
 

Performance Evaluation of Double Action Q-Learning in 
Moving Obstacle Avoidance Problem 

 

Abstract - This paper describes the performance 
evaluation of Double-Action Q-learning in solving the 
moving obstacle avoidance problem. The evaluation is 
focused on two aspects: 1) obstacle avoidance, and 2) goal 
seeking; where four parameters are considered, namely, 
sum of rewards, no. of collisions, steps per episode, and 
obstacle density. Comparison is made between the new 
method and the traditional Q-learning method. 
Preliminary results show that the new method has the sum 
of rewards (negative) 29.4% and 93.6% less than that of 
the traditional method in an environment of 10 obstacles 
and 50 obstacles respectively. The mean no. of steps used 
in one episode is up to 26.0% lower than that of the 
traditional method. The new method also fares better as 
the number of obstacles increases. 

Keywords: Q-learning, reinforcement learning, temporal 
differences, obstacle avoidance 

1 Introduction 
 Reinforcement Learning (RL) defines a class of 

problem solving approaches by which the learner (agent) 
must learn through a series of exploratory searches and 
reinforcement in the form of delayed rewards from the 
environment [1], [2]. It maximizes the immediate reward, 
and the cumulative reward in the long run, from which the 
agent learns to approximate an optimal behavioral strategy 
by continuously interacting with the environment [3]. This 
enables the agent to learn to adapt gradually in unknown or 
dynamically changing environments.  

Q-learning by Watkins [4] is one such solution to the RL 
problem. It is a simple model-free approach that allows the 
agent to learn to act optimally in the Markovian domain, 
and it is easy to implement and has a relatively low 
computation cost. In the problem of moving obstacle 
avoidance (OA), the environment is dynamically changing, 
regardless of the agent’s action. This violates the 
assumption of Markov Decision Process (MDP) that only 
the action of the agent can change the state of the 
environment. Although the learning feature of RL may 
enable it to adapt to the change gradually, it can only 
converge to the changed environment but not learn to act 
while the environment changes. For this reason, we are 
motivated to consider not only the action of the agent but 
also the predicted action taken by the environment (or 

objects in the environment). As such, the agent can learn to 
react with the most appropriate action whatever the 
environment may be. 
 In this paper, we will describe the principle of the 
Double-Action Q-learning (DAQ-learning) method and 
evaluate it with respect to its obstacle avoidance and goal 
seeking capabilities. Its performance is also compared with 
traditional Q-learning in terms of sum of rewards, no. of 
collisions, steps per episode and obstacle density.  
Preliminary results show that the new method has the sum 
of rewards (negative) 29.4% and 93.6% less than that of the 
Q-learning in an environment of 10 obstacles and 50 
obstacles respectively. The mean no. of steps used in one 
episode is up to 26.0% lower than that of the traditional 
method. The new method also fares better as the number of 
obstacles increases. The rest of this paper is organized as 
follows.  DAQ-learning is detailed in Section 2. Following 
that, the evaluation approach is presented in Section 3.  
Evaluation results and data analysis are depicted in Section 
4, and the conclusion can be found in Section 5.  

2 Double-Action Q-learning 
 According to Sutton [5], reinforcement learning is to 
learn an appropriate mapping from situations to actions 
(policy) in which the reward is maximized. To carry out the 
mapping and maximize the reward, an MDP model is often 
used and the value function is built to achieve such a 
purpose. Q-Learning is one of the methods derived from 
MDP, where the agent tries to take an action according to 
the policy used and the Q-value in the particular state. In 
the next time step, it evaluates the action by the reward or 
penalty it has received and the expected value of the current 
state. The Q-learning method has been proven to converge 
to the optimal action-value with probability 1 as each action 
is executed in each state an infinite number of times [1] [6]. 
Its update rule is defined as below: [ ]),(),(max),(),( 11 tttattttt asQasQrasQasQ −++← ++ γα    (1) 

where st is the old state, st+1 is the new state, a is the chosen 
action in state st, α is the learning rate, and γ is the discount 
rate. In a dynamically changing environment (DCE), the 
MDP model may not be sufficient in describing all its 
dynamics. This is because in a DCE, the next state is not 
solely affected by the agent but can also be affected by the 
change of the environment. As traditional Q-Learning is 
based on the MDP model, it basically does not apply in a 
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DCE. In such an environment, the update rule of the Q-
Learning method may cause the Q-value to fluctuate. This 
effect could be visualized in the simulation results depicted 
in Section 4. The DAQ-learning was proposed to solve this 
problem [7]. It has two fundamental differences compared 
with MDP. First, a new state is defined over the 
relationship between the agent and an obstacle in the 
environment. As such, the environment can be considered 
as having different obstacles, static or not, with each 
obstacle having its own properties and its own state with 
respect to the agent. The states of all obstacles added 
together form the environment. Second, the environment 
can change by itself, disregard whether the agent acts or not. 
In this method, both the observer and the environment can 
take actions and cause the change in state. As both parties 
are changing, what an observer observes is the net change 
after both parties have acted. 

 In DAQ-learning, the Q-value is updated iteratively 
and the agent learns to act in different states. The 
corresponding modified Q-learning update rule for DAQ-
learning is: 
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where a1 is the action taken by the agent and a2 is the action 
taken by the environment. However, as a2’ is the action that 
will be taken by the environment in the current time step, it 
is not controlled by the agent and therefore maximize the 
equations on a2’ is not meaningful. Instead, the predicted 
a2’ should be used to update the Q-values. If the agent 
knows the probability distribution of a2’, the expected value 
can also be used as an alternative. However, this update 
rule may be used only if we can predict the action taken by 
the environment accurately. If the prediction is not accurate, 
the Q-value may not converge and thus the agent may fail 
to act appropriately. One less aggressive approach is to use 
the mean value of )',','(max 21
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 over all a2’. That is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−++

←

∑
),,(

)'(

)',','(max

),,(),,(

21
2

'

21

'

2121

2
1

aasQ
acount

aasQ
r

aasQaasQ

a a
γα

,     (3) 

where count(a2’) is the number of a2’ available in the 
system. The term mean value of )',','(max 21

'1
aasQ

a

 over all 

a2’ is used because it is difficult at this stage for the agent 
to know exactly what action the environment will take in 
the next time step. As a result, it would be more appropriate 
for the agent to choose the mean value of the Q value as the 
discounted future state-action value in the update rule. Fig. 
1 shows the algorithm of the DAQ-learning method. In this 
algorithm, the agent needs to consider two actions (one 
from itself and the other from the environment) before it 
can choose the action with the highest expected future 
rewards. To know the action that is taken by the 
environment in the next time step, the agent must be able to 
predict. The prediction module can be realized 

independently of the RL process, through using historical 
information of the environment, as discussed in Section IV. 

 
Fig. 1 The DAQ-learning algorithm 

  During the learning cycle, the agent needs to be 
aware of what actions have been taken by the environment 
before the Q-values can be updated. This is performed by 
an action determination module. After knowing the action 
that has been taken by the environment, the agent can 
update it’s Q-value according to (3). In the OA problem, 
we need to plan and control the agent’s motion to ensure 
that it can avoid collisions with moving obstacles. By using 
DAQ-learning, states are interpreted as the relationship 
between an obstacle and the agent. Therefore, if there is 
more than one obstacle, multiple numbers of states will 
exist. By applied DAQ-learning on each pair of obstacle-
agent relationship, the RL process can be made more 
efficient. Laurent and Piat [8], [9] have proposed a similar 
approach called the parallel Q-learning to solve the block-
pushing problem. They have tried different methods to 
combine Q-value from different blocks, such as taking the 
maximum Q-value over all blocks, or taking the sum of all 
Q-values from all blocks. In our case, the latter is used in 
combining the Q-values from different obstacle-agent 
relationships, i.e.: 
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where Q(s,a) is the resultant Q-value for the entire 
environment and qi(si,a1,ai

2) is the Q-value of the particular 
type of object when the agent face that object along. The 
action a2 is determined through the prediction module. 
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 is then chosen as the final decision of the OA 

module. For the same type of objects, the agent uses the 
same set of Q-value to represent them. Therefore, when 
there are multiple obstacles which are of the same type in 
the environment, the Q-value belonging to that type of 
obstacles is updated multiple times in each time step. As 
such, this technique has greatly enhanced the efficiency of 
Q-learning. Fig. 2 depicts the architecture of the OA system. 

Initialize Q(s,a1,a2) arbitrarily  
Repeat (for each episode) 
 Initialize s 
 Repeat (for each step of episode): 

Get a2 by predicting the action that will be taken by the 
environment 

  Choose a1 from s using policy derived from Q 
  Take action a1 
  Observe the new state s’ and r 

Determine the action a2  that have been taken by the 
environment 
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  s← s’ 
 until s is terminal 



 

 In our case, a goal is established for the agent so that it 
must reach the goal even if it has to pass through a crowd 
of obstacles but not staying away from the obstacles. This 
ability is called the Goal Seeking (GS) ability.  In this paper, 
we assumed that the agent knows the position of the goal so 
that the GS module is able to provide indications on which 
action can get closer to the goal. Other actions have their 
Q-value gradually decreasing according to the distance that 
they can minimize. The Q-values from the GS and the OA 
modules are summed to form the final Q-value. The action 
with the maximum final Q-value is selected as the final 
decision. For evaluation purpose, we focus on the DAQ-
learning method and thus assume that the prediction and 
action determination were accurate. The prediction 
accuracy issue will be further discussed at the end of 
section IV. 

 
Fig. 2 Architecture of the obstacle avoidance system 

3 Evaluation Approach 

3.1 Evaluation focus 
 The evaluation is focused on comparing the difference 
between the proposed method and traditional Q-learning, in 
their obstacle avoidance and goal seeking abilities. With 
respect to the OA ability, the agent is evaluated on how 
punishment is minimized (or reward is maximized), how 
collision is minimized and how it copes with different 
number of obstacles. However, if an agent can avoid 
obstacles but can never reach its goal, it is useless.  With 
respect to the GS ability, the agent is evaluated on how the 
number of steps required per episode to reach its goal is 
minimized. In general, there is always conflict between 
these two capabilities. In order to avoid collisions, one may 
need to travel for an extra distance before the goal can be 
reached. On the contrary, if one wants to reach the goal 
quickly, some collisions may not be avoidable. Therefore, a 
good approach would be the one that balances the two 
capabilities. 

3.2 Evaluation parameters 
 According to the above, three parameters are used to 
evaluate the performance of the two OA methods. They are: 
1) sum of rewards, 2) no. of collisions and 3) no. of steps 
per episode. Sum of rewards is the sum of all the rewards 
after at the end of 2000 episodes. Larger negative value 

means more collisions have occurred. A good learning 
algorithm should have the number of collisions decreases as 
the number of episode increases. In this paper, only one 
type of obstacles is used and therefore the sum of rewards 
is directly proportional to the number of collisions. The 
number of steps required in each episode corresponds to the 
steps taken by the agent to navigate from the origin to the 
goal. A smaller value means that the agent can reach the 
goal with a shorter path. It is bounded by the shortest path 
between the origin and goal. The first two parameters are 
directly related to the OA ability while the third one is a 
measure of the goal seeking ability. A sophisticated OA 
agent should be able to reduce its number of collisions, 
maximize the reward and take the shortest path to reach the 
goal. The agent that is able to fulfill all the above 
requirements is thus a good problem solver in the moving 
OA problem. To further evaluate the overall performance 
of DAQ-learning, environments with different number of 
obstacles are also used. All the obstacles are randomly 
placed in the same area so that the obstacle density 
increases with the number of obstacles linearly. As the 
probability of collision increases as the obstacle density 
increases, a high obstacle density environment can be used 
to distinguish easily between well performed OA method 
and other less well performed ones. 

4 Evaluation Results and Data Analysis 
 All the tests were carried out in a simulator built on 
the Linux platform. In our simulation, the state indicating 
the agent-object relationship is represented by the x and y 
coordinates of the object with the agent placing in the 
origin. The agent and the obstacles can choose one of the 5 
actions: up, down, left, right, rest.  A goal is given to the 
agent and obstacles are randomly placed in between so that 
the agent needs to navigate through the cluster of obstacles. 
When collision occurs, both the obstacle and the agent are 
brought back to their last position before collision and a 
punishment of -10 is given to the agent. Two environments 
of 10 and 50 obstacles respectively are used to test the two 
methods. In both environments, the obstacle are of the same 
type and will give the same amount of punishment (-10) to 
the agent upon collisions. They can only move within a 
certain boundary so that the obstacle density is relatively 
fixed. In our tests, the agent (grey circle) is originally 
placed at the upper left hand corner and its goal (not shown) 
at the lower right hand corner. The grey line indicates path 
that the agent has traversed. Initially, we present the 
behavior of the two methods in the environment of 10 
obstacles. Fig. 3 depicts an agent using the traditional Q-
learning method going through the crowd of obstacles 
towards the goal. In Fig. 3a, the agent encountered an 
obstacle on its right hand side. If the agents continue to 
move to the right and the obstacle remains static, collision 
will occur. As traditional Q-Learning does not consider the 
action of the obstacle, the Q-value for the action going to 
the right will have a relatively low value and thus the agent 



 

select an action that have a higher value—move downward, 
even if the obstacle was moving upward, and the move-
right action was possible. 

         
(a) At time t  (b) At time t+1        (a) At time t     (b) At time t+1 
Fig. 3. Q-learning method   Fig.4.DAQ-learning method 

 Fig. 4 showed a similar situation faced by the agent 
using the DAQ-learning method. In Fig. 4a, an obstacle 
was below the agent, which was moving to the left. As the 
DAQ-learning method has already considered the action 
that is taken by the obstacle, the agent moved downward 
following the suggestion of the GS module, continue its 
zigzag path. If the agent used Q-learning in the same 
situation, it would move to the right instead. The difference 
in responses of the two methods highlights the necessity of 
considering obstacles’ action in a DCE.  Fig. 5 depicts the 
sum of rewards versus episode. After 2000 episodes, the 
sum of reward of the new method is 29.4% less than that of 
the traditional method. Fig. 6 depicts the no. of steps taken 
in one episode of the two methods. A smaller value means 
that the agent has chosen a shorter path. In this test, the 
minimum number of steps needed to reach the goal from 
the origin is 80 steps (shortest path). It can be seen that the 
no. of steps taken in one episode of the new method has a 
mean value of 3.11% less than that of the traditional 
method. This also showed that the new method can keep its 
route very near to the shortest path (80 steps) in most 
episodes. On the contrary, traditional Q-learning requires 
many more steps for the agent to accomplish the collision 
avoidance task.  This can be explained by the fact that Q-
learning does not consider obstacle actions, thus it is very 
likely that the agent needs to take actions to avoid obstacles 
more frequently although collision may not occur 
necessarily in the next step (as in Fig. 3). As a result, the 
agent engages in avoidance action regardless of what 
actions the obstacles may take. 
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Fig. 5 Sum of Rewards (10 Obstacles).  
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 (a) DAQ-learning 
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 (b) Traditional Q-learning 

Fig. 6. No. of steps taken/episode (10 Obstacles).  

   
(a)            (b) 

   
(c) (d) 

Fig. 7. Agent using DAQ-learning to avoid collision with 
multiple obstacles. 

 To investigate how DAQ-learning responds when 
dealing with multiple obstacles, the case of 10 and 50 
obstacles in the environment were studied. In both cases, 
the chance of collision is high. Fig 7 depicts the agent using 
DAQ-learning to avoid collision with multiple obstacles. In 
Fig. 7a, the agent predicted that the obstacle on its upper 
right would block its path to the goal so it has chosen the 
action to move to the right. Moreover, it predicted that the 
obstacles in is bottom would move upward and cause 
collision. Therefore, it moved either up or left. Eventually, 
it has chosen to move left. In the next time step as shown in 
Fig. 7b, although an obstacle is beneath it, the agent moved 
downward in order to get closer to the goal and avoid 
collision as it predicted that the obstacle would move to the 
right. Such action also avoided collision with the obstacle 
on its right. Fig 7c and 7d depict the agent avoided 
collisions with other obstacles using similar approach.  We 
can see that as obstacle actions are considered in the DAQ-
learning method, the agent acted more intelligently in 
solving the OA problem when compared with the 
traditional Q-learning method. Fig. 8 depicts the sum of 
rewards versus episode of both methods for the 
environment with 50 obstacles. The new method has sum of 
reward 93.6% less than that of the traditional method after 



 

2000 episodes. When comparing with the case of 10 
obstacles, sum of rewards has increased (more negative) by 
417% for DAQ-Learning and 5565% for traditional Q-
Learning. The trend appears normal as the increase in the 
no. of obstacles also causes the no. of collisions to increase. 
On the other hand, DAQ-learning seems to avoid collision 
much better than Q-learning in a densely populated 
environment. Fig. 9 depicts the no. of steps taken in one 
episode of the two methods in the environment with 50 
obstacles. The no. of steps taken in one episode by the new 
method has a mean value of 26.0% less than that of Q-
learning. When comparing the environment of 50 obstacles 
with that of 10 obstacles, the values are 2.52% higher for 
the DAQ-Learning and 34.2% higher for traditional Q-
Learning. 
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Fig. 8. Sum of Rewards (50 Obstacles). 
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(a) DAQ-learning 
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(b) Traditional Q-learning 
Fig. 9. Steps used in one episode (50 Obstacles).  

 The result of the tests showed that when there is 
relatively smaller number of obstacles, the two methods 
behave similarly with DAQ-learning slightly better than the 
traditional one. But when the obstacle density increases, it 
is obvious that the new method is more capable in 
producing actions that balance collision avoidance and goal 
seeking. To further illustrate the effect of increasing 
obstacle density on the performance in the DAQ-learning 
method, Fig. 10-12 plots the three parameters versus the no. 
of obstacles up to 100. It shows that as the number of 
obstacles increases, the difference in performance between 

the two methods becomes greater. It appears that the new 
method highly suited for navigating in environments with 
high obstacle density.  
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Fig. 10. Sum of rewards versus number of obstacles 

0

2000

4000

6000

8000

10000

12000

10 50 100

No. of Obstacles
N

o.
of

 C
ol

li
si

on
s

Double Action Q-learning

Traditional Q-learning
 

Fig. 11. Number of collisions versus number of obstacles 
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Fig. 12 Mean steps used versus number of obstacles 

 In order to better understand the DAQ-Learning 
method, we have taken a closer look at how collisions have 
occurred. We have identified two main causes for majority 
of collisions. The first cause is due to the conflicts between 
GS and OA. To solve this problem, a higher punishment 
can be given to the agent when collision occurs so that 
through enough learning, OA would dominate the decision 
process and thus collision would be minimized. The second 
cause is the presence of “traps”. This particular situation is 
depicted in Fig. 13. It can be seen that the agent is ‘boxed’ 
by obstacles that no matter what actions that it takes, 
collisions are inevitable. One way to avoid it is to identify 
the “trap” some steps in advance before being boxed in. At 
present, the agent only predicts a step in advance, therefore 
is not able to handle it yet. In theory, if the prediction 
covers a few more steps, it is possible that such occurrence 
may be avoided. 

 Another issue concerning prediction accuracy is 
studied. Inaccurate prediction can be viewed as probability 
values on actions that the obstacles may take. For example, 
a prediction accuracy of 80% can be used to illustrate that 
in 80% of the time, the probability value of 1 is assigned to 
the action that the obstacle must take. For the remaining 
20% of time, it assigns equal probability value to all the 



 

actions that the obstacle may take, meaning that the 
prediction fails to predict correct actions of the obstacles. A 
summation of the product of the probability value and the 
corresponding Q-value is used to represent the actual Q-
value for the current state for that particular obstacle. Using 
this definition, we have simulated prediction accuracy of 
100% (perfect prediction) down to 0% (totally inaccurate 
prediction), with 50% and 80% in between. Table 1 depicts 
that the DAQL algorithm produces reasonable results even 
when the prediction is totally inaccurate, particularly when 
the obstacle density is high. Although inaccurate prediction 
has increased the number of collisions, which is to be 
expected, the performance of DAQL is still better than QL. 
This can be explained by the fact that even prediction is 
inaccurate in the agent’s action determination cycle, it does 
not affect the learning cycle as it has the knowledge of what 
the agent has done after one time step. As a result, the 
correct Q-values generated help the agent to produce better 
values in representing the expected future reward then the 
QL algorithm. The contradictorily results show in the 
situation of 10 obstacles can be explained by the fact that 
the method of multiplying the probability measurement 
with the corresponding Q-value lowered the Q-value and 
caused conflicts between OA and DS. In this case, the 
agent is required to learn more before its Q-values are large 
enough to dominate DS. The DAQL method with 
inaccurate prediction may perform unsatisfactorily in the 
first several episodes, but with enough learning, the DAQL 
performs better than QL and finally outperform QL after 
2000 episodes. 

       
(a) “Trap” formed at t   (b) Collision occurred at t+1 

Fig. 13 A “trap” in the environment. 

5 Conclusion 
 This paper has presented a solution and its detailed 

evaluation to the moving obstacle avoidance problem by 
using the RL approach. Evolved from the weaknesses of 
the traditional MDP model, a new method called double-
action Q-learning has been proposed, which considers the 
action taken by both the agent and the environment [7]. The 
evaluation results showed that the DAQ-learning method is 
better than the traditional Q-learning method in the sum of 
rewards, no. of collisions per episode, no. of steps taken per 
episode, and is much more capable in navigating through 
an environment densely populated with obstacles. From our 
simulation results, the DAQ-learning method has the sum 
of rewards (negative) 29.4%, 93.6% and 96.3% less than 
that of the traditional method in an environment of 10 

obstacles, 50 obstacles and 100 obstacles respectively. 
Apart from that, our new method also has the mean steps 
used in one episode 0.083%, 2.61% and, 7.37% more than 
the minimum no. of steps (80) in the three environments 
respectively. For the traditional Q-learning method, the 
three corresponding percentage are 3.30%, 38.6% and, 
62.5% respectively. Results show that the new method 
works better than the traditional Q-learning method in 
solving the moving obstacle avoidance problem as the 
number of obstacles increases. 

Table 1: Sum of rewards for different prediction accuracy 
No. of Obstacles  

10 50 100 
DAQL 100% -120 -620 -3610 
DAQL 80% -260 -1480 -8430 
DAQL 50% -400 -3120 -24690 
DAQL 0% -490 -8020 -77690 Su

m
 o
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ew
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QL -170 -9630 -97710 
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