
 

 

 

  

Abstract— This paper presents a hybrid approach to spatial 

indexing of two dimensional (2D) data. It sheds new light on the 

age old problem by thinking of the traditional algorithms as 

working with images. Inspiration is drawn from an analogous 

situation that is found in machine and human vision. Image 

processing techniques are used to assist in the spatial indexing of 

the data. A fixed grid approach is used and bins with too many 

records are sub-divided hierarchically. Search queries are 

pre-computed for bins that do not contain any data records. This 

has the effect of dividing the search space up into non 

rectangular regions which are based on the spatial properties of 

the data. The bucketing quad tree can be considered as an image 

with a resolution of 2x2 for each layer. The results show that this 

method performs better than the quad tree if there are more 

divisions per layer. This confirms our suspicions that the 

algorithm works better if it gets to “look” at the data with higher 

resolution images. An elegant class structure is developed where 

the implementation of concrete spatial indexes for a particular 

data type merely relies on rendering the data onto an image. 

I. INTRODUCTION 

HIS paper sheds new light on the way in which spatial 

indexing is considered and performed. It begins by giving 

a brief overview of two common spatial indexing techniques. 

It then gives evidence to suggest that an analogous situation 

exists in the human vision system and therefore opens the door 

to using image processing techniques to deal with the spatial 

indexing problem. The design and implementation of this 

spatial index is discussed and the results are presented and 

analyzed. A brief description of the further work explains 

where this research is headed.  

II. LITERATURE REVIEW 

A. Spatial Indexing 

With the advent of high performance computing, there are 

an increasing amount of datasets that contain a significant 

spatial component to them. Being able to perform spatial 

queries on this data is only feasible if there is a way to manage 

the large quantities of data. Database indexing is a technique 

used to speed up searches for data by creating a searchable 

catalogue of the data based on a unique key. Spatial indexing 
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uses the spatial coordinates of the data to create the searchable 

catalogue. This has the effect of prioritizing searches through 

the data, based on the spatial extent from the query point. 

Since one of the most recent developments in database 

technology is the addition of spatial data types, the spatial 

indexing methods that databases rely on are becoming 

increasingly more important [1]. 

The most typical spatial indexing scheme makes use of a 

divide-and-conquer approach where the original domain 

space is broken down into several regions. These regions are 

in turn divided up as necessary to form a hierarchical tree that 

can be traversed when searching for records. One of the most 

common examples of this spatial indexing technique is the 

quad tree (and region quad tree) for two dimensions and the 

oct tree for three dimensions [1]-[3] which create a recursive 

decomposition of space [2]. An alternative to the hierarchical 

data structure is the fixed grid or cell method, which is popular 

amongst cartographers. The advantage of this method is that it 

is easy to do lookups and adding or deleting records from the 

data structure is simple. The disadvantage of this method is 

that it is only suited to uniformly distributed data which is not 

typically the case when dealing with geographic information 

such as road network data for an entire country. The difficulty 

with hierarchical spatial indexes is in partitioning and 

grouping the records [1]. This can be done either as a batch 

process once all the records are available, or it can be done as 

the records are being added. Removing records from certain 

regions may get complicated and this limits the usefulness of 

the structure to dynamic information. There is also an 

overhead in memory and access time which must be taken into 

account when using hierarchical spatial indexes. An excellent 

review of the various spatial indexing techniques as well an 

extensive description and analysis are found in [2]. 

B. Spatial Indexing Methods 

In order to simplify the problem domain for this paper, we 

only consider the spatial indexing of points in 

two-dimensional space. This delimitation is acceptable since 

most other geometric primitives can be expressed as points 

and typical real world datasets are generated from geospatial 

data which is approximately 2D. We also only deal with the 

updating of the spatial indexes as a batch process in order to 

illustrate the key concepts presented in this paper. 

1) Fixed Grid Method 

The fixed grid method is one of the simplest spatial 

indexing methods to implement. It simply divides up the 

extents of the data into regular sized grid bins. Each bin 

maintains a list of all the data records that fall within the bin. 
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Searching for the nearest record involves finding the bin at the 

query location and iterating through each record in the list to 

find the nearest match. Resolving the bin indices is an O(1) 

operation because all we have to do is divide the offset of the 

query point from the corner of the spatial index extents, by the 

width of each bin. 

For a uniformly distributed set of points, we expect the 

average search cost to be: 

( )yx

n
c
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Where n is the total number of records, x is the number of 

divisions in the X dimension and y is the number of divisions 

in the Y dimension. Unfortunately, this equation is only valid 

near the centers of the bins because of the effect that occurs at 

the edges as illustrated in Fig 1. 

For points that are near the edge of a bin, one must consider 

the points that are in the adjacent bins in order to ensure that 

the search result is indeed the closest record to the query point. 

The negative effect of this is compounded once we attempt to 

index data that is highly non-uniform. If the data has regions 

where there are gaps, there is a good chance that several of the 

bins will be empty. Querying for the nearest record at these 

locations will incorrectly return no results. It is therefore 

necessary to apply some heuristic to search through adjacent 

bins that are near the query point. This paper presents a neat 

solution to this problem and is discussed later. 

2) Quad Tree 

As discussed in [2], there are a number of different spatial 

indexing methods that can be classified as quad trees. The 

overall idea is that the region of interest is divided up into 

quadrants which are further sub-divided recursively until a set 

number of records are present in each quadrant. This is a 

hierarchical technique that can be thought of as processing at 

multiple resolutions, because the spatial extents of the 

quadrants are continually decreasing as the search depth in the 

tree increases. This paper mainly deals bucketing methods 

where the data records are added to buckets (or bins) that are 

defined by the extents of the quad tree quadrants [1]. An 

example quad tree is shown in Fig 2. 

The problem with the quad tree is that one needs to travel 

several layers deep before one reaches a high enough 

resolution that is suitable for indexing through large amounts 

of data. Also, it becomes slightly more complicated to perform 

range searches because of the tree structure that needs to be 

taken into account when looking at adjacent bins. 

III. BACKGROUND 

The inspiration for this spatial indexing technique comes 

from two sources. The first is that humans are very adept at 

visually searching through large sets of data while being able 

to filter out irrelevant details. The second is that most of the 

existing spatial indexing techniques can astonishingly be 

thought of as using images to perform the spatial searches 

visually. The techniques might not all use regular grid-like 

images, but their effect can definitely be considered as an 

image processing operation. A little more clarification is in 

order. 

A. Humans as excellent spatial indexers 

The most widely accepted theory of spatial vision is that of 

the multichannel model [4] developed by Enroth-Cugell and 

Robson [5] and Campbell [6]. This theory proposes that the 

visual system processes the retinal image simultaneously at 

several different spatial scales [4]. This is consistent with the 

type of data that needs to be processed in the real world, which 

is often made up of different levels of detail. The 

physiological evidence for this ability is in the size of a 

neuron’s receptive field in each stage of early vision [4]. The 

neurons that process the raw signals from the photoreceptor 

cells have varying receptive field sizes and therefore we are 

able to detect a wide range of detail. It is believed that these 

various-scale outputs along with information from other 

channels are combined by the higher vision processes into our 

interpretation of a scene. 

The impulse response of individual neurons falls-off as the 

signal moves further away from the centre of the neurons 

receptive field. This characteristic is highly desirable and 

essential for performing spatial queries on sets of data.  

B. Traditional Techniques as Image Operations 

One of the most common 2D spatial indexing techniques is 

the Quad-Tree as discussed earlier. If one considers that the 

quad tree is a pyramid of images, then one realizes that each 

layer is only represented by a 2x2 image. The same concept 

can be applied to other common spatial indexing techniques 

and one soon realizes that decisions on what search path to 

follow are based on a very limited view of the data.  Imagine if 

all that we could see was 4 pixels at a time! 

 

 
Fig. 1.  Search required near the edge of a bin. Some bins are empty. 

 

 

 
Fig. 2.  An example of a bucketing quad tree for a small set of points.  

The maximum number of records in a bucket is 1. 



 

 

 

In this paper, we propose that one considers the problem of 

spatial indexing as an image processing operation which gets 

performed on multi-resolution representations of the 

underlying data. The process of inserting data into the spatial 

index is thought of as rendering the data onto an image, which 

is the regular grid at each hierarchical level. This means that 

we can use the wealth of knowledge and the abundance of 

algorithms that are available for drawing geometric primitives 

in order to insert the data into the spatial index. One can also 

use the concept of alpha-blending as a way of creating a 

histogram of regions that contain a large number of records. If 

we render the data with an additive drawing mode, then 

regions with a bright (high) color are known to contain large 

amounts of data records. 

Considering the spatial index as a set of images also helps 

us when performing range and nearest point queries. This is 

because we are able to use the vast amount of morphological 

operators and other techniques that are available for image 

processing [7]-[10]. One of the fundamental concepts of 

morphological operators is the idea of neighborhoods and 

connectivity. Given a 5x5 image shown in Fig. 3, we can 

describe the 1-neighbourhood of a pixel as the set of pixels 

that are touching the centre pixel. In our definition, we 

consider the diagonal pixels as being connected as well. The 

n-neighborhood is therefore, the set of pixels that are n pixels 

away from the centre pixel. The morphological operators 

make use of the neighboring pixels to decide on the value for 

the centre pixel. In fact, many 2D image filters are defined as 

kernels which are convolved with an image to perform 

complex operations such as blurring, sharpening, opening and 

closing [7][8]. 

 
Anderson and McCartney have shown that using images (or 

diagrams) can be very effective for performing several 

complex spatial database queries [10]. They use logical 

operators on 2D diagrams to perform the search queries. This 

paper extends their idea by using a hierarchical set of images 

to perform the spatial indexing of the data. 

IV. METHOD 

The spatial index described in this paper is designed as a set 

of Object-Oriented classes in C# for Microsoft .NET V2. The 

design makes use of inheritance, polymorphism and interfaces 

to achieve an elegant and extensible solution to the problem. 

The use of generics is not necessary to implement the spatial 

index. 

The spatial index is implemented as a class hierarchy as 

shown in Fig. 4.  

 
The AbstractGridSpatialIndex is the base class for all grid 

spatial indexes. This class contains all the common 

functionality for indexing data in a grid. It also performs the 

bulk of the indexing and spatial queries. This design allows us 

to have a solid and consistent implementation for the grid 

spatial index while allowing a variety of sub classes to 

implement different indexing behaviors. The class is declared 

as abstract so that sub classes are forced to implement the 

abstract methods. In order for the spatial index to be useful for 

indexing many types of data, it is necessary to make the 

abstract class accept a very general data type. For this reason, 

an interface is used instead of a concrete class and it is 

described in the next section.  

A. IGridSpatiaIndexable 

This is the interface that needs to be implemented by data 

collections in order for them to be indexed in a grid spatial 

index. The reason for using an interface is so that the spatial 

index does not limit the class structure that may be indexed. It 

allows arbitrary class hierarchies to exist for the data 

collections as long as the class implements the methods 

required for performing spatial indexing. The interface 

declaration also defines the minimal functionality required for 

indexing data in a grid spatial index. This interface is shown in 

Fig. 5. 

 
Note that the interface includes properties. This is a feature 

of the .NET framework and it allows interfaces to declare 

field-like elements that are implemented with getter and setter 

methods. If your language does not support this feature then 

the interface would merely have the corresponding getter and 

setter methods to replace the properties.  

The spatial index has been designed to index only integer 

values. This scheme provides a good trade-off between 

 
Fig. 5. IGridSpatialIndexable is the minimal interface required for spatial 

indexing in a grid. ISpatialQueriable2D is the minimal interface for data 

that can be indexed. 

 
Fig. 4.  Class Hierarchy for the Spatial Index 
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Fig. 3.  The 1-(light) and the 2-(dark) neighborhood of a pixel. 

 



 

 

 

generality for multiple applications and it also allows complex 

data access schemes to be spatially indexed. It is therefore the 

role of the IGridSpatialIndexable object to supply the 

mapping between an index and the actual record to be 

indexed. Concrete spatial index classes must implement the 

GetRecordToIndex() method of the interface. This method 

gets passed the index of the record to process and a temporary 

object of the type being indexed. The method must get the 

information for that specific record and return it to the spatial 

index. The temporary object that is passed to the method 

allows one to perform arbitrary calculations on the data (such 

as coordinate transformations) without having to create 

hundreds of transient objects for this process. This object 

reuse improves performance considerably, especially for 

cases where the record itself has to be converted into a form 

that can be indexed. The record to be indexed also has to 

implement the ISpatialQueriable2D interface, which defines 

the methods shown in Fig. 5. 

It is necessary for the spatial index to get the extents of the 

data being indexed (GetSpatialIndexExtents()). This is so that 

the initial grid spatial index can be generated. A method that 

returns the total number of records (GetRecordCount()) is 

required for the spatial index to know how many records to 

index. The interface also has a Boolean property (Changed) 

which flags whether the data has changed. The spatial index 

uses this flag to rebuild itself whenever a spatial query is about 

to be run. With the IGridSpatialIndexable interface, we are 

able to represent a collection of data that can be indexed 

hierarchically or in only one layer of a grid index. 

B. AbstractGridSpatialIndex 

This class takes the IGridSpatialIndexable collection and 

the number of divisions for the initial spatial grid as 

parameters to its constructor. It contains two grids of integer 

lists. The grid is implemented as a 2D array of integer lists. 

The first grid holds in each bin, the record indices that fall 

inside that bin. This grid is the result of rendering all the data 

to an image and saving which records were rendered to the 

pixels. Any bins that do not have data are set to null. Every 

integer list that is unique for this grid is maintained in a 

dictionary where the integer list is the key and the 

corresponding grid coordinate is the value. This allows an 

efficient lookup of the grid coordinates for a particular integer 

list. The second grid holds a duplicate of the rendered list but 

all the null bins are set to point to the integer list that contains 

the nearest record to the centre of the bin. This is a method of 

pre-computing approximate results to the problem discussed 

above for empty bins in the fixed grid spatial index. 

Rebuilding the spatial index is done when the data is flagged 

as being changed and may be described as the following high 

level process: 

1. Get the spatial data-extents. 

2. Get the number of records to index. 

3. Clear the unique-list dictionary. 

4. Create the bins for the lists. 

5. Calculate the bin sizes. 

6. Allow descendant classes to perform extra 

processing before the index is rebuilt. 

7. Render the records into the grid (nulls where there 

is no data). 

8. Create a shallow copy of the rendered lists. 

9. Fill in the gaps by finding the integer lists with the 

nearest record to the centre of the bin. 

10. Allow descendant classes to perform extra 

processing after the index is rebuilt. 

11. Flag that the data has been processed and watch 

for further changes. 

The class also has several protected helper methods to 

assist descendant classes to render their data correctly to the 

bins. These are in the form of efficient point, line and area 

rendering methods that add the indices of the records into the 

integer lists in the grid. This design means that concrete 

descendant classes only need to implement two methods for 

the spatial index to work, namely RenderRecordsToLists() 

and CreateRecordInstance() (which makes the temporary 

record described previously). It is evident from these two 

methods that we have successfully managed to abstract out all 

the spatial indexing functionality from the data rendering 

functionality. This means that the developer of concrete sub 

classes only has to program how to render the data to a grid 

(which is essentially the same as rendering the data to an 

image or the screen).  

C. Searching 

The efficiency of a spatial index lies in its role as a pruning 

device for searching that is done [2]. In order to solve the 

empty-bin problem discussed earlier, we propose a solution 

that pre-computes the bin with the nearest record to the centre 

of each of the empty bins (step 9 above). This has the effect of 

creating non-rectangular regions that all point to the same 

integer list. This is a very desirable effect because the grid is 

partitioned into arbitrary regions that depend entirely on the 

data. Most other algorithms partition the search space into 

strict rectangular segments which are not well suited to 

real-world data. Fig. 6 shows an example of this partitioning. 

 
With these pre-computed bins, performing a search for the 

nearest record simply involves querying the bin at the query 

point and all the bins in the 1-neighbourhood. This guarantees 

that distant and adjacent records are searched and it solves the 

problem encountered with the fixed grid method. It is 

important to note that this is only valid if we are querying 

 

 
Fig. 6.  The partitioning of reused bins after gaps in the grid are filled. 



 

 

 

inside the extents of the spatial index. If this is not the case, 

then we have to query the entire edge (all the bins along the 

side) of the spatial index for the nearest record.  

The naïve approach to the described search method will 

search every bin in the neighborhood or every bin along the 

edge of the data extents. This, however, is not always 

necessary. If the distance of the nearest point in a bin to the 

query point is shorter than the distance to any of the bin edges, 

then we have found the nearest record and we do not have to 

search additional bins. This allows the algorithm to short 

circuit after searching through the first bin. 

D. Fixed Grid Spatial Index 

By implementing the two abstract methods of the 

AbstractGridSpatialIndex to render the data, we would have a 

complete implementation for a fixed grid spatial index with no 

hierarchical sub-divisions. This is suitable for hand-tuned 

datasets or when a lightweight spatial index is required. 

E. Hierarchical Grid Spatial Index 

The hierarchical grid spatial index is implemented by 

introducing a proxy collection (SubGridDataCollection) that 

implements IGridSpatialIndexable, and by overriding steps 6 

and 10 of the abstract class’ RebuildIndex() method. An 

internal list of all the sub grids is maintained and another grid 

stores the indices of these sub lists for each bin. When step 6 

(OnBeforeIndexRebuilt()) is called, it merely recreates the sub 

grid lists. Step 10 (OnAfterIndexRebuilt()) does all of the 

actual work by going through all the unique integer lists and 

checking if their count exceeds MaxBinRecords. If this is the 

case then a clone of the current spatial index is made and it is 

passed a proxy to the integer list as its data source. This means 

that all the sub spatial indexes deal with a proxy to the original 

data source. This makes the implementation more efficient 

than making sub copies of the original data. 

The hierarchical grid spatial index also overrides the 

GetNearestRecord() method in order to first check whether a 

sub grid needs to be queried. If this is the case then the query is 

passed down to the sub grid, otherwise the default 

implementation is used from the abstract base class. 

A threshold parameter (MaxBinRecords) is used to decide 

when to sub divide a bin further with another Hierarchical 

Grid Spatial Index. Several schemes exist where the sub grids 

contain the same or varying amounts of sub divisions. 

It is necessary to introduce a SmallestBinDimension 

parameter for this spatial index. This is because we need to 

limit the depth to which the spatial index will partition the 

search space. This is particularly important for the case when 

there are more than MaxBinRecords located at the exact same 

position. No matter how many times we sub divide the search 

space, we will never manage to partition the records any 

further. It is therefore important to have this threshold so that 

if either of the X or Y dimensions of the bins are smaller, then 

the partitioning stops. 

V. RESULTS AND ANALYSIS 

In order to evaluate the search cost for the spatial index, an 

extent twice the size of the data extent is evaluated at a regular 

interval. The performance of the spatial index is evaluated for 

a varying number of grid divisions. This demonstrates what 

effect the regular grid has on spatial indexing (remember that 

this spatial index can be thought of as a bucket quad tree when 

the divisions are set to 2x2). The search cost in terms of 

number of records is evaluated at each point and the results are 

shown as an image. Two types of coloring schemes are used to 

look at the results. A relative color range is normalized to the 

minimum and maximum search costs for the image. This 

highlights areas of interest in the performance of the spatial 

index. An absolute range for the color is used so that the 

performance at different grid divisions can be compared. 

Examples of uniform and Gaussian data points are given in 

Fig. 7 and they show the corresponding search costs. 

 
Fig. 8 shows the results for varying grid divisions for the 

grid spatial index. It is worthwhile looking at these results 

even though there is no hierarchical aspect to the algorithm, 

since the results can be thought of as a type of an impulse 

response for a particular layer. 

When performing a nearest-point-search on a uniformly 

distributed set of data inside the data extents, our fixed grid 

spatial index should never exceed the maximum search cost 

given by (2): 
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where n is the total number of records, x is the number of X 

divisions and y is the number of Y divisions. The reasoning 

behind this equation is that we need to search through the 

current bin plus 8 of its neighbors. For a uniform distribution, 

the average search cost is described by (1). The empirical 

results obtained so far (as seen in Fig. 8) show that this 

relationship is true. Equation (2) puts an upper bound on the 

search cost for the non-hierarchical grid spatial index. It also 

predicts that the maximum search cost decreases 

exponentially as the number of grid divisions increases. This 

clearly explains the decreasing trend in the graph of Fig. 8. 

Fig. 9 shows the results for the hierarchical grid spatial 
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Fig. 7. Data points (top) and Search Costs (bottom).  

Left: 5000 Uniformly distributed points. Right: 5000 Gaussian points. 



 

 

 

index. The absolute value is scaled so that maximum color 

value corresponds to 1% of the total number of records. The 

MaxBinRecords threshold is set to 1 so that the grid is always 

sub-divided. We see that the performance of this spatial index 

is well under 1% so it is clear that it is effective at performing 

the spatial indexing tasks. The graph in Fig. 9 reaches the 

lower limit because of the SmallestBinDimension parameter.  

In both hierarchical and non-hierarchical cases, the 

performance of spatial indexes with more than 2 divisions per 

dimension, the maximum search cost is always lower. This 

validates our previous expectation that better performance can 

be achieved by “looking” at the data with higher resolution 

images. There is an interesting memory trade off because 

having more division’s means that the hierarchical tree will 

not be as deep as when there are only a few divisions per layer. 

 

VI. FURTHER WORK 

This paper has only analyzed the performance of this spatial 

indexing technique based on the number of records searched. 

Further work needs to be done to analyze the memory and 

time performance of the algorithm at varying grid divisions. 

Since this spatial indexing method has roots in image 

processing, the algorithm is to be moved over to a hardware 

implementation where the indexing of the data is rendered by 

a hardware accelerated graphics card. This makes use of the 

card as a General Purpose Graphics Processing Unit 

(GPGPU) [11][12]. The algorithm will make use of the GPU 

to render the data to images that represent the grid in the 

spatial index described in this paper. The recent advances in 

vertex and pixel shaders on the GPU will make it feasible to 

implement a part of this spatial index on the hardware 

[13][14].  

VII. CONCLUSIONS 

This paper describes the design and implementation of a 

hierarchical grid spatial index. It shows that treating the 

spatial indexing as an image processing operation makes for 

an elegant solution to the spatial indexing problem. The 

design of the classes has lead to an attractive solution where 

implementers of specific spatial indexes merely need to render 

the data onto a grid. The search costs for various grid divisions 

were analyzed and the results show that using more than 2 

divisions per dimension (more than a quad tree) provides 

better search performance. 
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Fig. 8. Uniform Data Points (5000). No Hierarchical Divisions. 
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Fig. 9. Uniform Data Points (5000). Hierarchical Division, 

MaxBinRecords = 1 


