Double Action Q-learning

Traditional Q-learning
Fig. 8. Sum of Rewards (50 Obstacles).

80

130

180

230

1 201 401 601 801 1001 1201 1401 1601 1801

Episodes

S
te

ps
 u

se
d

in
 o

ne
 E

pi
so

de

Double Action Q-learning

(a) DAQ-learning

80

130

180

230

1 201 401 601 801 1001 1201 1401 1601 1801

Episode

S
te

ps
 u

se
d

in
 o

ne
 E

pi
so

de

Traditional Q-learning

(b) Traditional Q-learning
Fig. 9. Steps used in one episode (50 Obstacles).

 The result of the tests showed that when there is
relatively smaller number of obstacles, the two methods
behave similarly with DAQ-learning slightly better than the
traditional one. But when the obstacle density increases, it
is obvious that the new method is more capable in
producing actions that balance collision avoidance and goal
seeking. To further illustrate the effect of increasing
obstacle density on the performance in the DAQ-learning
method, Fig. 10-12 plots the three parameters versus the no.
of obstacles up to 100. It shows that as the number of
obstacles increases, the difference in performance between

the two methods becomes greater. It appears that the new
method highly suited for navigating in environments with
high obstacle density.

-120000

-100000

-80000

-60000

-40000

-20000

0

10 50 100
No. of Obstacles

S
um

 o
f

R
ew

ar
ds

Double Action Q-learning

Traditional Q-learning

Fig. 10. Sum of rewards versus number of obstacles

0

2000

4000

6000

8000

10000

12000

10 50 100

No. of Obstacles
N

o.
of

 C
ol

li
si

on
s

Double Action Q-learning

Traditional Q-learning

Fig. 11. Number of collisions versus number of obstacles

0

20

40

60

80

100

120

140

10 50 100

No. of Obstacles

S
te

ps
 u

se
d

in
 o

ne
 E

pi
so

de

Double Action Q-learning

Traditional Q-learning

Fig. 12 Mean steps used versus number of obstacles

 In order to better understand the DAQ-Learning
method, we have taken a closer look at how collisions have
occurred. We have identified two main causes for majority
of collisions. The first cause is due to the conflicts between
GS and OA. To solve this problem, a higher punishment
can be given to the agent when collision occurs so that
through enough learning, OA would dominate the decision
process and thus collision would be minimized. The second
cause is the presence of “traps”. This particular situation is
depicted in Fig. 13. It can be seen that the agent is ‘boxed’
by obstacles that no matter what actions that it takes,
collisions are inevitable. One way to avoid it is to identify
the “trap” some steps in advance before being boxed in. At
present, the agent only predicts a step in advance, therefore
is not able to handle it yet. In theory, if the prediction
covers a few more steps, it is possible that such occurrence
may be avoided.

 Another issue concerning prediction accuracy is
studied. Inaccurate prediction can be viewed as probability
values on actions that the obstacles may take. For example,
a prediction accuracy of 80% can be used to illustrate that
in 80% of the time, the probability value of 1 is assigned to
the action that the obstacle must take. For the remaining
20% of time, it assigns equal probability value to all the

actions that the obstacle may take, meaning that the
prediction fails to predict correct actions of the obstacles. A
summation of the product of the probability value and the
corresponding Q-value is used to represent the actual Q-
value for the current state for that particular obstacle. Using
this definition, we have simulated prediction accuracy of
100% (perfect prediction) down to 0% (totally inaccurate
prediction), with 50% and 80% in between. Table 1 depicts
that the DAQL algorithm produces reasonable results even
when the prediction is totally inaccurate, particularly when
the obstacle density is high. Although inaccurate prediction
has increased the number of collisions, which is to be
expected, the performance of DAQL is still better than QL.
This can be explained by the fact that even prediction is
inaccurate in the agent’s action determination cycle, it does
not affect the learning cycle as it has the knowledge of what
the agent has done after one time step. As a result, the
correct Q-values generated help the agent to produce better
values in representing the expected future reward then the
QL algorithm. The contradictorily results show in the
situation of 10 obstacles can be explained by the fact that
the method of multiplying the probability measurement
with the corresponding Q-value lowered the Q-value and
caused conflicts between OA and DS. In this case, the
agent is required to learn more before its Q-values are large
enough to dominate DS. The DAQL method with
inaccurate prediction may perform unsatisfactorily in the
first several episodes, but with enough learning, the DAQL
performs better than QL and finally outperform QL after
2000 episodes.

(a) “Trap” formed at t (b) Collision occurred at t+1

Fig. 13 A “trap” in the environment.

5 Conclusion
 This paper has presented a solution and its detailed

evaluation to the moving obstacle avoidance problem by
using the RL approach. Evolved from the weaknesses of
the traditional MDP model, a new method called double-
action Q-learning has been proposed, which considers the
action taken by both the agent and the environment [7]. The
evaluation results showed that the DAQ-learning method is
better than the traditional Q-learning method in the sum of
rewards, no. of collisions per episode, no. of steps taken per
episode, and is much more capable in navigating through
an environment densely populated with obstacles. From our
simulation results, the DAQ-learning method has the sum
of rewards (negative) 29.4%, 93.6% and 96.3% less than
that of the traditional method in an environment of 10

obstacles, 50 obstacles and 100 obstacles respectively.
Apart from that, our new method also has the mean steps
used in one episode 0.083%, 2.61% and, 7.37% more than
the minimum no. of steps (80) in the three environments
respectively. For the traditional Q-learning method, the
three corresponding percentage are 3.30%, 38.6% and,
62.5% respectively. Results show that the new method
works better than the traditional Q-learning method in
solving the moving obstacle avoidance problem as the
number of obstacles increases.

Table 1: Sum of rewards for different prediction accuracy
No. of Obstacles

10 50 100
DAQL 100% -120 -620 -3610
DAQL 80% -260 -1480 -8430
DAQL 50% -400 -3120 -24690
DAQL 0% -490 -8020 -77690 Su

m
 o

f
R

ew
ar

ds

QL -170 -9630 -97710

References
[1] L. P. Kaelbling, M. L. Littman & A. W. Moore,
“Reinforcement Learning: A Survey”, Journal of Artificial
Intelligence Research, vol. 4 pp237-285, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement
Learning-An Introduction, The MIT Press, Cambridge,
1998.

[3] A. G. Barto and S. Mahadevan, “Recent advances in
hierarchical reinforcement”, Discrete Event Dynamic
Systems: Theory and Application, Vol. 13, pp 41-77, 2003.

[4] C. J. C. H. Watkins and P. Dayan, “Technical Note:
Q-learning”, Machine Learning, Vol. 8, pp279-292, 1992.

[5] R. S. Sutton, Reinforcement Learning. Boston:
Kluwer Academic Publishers, 1992.

[6] M. L. Puterman, Markov Decision Processes: discrete
stochastic dynamic programming, John Wiley & Sons,
New York, 1994.

[7] D. C. K. Ngai & N. H. C. Yung, “Double action Q-
learning for obstacle avoidance in a dynamically changing
environment”, Proceedings of the 2005 IEEE Intelligent
Vehicles Symposium, Nevada, USA, pp.211-216, 2005.

[8] G. Laurent, E. Piat, “Parallel Q-Learning for a block-
pushing problem”, Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Maui, USA, 2001.

[9] G. Laurent, E. Piat, “Learning Mixed Behaviours with
Parallel Q-learning”, Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, 2002.

