

Abstract— This paper presents a hybrid approach to spatial

indexing of two dimensional (2D) data. It sheds new light on the

age old problem by thinking of the traditional algorithms as

working with images. Inspiration is drawn from an analogous

situation that is found in machine and human vision. Image

processing techniques are used to assist in the spatial indexing of

the data. A fixed grid approach is used and bins with too many

records are sub-divided hierarchically. Search queries are

pre-computed for bins that do not contain any data records. This

has the effect of dividing the search space up into non

rectangular regions which are based on the spatial properties of

the data. The bucketing quad tree can be considered as an image

with a resolution of 2x2 for each layer. The results show that this

method performs better than the quad tree if there are more

divisions per layer. This confirms our suspicions that the

algorithm works better if it gets to “look” at the data with higher

resolution images. An elegant class structure is developed where

the implementation of concrete spatial indexes for a particular

data type merely relies on rendering the data onto an image.

I. INTRODUCTION

HIS paper sheds new light on the way in which spatial

indexing is considered and performed. It begins by giving

a brief overview of two common spatial indexing techniques.

It then gives evidence to suggest that an analogous situation

exists in the human vision system and therefore opens the door

to using image processing techniques to deal with the spatial

indexing problem. The design and implementation of this

spatial index is discussed and the results are presented and

analyzed. A brief description of the further work explains

where this research is headed.

II. LITERATURE REVIEW

A. Spatial Indexing

With the advent of high performance computing, there are

an increasing amount of datasets that contain a significant

spatial component to them. Being able to perform spatial

queries on this data is only feasible if there is a way to manage

the large quantities of data. Database indexing is a technique

used to speed up searches for data by creating a searchable

catalogue of the data based on a unique key. Spatial indexing

Manuscript received March 1, 2006. This work was supported in part by

Storm Logistics, South Africa (www.profilerxp.com).

L. A. Machowski is with Storm Logistics and currently doing his PhD at

the School of Electrical and Information Engineering, University of the

Witwatersrand, Republic of South Africa (e-mail: lukem@profilerxp.com;

l.machowski@ee.wits.ac.za).

T. Marwala, is with the School of Electrical and Information Engineering,

University of the Witwatersrand, Republic of South Africa (e-mail:

t.marwala@ee.wits.ac.za).

uses the spatial coordinates of the data to create the searchable

catalogue. This has the effect of prioritizing searches through

the data, based on the spatial extent from the query point.

Since one of the most recent developments in database

technology is the addition of spatial data types, the spatial

indexing methods that databases rely on are becoming

increasingly more important [1].

The most typical spatial indexing scheme makes use of a

divide-and-conquer approach where the original domain

space is broken down into several regions. These regions are

in turn divided up as necessary to form a hierarchical tree that

can be traversed when searching for records. One of the most

common examples of this spatial indexing technique is the

quad tree (and region quad tree) for two dimensions and the

oct tree for three dimensions [1]-[3] which create a recursive

decomposition of space [2]. An alternative to the hierarchical

data structure is the fixed grid or cell method, which is popular

amongst cartographers. The advantage of this method is that it

is easy to do lookups and adding or deleting records from the

data structure is simple. The disadvantage of this method is

that it is only suited to uniformly distributed data which is not

typically the case when dealing with geographic information

such as road network data for an entire country. The difficulty

with hierarchical spatial indexes is in partitioning and

grouping the records [1]. This can be done either as a batch

process once all the records are available, or it can be done as

the records are being added. Removing records from certain

regions may get complicated and this limits the usefulness of

the structure to dynamic information. There is also an

overhead in memory and access time which must be taken into

account when using hierarchical spatial indexes. An excellent

review of the various spatial indexing techniques as well an

extensive description and analysis are found in [2].

B. Spatial Indexing Methods

In order to simplify the problem domain for this paper, we

only consider the spatial indexing of points in

two-dimensional space. This delimitation is acceptable since

most other geometric primitives can be expressed as points

and typical real world datasets are generated from geospatial

data which is approximately 2D. We also only deal with the

updating of the spatial indexes as a batch process in order to

illustrate the key concepts presented in this paper.

1) Fixed Grid Method

The fixed grid method is one of the simplest spatial

indexing methods to implement. It simply divides up the

extents of the data into regular sized grid bins. Each bin

maintains a list of all the data records that fall within the bin.

Using Images to create a Hierarchical Grid Spatial Index

Lukasz A. Machowski, and Tshilidzi Marwala, Member, IEEE

T

Searching for the nearest record involves finding the bin at the

query location and iterating through each record in the list to

find the nearest match. Resolving the bin indices is an O(1)

operation because all we have to do is divide the offset of the

query point from the corner of the spatial index extents, by the

width of each bin.

For a uniformly distributed set of points, we expect the

average search cost to be:

()yx

n
c

×
= (1)

Where n is the total number of records, x is the number of

divisions in the X dimension and y is the number of divisions

in the Y dimension. Unfortunately, this equation is only valid

near the centers of the bins because of the effect that occurs at

the edges as illustrated in Fig 1.

For points that are near the edge of a bin, one must consider

the points that are in the adjacent bins in order to ensure that

the search result is indeed the closest record to the query point.

The negative effect of this is compounded once we attempt to

index data that is highly non-uniform. If the data has regions

where there are gaps, there is a good chance that several of the

bins will be empty. Querying for the nearest record at these

locations will incorrectly return no results. It is therefore

necessary to apply some heuristic to search through adjacent

bins that are near the query point. This paper presents a neat

solution to this problem and is discussed later.

2) Quad Tree

As discussed in [2], there are a number of different spatial

indexing methods that can be classified as quad trees. The

overall idea is that the region of interest is divided up into

quadrants which are further sub-divided recursively until a set

number of records are present in each quadrant. This is a

hierarchical technique that can be thought of as processing at

multiple resolutions, because the spatial extents of the

quadrants are continually decreasing as the search depth in the

tree increases. This paper mainly deals bucketing methods

where the data records are added to buckets (or bins) that are

defined by the extents of the quad tree quadrants [1]. An

example quad tree is shown in Fig 2.

The problem with the quad tree is that one needs to travel

several layers deep before one reaches a high enough

resolution that is suitable for indexing through large amounts

of data. Also, it becomes slightly more complicated to perform

range searches because of the tree structure that needs to be

taken into account when looking at adjacent bins.

III. BACKGROUND

The inspiration for this spatial indexing technique comes

from two sources. The first is that humans are very adept at

visually searching through large sets of data while being able

to filter out irrelevant details. The second is that most of the

existing spatial indexing techniques can astonishingly be

thought of as using images to perform the spatial searches

visually. The techniques might not all use regular grid-like

images, but their effect can definitely be considered as an

image processing operation. A little more clarification is in

order.

A. Humans as excellent spatial indexers

The most widely accepted theory of spatial vision is that of

the multichannel model [4] developed by Enroth-Cugell and

Robson [5] and Campbell [6]. This theory proposes that the

visual system processes the retinal image simultaneously at

several different spatial scales [4]. This is consistent with the

type of data that needs to be processed in the real world, which

is often made up of different levels of detail. The

physiological evidence for this ability is in the size of a

neuron’s receptive field in each stage of early vision [4]. The

neurons that process the raw signals from the photoreceptor

cells have varying receptive field sizes and therefore we are

able to detect a wide range of detail. It is believed that these

various-scale outputs along with information from other

channels are combined by the higher vision processes into our

interpretation of a scene.

The impulse response of individual neurons falls-off as the

signal moves further away from the centre of the neurons

receptive field. This characteristic is highly desirable and

essential for performing spatial queries on sets of data.

B. Traditional Techniques as Image Operations

One of the most common 2D spatial indexing techniques is

the Quad-Tree as discussed earlier. If one considers that the

quad tree is a pyramid of images, then one realizes that each

layer is only represented by a 2x2 image. The same concept

can be applied to other common spatial indexing techniques

and one soon realizes that decisions on what search path to

follow are based on a very limited view of the data. Imagine if

all that we could see was 4 pixels at a time!

Fig. 1. Search required near the edge of a bin. Some bins are empty.

Fig. 2. An example of a bucketing quad tree for a small set of points.

The maximum number of records in a bucket is 1.

In this paper, we propose that one considers the problem of

spatial indexing as an image processing operation which gets

performed on multi-resolution representations of the

underlying data. The process of inserting data into the spatial

index is thought of as rendering the data onto an image, which

is the regular grid at each hierarchical level. This means that

we can use the wealth of knowledge and the abundance of

algorithms that are available for drawing geometric primitives

in order to insert the data into the spatial index. One can also

use the concept of alpha-blending as a way of creating a

histogram of regions that contain a large number of records. If

we render the data with an additive drawing mode, then

regions with a bright (high) color are known to contain large

amounts of data records.

Considering the spatial index as a set of images also helps

us when performing range and nearest point queries. This is

because we are able to use the vast amount of morphological

operators and other techniques that are available for image

processing [7]-[10]. One of the fundamental concepts of

morphological operators is the idea of neighborhoods and

connectivity. Given a 5x5 image shown in Fig. 3, we can

describe the 1-neighbourhood of a pixel as the set of pixels

that are touching the centre pixel. In our definition, we

consider the diagonal pixels as being connected as well. The

n-neighborhood is therefore, the set of pixels that are n pixels

away from the centre pixel. The morphological operators

make use of the neighboring pixels to decide on the value for

the centre pixel. In fact, many 2D image filters are defined as

kernels which are convolved with an image to perform

complex operations such as blurring, sharpening, opening and

closing [7][8].

Anderson and McCartney have shown that using images (or

diagrams) can be very effective for performing several

complex spatial database queries [10]. They use logical

operators on 2D diagrams to perform the search queries. This

paper extends their idea by using a hierarchical set of images

to perform the spatial indexing of the data.

IV. METHOD

The spatial index described in this paper is designed as a set

of Object-Oriented classes in C# for Microsoft .NET V2. The

design makes use of inheritance, polymorphism and interfaces

to achieve an elegant and extensible solution to the problem.

The use of generics is not necessary to implement the spatial

index.

The spatial index is implemented as a class hierarchy as

shown in Fig. 4.

The AbstractGridSpatialIndex is the base class for all grid

spatial indexes. This class contains all the common

functionality for indexing data in a grid. It also performs the

bulk of the indexing and spatial queries. This design allows us

to have a solid and consistent implementation for the grid

spatial index while allowing a variety of sub classes to

implement different indexing behaviors. The class is declared

as abstract so that sub classes are forced to implement the

abstract methods. In order for the spatial index to be useful for

indexing many types of data, it is necessary to make the

abstract class accept a very general data type. For this reason,

an interface is used instead of a concrete class and it is

described in the next section.

A. IGridSpatiaIndexable

This is the interface that needs to be implemented by data

collections in order for them to be indexed in a grid spatial

index. The reason for using an interface is so that the spatial

index does not limit the class structure that may be indexed. It

allows arbitrary class hierarchies to exist for the data

collections as long as the class implements the methods

required for performing spatial indexing. The interface

declaration also defines the minimal functionality required for

indexing data in a grid spatial index. This interface is shown in

Fig. 5.

Note that the interface includes properties. This is a feature

of the .NET framework and it allows interfaces to declare

field-like elements that are implemented with getter and setter

methods. If your language does not support this feature then

the interface would merely have the corresponding getter and

setter methods to replace the properties.

The spatial index has been designed to index only integer

values. This scheme provides a good trade-off between

Fig. 5. IGridSpatialIndexable is the minimal interface required for spatial

indexing in a grid. ISpatialQueriable2D is the minimal interface for data

that can be indexed.

Fig. 4. Class Hierarchy for the Spatial Index

2-Neighbourhood

1-Neighbourhood

Fig. 3. The 1-(light) and the 2-(dark) neighborhood of a pixel.

generality for multiple applications and it also allows complex

data access schemes to be spatially indexed. It is therefore the

role of the IGridSpatialIndexable object to supply the

mapping between an index and the actual record to be

indexed. Concrete spatial index classes must implement the

GetRecordToIndex() method of the interface. This method

gets passed the index of the record to process and a temporary

object of the type being indexed. The method must get the

information for that specific record and return it to the spatial

index. The temporary object that is passed to the method

allows one to perform arbitrary calculations on the data (such

as coordinate transformations) without having to create

hundreds of transient objects for this process. This object

reuse improves performance considerably, especially for

cases where the record itself has to be converted into a form

that can be indexed. The record to be indexed also has to

implement the ISpatialQueriable2D interface, which defines

the methods shown in Fig. 5.

It is necessary for the spatial index to get the extents of the

data being indexed (GetSpatialIndexExtents()). This is so that

the initial grid spatial index can be generated. A method that

returns the total number of records (GetRecordCount()) is

required for the spatial index to know how many records to

index. The interface also has a Boolean property (Changed)

which flags whether the data has changed. The spatial index

uses this flag to rebuild itself whenever a spatial query is about

to be run. With the IGridSpatialIndexable interface, we are

able to represent a collection of data that can be indexed

hierarchically or in only one layer of a grid index.

B. AbstractGridSpatialIndex

This class takes the IGridSpatialIndexable collection and

the number of divisions for the initial spatial grid as

parameters to its constructor. It contains two grids of integer

lists. The grid is implemented as a 2D array of integer lists.

The first grid holds in each bin, the record indices that fall

inside that bin. This grid is the result of rendering all the data

to an image and saving which records were rendered to the

pixels. Any bins that do not have data are set to null. Every

integer list that is unique for this grid is maintained in a

dictionary where the integer list is the key and the

corresponding grid coordinate is the value. This allows an

efficient lookup of the grid coordinates for a particular integer

list. The second grid holds a duplicate of the rendered list but

all the null bins are set to point to the integer list that contains

the nearest record to the centre of the bin. This is a method of

pre-computing approximate results to the problem discussed

above for empty bins in the fixed grid spatial index.

Rebuilding the spatial index is done when the data is flagged

as being changed and may be described as the following high

level process:

1. Get the spatial data-extents.

2. Get the number of records to index.

3. Clear the unique-list dictionary.

4. Create the bins for the lists.

5. Calculate the bin sizes.

6. Allow descendant classes to perform extra

processing before the index is rebuilt.

7. Render the records into the grid (nulls where there

is no data).

8. Create a shallow copy of the rendered lists.

9. Fill in the gaps by finding the integer lists with the

nearest record to the centre of the bin.

10. Allow descendant classes to perform extra

processing after the index is rebuilt.

11. Flag that the data has been processed and watch

for further changes.

The class also has several protected helper methods to

assist descendant classes to render their data correctly to the

bins. These are in the form of efficient point, line and area

rendering methods that add the indices of the records into the

integer lists in the grid. This design means that concrete

descendant classes only need to implement two methods for

the spatial index to work, namely RenderRecordsToLists()

and CreateRecordInstance() (which makes the temporary

record described previously). It is evident from these two

methods that we have successfully managed to abstract out all

the spatial indexing functionality from the data rendering

functionality. This means that the developer of concrete sub

classes only has to program how to render the data to a grid

(which is essentially the same as rendering the data to an

image or the screen).

C. Searching

The efficiency of a spatial index lies in its role as a pruning

device for searching that is done [2]. In order to solve the

empty-bin problem discussed earlier, we propose a solution

that pre-computes the bin with the nearest record to the centre

of each of the empty bins (step 9 above). This has the effect of

creating non-rectangular regions that all point to the same

integer list. This is a very desirable effect because the grid is

partitioned into arbitrary regions that depend entirely on the

data. Most other algorithms partition the search space into

strict rectangular segments which are not well suited to

real-world data. Fig. 6 shows an example of this partitioning.

With these pre-computed bins, performing a search for the

nearest record simply involves querying the bin at the query

point and all the bins in the 1-neighbourhood. This guarantees

that distant and adjacent records are searched and it solves the

problem encountered with the fixed grid method. It is

important to note that this is only valid if we are querying

Fig. 6. The partitioning of reused bins after gaps in the grid are filled.

inside the extents of the spatial index. If this is not the case,

then we have to query the entire edge (all the bins along the

side) of the spatial index for the nearest record.

The naïve approach to the described search method will

search every bin in the neighborhood or every bin along the

edge of the data extents. This, however, is not always

necessary. If the distance of the nearest point in a bin to the

query point is shorter than the distance to any of the bin edges,

then we have found the nearest record and we do not have to

search additional bins. This allows the algorithm to short

circuit after searching through the first bin.

D. Fixed Grid Spatial Index

By implementing the two abstract methods of the

AbstractGridSpatialIndex to render the data, we would have a

complete implementation for a fixed grid spatial index with no

hierarchical sub-divisions. This is suitable for hand-tuned

datasets or when a lightweight spatial index is required.

E. Hierarchical Grid Spatial Index

The hierarchical grid spatial index is implemented by

introducing a proxy collection (SubGridDataCollection) that

implements IGridSpatialIndexable, and by overriding steps 6

and 10 of the abstract class’ RebuildIndex() method. An

internal list of all the sub grids is maintained and another grid

stores the indices of these sub lists for each bin. When step 6

(OnBeforeIndexRebuilt()) is called, it merely recreates the sub

grid lists. Step 10 (OnAfterIndexRebuilt()) does all of the

actual work by going through all the unique integer lists and

checking if their count exceeds MaxBinRecords. If this is the

case then a clone of the current spatial index is made and it is

passed a proxy to the integer list as its data source. This means

that all the sub spatial indexes deal with a proxy to the original

data source. This makes the implementation more efficient

than making sub copies of the original data.

The hierarchical grid spatial index also overrides the

GetNearestRecord() method in order to first check whether a

sub grid needs to be queried. If this is the case then the query is

passed down to the sub grid, otherwise the default

implementation is used from the abstract base class.

A threshold parameter (MaxBinRecords) is used to decide

when to sub divide a bin further with another Hierarchical

Grid Spatial Index. Several schemes exist where the sub grids

contain the same or varying amounts of sub divisions.

It is necessary to introduce a SmallestBinDimension

parameter for this spatial index. This is because we need to

limit the depth to which the spatial index will partition the

search space. This is particularly important for the case when

there are more than MaxBinRecords located at the exact same

position. No matter how many times we sub divide the search

space, we will never manage to partition the records any

further. It is therefore important to have this threshold so that

if either of the X or Y dimensions of the bins are smaller, then

the partitioning stops.

V. RESULTS AND ANALYSIS

In order to evaluate the search cost for the spatial index, an

extent twice the size of the data extent is evaluated at a regular

interval. The performance of the spatial index is evaluated for

a varying number of grid divisions. This demonstrates what

effect the regular grid has on spatial indexing (remember that

this spatial index can be thought of as a bucket quad tree when

the divisions are set to 2x2). The search cost in terms of

number of records is evaluated at each point and the results are

shown as an image. Two types of coloring schemes are used to

look at the results. A relative color range is normalized to the

minimum and maximum search costs for the image. This

highlights areas of interest in the performance of the spatial

index. An absolute range for the color is used so that the

performance at different grid divisions can be compared.

Examples of uniform and Gaussian data points are given in

Fig. 7 and they show the corresponding search costs.

Fig. 8 shows the results for varying grid divisions for the

grid spatial index. It is worthwhile looking at these results

even though there is no hierarchical aspect to the algorithm,

since the results can be thought of as a type of an impulse

response for a particular layer.

When performing a nearest-point-search on a uniformly

distributed set of data inside the data extents, our fixed grid

spatial index should never exceed the maximum search cost

given by (2):

()yx

n
c

×
×= 9max (2)

where n is the total number of records, x is the number of X

divisions and y is the number of Y divisions. The reasoning

behind this equation is that we need to search through the

current bin plus 8 of its neighbors. For a uniform distribution,

the average search cost is described by (1). The empirical

results obtained so far (as seen in Fig. 8) show that this

relationship is true. Equation (2) puts an upper bound on the

search cost for the non-hierarchical grid spatial index. It also

predicts that the maximum search cost decreases

exponentially as the number of grid divisions increases. This

clearly explains the decreasing trend in the graph of Fig. 8.

Fig. 9 shows the results for the hierarchical grid spatial

Worst

Best

Fig. 7. Data points (top) and Search Costs (bottom).

Left: 5000 Uniformly distributed points. Right: 5000 Gaussian points.

index. The absolute value is scaled so that maximum color

value corresponds to 1% of the total number of records. The

MaxBinRecords threshold is set to 1 so that the grid is always

sub-divided. We see that the performance of this spatial index

is well under 1% so it is clear that it is effective at performing

the spatial indexing tasks. The graph in Fig. 9 reaches the

lower limit because of the SmallestBinDimension parameter.

In both hierarchical and non-hierarchical cases, the

performance of spatial indexes with more than 2 divisions per

dimension, the maximum search cost is always lower. This

validates our previous expectation that better performance can

be achieved by “looking” at the data with higher resolution

images. There is an interesting memory trade off because

having more division’s means that the hierarchical tree will

not be as deep as when there are only a few divisions per layer.

VI. FURTHER WORK

This paper has only analyzed the performance of this spatial

indexing technique based on the number of records searched.

Further work needs to be done to analyze the memory and

time performance of the algorithm at varying grid divisions.

Since this spatial indexing method has roots in image

processing, the algorithm is to be moved over to a hardware

implementation where the indexing of the data is rendered by

a hardware accelerated graphics card. This makes use of the

card as a General Purpose Graphics Processing Unit

(GPGPU) [11][12]. The algorithm will make use of the GPU

to render the data to images that represent the grid in the

spatial index described in this paper. The recent advances in

vertex and pixel shaders on the GPU will make it feasible to

implement a part of this spatial index on the hardware

[13][14].

VII. CONCLUSIONS

This paper describes the design and implementation of a

hierarchical grid spatial index. It shows that treating the

spatial indexing as an image processing operation makes for

an elegant solution to the spatial indexing problem. The

design of the classes has lead to an attractive solution where

implementers of specific spatial indexes merely need to render

the data onto a grid. The search costs for various grid divisions

were analyzed and the results show that using more than 2

divisions per dimension (more than a quad tree) provides

better search performance.

REFERENCES

[1] H. Samet, “Decoupling Partitioning and Grouping: Overcoming

Shortcomings of Spatial Indexing with Bucketing,” in ACM

Transactions on Database Systems, Vol. 29, No. 4, Dec. 2004.

[2] H. Samet, “The Design and Analysis of Spatial Data Structures,”

Addison-Wesley, Massachusetts, 1990.

[3] E. Shafter, and M. Garland, “A Multiresolution Representation for

Massive Meshes,” in IEEE Transactions on Visualization and

Computer Graphics, Vol. 11, No. 2, pp. 139-148; Mar./Apr. 2005.

[4] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.

Huebner, “Level of Detail for 3D Graphics,” Morgan Kaufmann

Publishers, Elsevier Science, pp. 247-248, USA, 2003.

[5] C. Enroth-Cugell, and J. Robson, “The Contrast Sensitivity of Retinal

Ganglion Cells of the Cat,” in Journal of Physiology, vol. 187, pp.

517-552, 1966.

[6] F. Campbell, and J. Robson, “Application of Fourier Analysis to the

Visibility of Gratings,” in Journal of Physiology, vol. 197, pp.

551-556, 1968.

[7] E. Davies, “Machine Vision: Theory, Algorithms, Practicalities,” 2nd

ed., Academic Press, 1997.

[8] B. Jähne, “Digital Image Processing: Concepts, Algorithms and

Scientific Applications,” 4th ed., Springer, Berlin, 1997.

[9] L. Machowski, and T. Marwala, “Representing and Classifying 2D

Shapes of Real-World Objects using Neural Networks,” in Proceedings

of the IEEE Conference on Systems, Man and Cybernetics, The Hague,

Netherlands, pp. 6366-6372, 2004.

[10] M. Anderson, and R. McCartney, “Diagram processing: Computing

with diagrams,” in Artificial Intelligence, No. 145, pp 181-226,

Elsevier, 2003.

[11] GPGPU, “General-Purpose Computation Using Graphics Hardware,”

2005. Website Last Accessed: 25/10/2005; http://www.gpgpu.org/

[12] M. Pharr, “GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation,”

Addison-Wesley, NVIDIA Corporation, 2005.

[13] N. Bandiy, C. Sunz, D. Agrawaly, and A. El Abbadiy, “Hardware

Acceleration in Commercial Databases: A Case Study of Spatial

Operations,” Technical Report, Computer Science Department,

University of California, Santa Barbara, 2004.

[14] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast

Computation of Database Operations using Graphics Processors,” in

Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pp215-226, Jun. 2004.

2 4 8 32 Grid Divisions:

Worst

Best

Relative

Absolute 75%

16

0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Grid Divisions

R
e
c
o

rd
s
 S

e
a
rc

h
e
d

Fig. 8. Uniform Data Points (5000). No Hierarchical Divisions.

2 4 8 32 Grid Divisions:

Worst

Best

Relative

Absolute 1%

16

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Grid Divisions

R
e
c
o

rd
 S

e
a
rc

h
e
s

Fig. 9. Uniform Data Points (5000). Hierarchical Division,

MaxBinRecords = 1

