
2006 IEEE International Conference on
Systems, Man, and Cybernetics
October 8-11, 2006, Taipei, Taiwan

Extraction of Error Detection Rules without Supervised Information
from Log Files Using Automatically Defined Groups

Yoshiaki KUROSAWA, Akira HARA, Takumi ICHIMURA, and Yuji KAWANO

Abstract- Our main aim is to extract multiple rules from log
files in the computer systems, to detect various levels of errors,
and to inform these errors or configuration mistakes to the
system administrators automatically, in order to manage them
without expert knowledge. To satisfy this aim, we performed
an extraction experiment from the log files of a system using
Automatically Defined Groups (ADG), which is based on
Genetic Programming. Moreover, we focused on "System State
Pattern" related to the difference between normal daily state
and abnormal state that some errors occur in the system.
In this experiment, then, we tried to extract rules without
any manually managed and supervised information, by using
simple translation technique: regular expressions. As a result,
50 agents in the best individual were divided into 16 groups
from 322 log files. This means that 16 rules were acquired. We
confirmed these rules could detect some errors such as DNS
configuration error. We could also find the importance of the
rules because the rule with more agents tended to have a higher
adopted frequency by evolutionary computation. Therefore, we
consider that our method using ADG is useful for the diagnosis
of computer systems, and helps administrators manage their
systems without expert knowledge about their systems.

I. INTRODUCTION

Recently, computer systems have increased in size, as the
price of computers and many kinds of network devices such
as router and switching hub has been more inexpensive,
and the computer systems have become widespread. With
this increase of them connecting with Local Area Network
(LAN), many services related to the LAN, name resolution
service with Domain Name System (DNS), authentication
service, http service, and so on, have been offered for the
system users. The administration of the systems including
the LAN, therefore, have become more complex and difficult
to get all kinds of expert knowledge of the systems and the
services, to monitor the state of them, and to detect some
errors which occur on them.

Several studies have been made to automatically analyze
system log files in order to decrease such administrators' duty
(cf. [1[2][3]). However, the main purpose of these studies
was to diagnose the problem of the systems, focusing of only
one service (http), file (/var/log/messages), or protocol (Sim-
ple Network Management Protocol: SNMP), based on some
expert knowledge that the researchers manually analyzed in
detail. Certainly, this purpose is useful, but the real purpose

Y. KUROSAWA, A. HARA, and T. ICHIMURA are with Fac-
ulty of Informnation Sciences, Hiroshima City University, 3-4-1, Ozuka-
higashi, Asaminami-ku, Hiroshima, Japan {kurosawa, ahara,
ichimura}@its.hiroshima-cu.ac.jp

Y. KAWANO is with ITProducts, Co. Ltd., Hiroshima City Industrial
Promotion Center, 1-21-35, Kusatsu-shinmachi, Nishi-ku, Hiroshima, Japan
kawanoAitproducts.jp

of the administrators is not to focus on only one service but to
manage all their systems including many personal computers
(PC), devices, and services on the PCs and devices. For
this purpose, we need an appropriate approach to deal with
various services and so on simultaneously.

Moreover, we confront with a lack of administrators as
many people also make use of several Operating Systems
(OS). In terrible case, an unfamiliar user is appointed as
an administrator; such administrator does not have adequate
expert knowledge to manage the systems. Even skilled
administrators who have adequate knowledge may not be
able to deal with new systems or services, which may output
different messages. They are just non-skilled administrators
for the new systems. It is difficult for the administrators
to analyze such log files and diagnose the systems from
the result of the analysis. Therefore, we should analyze
the file and diagnose the systems without expert knowledge
related to the messages. Based on this background, we would
like to develop a diagnostic system by adopting machine
learning method and extracting rules to detect errors for any
unfamiliar administrators to be able to manage the systems.

For this reason, we adopt an Automatically Defined
Groups (ADG) based on Genetic Programming (GP) as
machine leaning method [4] [5] [6]. This method is effective
for the findings of hidden structures from data: data mining.
For example, the method is adopted to extracting rules
from databases such as stock market price [4] and medical
database [5][6] . Therefore, we adopt the method because
we consider it is capable of handling various types of data
and must be effective for extracting error detection rules in
the purpose of this paper.

II. DESCRIPTIONS OF SYSTEM LOG AND ITS ANALYSIS

We do not simply deal with system log files because there
are various format types. In this section, we show some of
them, focusing on how different files exist.

A. Description of System Log Files

RFC3164 proposed a syslog protocol [7]. According to
this document, system log files describe messages generated
by certain events on various types of sender such as com-
puter, device, and service. No concrete detail is described as
this definition mentions. Thus, actual descriptions as well as
the definition of logs include many disaccord details in the
log files. Fig.1 shows four valid sample logs described in
the form of RFC 3164. Each priority part (PRI) is deleted in
these samples.

1-4244-0100-3/06/$20.00 (©2006 IEEE 5314

Example 1 Oct 11 22:14:15 mymachine su: 'su root' failed for lonvick on Idevlptsl8
Example 2 'Use the BFG!"
Example 3 Aug 24 05:34:00 CST 1987 mymachine myprocl10]: %% It's time to make the do-nL

%% Ingredients: Mix=OK, Jelly=OK # Devices: Mixer=OK, Jelly_lnjector=OK, Frier--
Transport: Conveyerl =OK, Conveyer2=OK # %%

Example 4 1990 Oct 22 10:52:01 TZ-6 scapegoat.dmz.example.org 10.1.2.3 sched[0]: That's A

Fig. 1. Sample Log Files in RFC3164

2005/11/13,17:41 :27,Service Control Manager,t*hli,7036,N/A,
ADSV,"WinHTTP Web Proxy Auto-Discovery Service

2005/11/13,17:41 :27,WinHttpAutoProxySvc,t'*, 1251 7,N/A,
ADSV,"The WinHTTP Web Proxy Auto-Discovery

Service suspended operation."
2005/11/13,17:41 :27,WinHttpAutoProxySvc,t*, 12503,N/A,

ADSV,"The WinHTTP Web Proxy Auto-Discovery
Service has been idle for 15 minutes, it will be shut down."

2005/11/13,1 7:24:57,Service Control Manager,j*, 7036,N/A,
ADSV,"WinHTTP Web Proxy Auto-Discovery Service

1j:,;14ff rP WXLA)9-i tto 11

Fig. 2. Sample Log on WIN

B. Classifications of Log Files
As mentioned above, no unified format exists. Further-

more, we focus on many types of system log files. The
variations occur by the difference in OSs such as Microsoft
Windows (WIN) and UNIX, and in many kinds of format
got even from the same service.

1) WIN vs. UNIX: We respectively show a different log
file output from WIN as shown in Fig. 2.
As obviously shown in both Fig. 1 from UNIX and

Fig. 2 from WIN, each format differs one from another.
Therefore, the system administrators must have appropriate
expert knowledge in order to manage both systems.

In addition, this sample on WIN includes Japanese letters,
and this mixed language information makes more difficult
for us to analyze them.

2) Existing Various Types of Format: In this section, we
explain existing various types of http log format.

First, we show two samples: Common Log Format (CLF)
and Combined Log Format; see Fig.3.
By comparing these samples, they are alike each other

except last two fields. Therefore, we can process these sam-
ples in the same way, except the different fields. However,
because the fields are newly added to the former sample, we
can not process them in exactly the same way. Such addition
to log format was seen in many log files for the reason that
the log file allows us to add new fields and adopt the valuable
number of fields.
The third category is an example of Extended Log File

Format proposed by W3C [8] . It obviously differs from
previous samples. It looks quite simple in this case but this
format is not simple in fact because some new description
fields may be freely added as mentioned above.
Log files have no unified format to describe some events

and various explanations. Of course, we may automatically
analyze even these types of format by making use of detailed
and appropriate knowledge related to the log files. However,
such ambiguous format must make administrators difficult
to maintain the systems in case of lack of appropriate
knowledge. In next section, we will discuss this difficulty
in detail.

< Common Log Format >
127.0.0.1 - frank 1 O/Oct/2000:13:55:36 -0700]

"GET /apache_pb.gif HTTP/1.0" 200 2326

< Combined Log Format >
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]

"GET /apache_pb.gif HTTP/1.0" 200 2326
"http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; ;Nav)"

< Extended Log File Format >
00:34:23 GET /foo/bar.html

Fig. 3. Sample of html log message

C. Problems as to Log Files when managing Systems

When an administrator checks his/her systems whether
they work well or not, he/she may confront three kinds of
problems at least in the following.

1) Lack ofKnowledge on System: His/her first difficulty is
the problem that he/she can not understand what describes in
the log files on his/her system. For example, the following
letter string "127.0.0.1" is an IP address, and means "lo-
calhost." However, this understanding depends on whether
he/she has knowledge about network.

Moreover, the following string "192.168.1.23" is also an
IP address. What does it mean? If administrators know UNIX
commands, they can test it; Execute "ifconfig" command
on the system, and see the IP address of the system. It
can also be easily tested using UNIX command such as
"nslookup" or "dig," "hostname," and so on. Therefore, we
can give some sort of tags <IP> which means IP address
and <HOSTNAME> which means name of the system.
On the other hand, let us consider the following digit

sequence "200" or "2326" shown in Fig.3. What is the
digit sequence? It can not be hypothesized and tested. To
understand such type of message, he/she must precisely read
a manual or man page.

2) Enormous Data Size: His/her second difficulty is an
enormous data size problem of the log files. He/she may
someday become to understand all the messages in the log.
However, they do not watch the log all day. Therefore, we
need the improvement of readability by translating messages
and the extract of rules by making use of machine learning
method; this is our main concern.

3) Temporary Lack ofknowledge by Change ofsome kind:
Even if he/she can read the log files in the systems with
computers' aids, he/she does not everlastingly read them
because the systems may be changed. This is his/her third
difficulty.

For example, systems are upgraded frequently. Conse-
quently, the log messages output from programs may be
changed. When he/she confronts the upgrade situation,
he/she temporarily turns into a lack of knowledge.

D. Log Format and Its Analysis

The system administrators are confronted with these prob-
lems mentioned above. Such problems should be avoided
because they lead to the increase of the administrators'
works. Thus, we should also perform a machine learning
method without expert knowledge. In next sub-section, we

5315

explain a way of preprocessing before performing a neces-
sary learning system. It is very simple procedure based on
regular expressions.

1) Regular expressions: Regular expression is a pattern
matching description method to search letters, words, or
phases. Using this method, we can express simple and
efficient patterns that we can found target letters and so on.

Let us compare with two samples (Example 1 and Exam-
ple 4) in Fig. 1 in terms of the description of date. Although
we can see no year description in the former example, we can
see a year description, "1990," in the latter. We can not match
these description by using only one expression because these
strings are different from each other. Therefore, we need to
use regular expressions in such case.

For example, a regular expression "'^[0-9]*\sOct\s[0-
9]{2}" can deal with both strings of these samples. The
expressions ' '[0-9] , '\s', '*', and '{2}' mean "begin-
ning of the string," "from 0 to 9," "white space," "matching
0 or more times," and "matching 2 times," respectively. In
addition, 'Oct' stands for October, which does not relate to
regular expressions. Therefore, we can match two strings in
terms of the date and give a tag, <DATE> tag, to them.

2) What tags do we give to data?: As we previously
mentioned, detailed knowledge disturbs the administrators
to manage their systems. Therefore, we should analyze the
logs using knowledge as few as possible. Thus, we give
some tags such as <DATE> and <TIME> to some fields
such as date and time because we can easily understand
certain fields mean date or time. Furthermore, we give some
tag names as to hostname such as <HOSTNAME> and
<REMOTEHOST> by using appropriate commands such
as "ifconfig," as we explained in previous section.

If we can not detect what description does a field mean,
we only give a <EXP> tag, which means a tag including
explanation of some sort. For instance, the description "%%
It's time to make the do-nuts...." is given a <EXP> tag.
That is, our procedure is simple because of the realization
of no knowledge.

III. EXTRACTING RULES FROM DATA USING
AUTOMATICALLY DEFINED GROUPS

A. Automatically Defined Groups
We aim to cluster the enormous data and to extract rules

from each clustered data in this paper. In order to accomplish
this aim, we adopt a multi-agent approach, in which the data
are divided among agents, and each agent generates a rule for
the assigned data; the former corresponds to the clustering of
data, and the latter corresponds to the rule extraction in each
cluster. As a result, all rules are extracted by multi-agent
cooperation. However, we do not know how many rules are
hidden in given data and how each agent is allotted data.
Moreover, as we prepare abundant agents, the number of
tree structural program increases in an individual. Therefore,
the search performance declines.

In order to solve these problems, we have proposed an
improved Genetic Programming (GP) method, Automatically
Defined Groups (ADG). The method optimizes both the

Fig. 4. Concept of automatically defined groups

grouping of agents and the program of each group in
the process of evolution. By grouping multiple agents, we
can prevent the increases of search space and perform an
efficient optimization. Moreover, we can easily analyze the
behavior of agents. The acquired group structure is utilized
for understanding how many roles are needed and which
agents have the same role. That is, the following three points
are automatically acquired by using ADG.

. How many groups are required to solve the problem?
* Which group does each agent belong to?
. What is the program of each group?

A team that consists of all agents is regarded as one GP
individual. One GP individual maintains multiple trees, each
of which functions as a specialized program for a distinct
group as shown in Fig. 4. We define a group as the set of
agents referring to the same tree for the determination of
their actions. All agents belonging to the same group use
the same program. In this paper, the tree is expressed as the
following; (include <EXP> error). This tree means
that messages enclosed in a tag <EXP> include a word
error'.
Generating an initial population, agents in each GP indi-

vidual are divided into groups at random. Crossover opera-
tions are restricted to corresponding tree pairs. For example,
a tree referred to by an agent 1 in a team breeds with a
tree referred to by an agent 1 in another team. However, we
consider the sets of agents that refer to the trees used for the
crossover. The group structure is optimized by dividing or
unifying the groups according to the relationship of the sets.
The concrete processes are as follows: We arbitrarily

choose an agent for two parental individuals. A tree referred
to by the agent in each individual is used for crossover. We
use 'T and T' as expressions of these trees, respectively. In
each parental individual, we decide a set A(T), the set of
agents that refer to the selected tree T. When we perform a
crossover operation on trees T and T', there are the following
three cases.

(a) If the relationship of the sets is A(l) = A(T'), the
structure of each individual is unchanged.

(b) If the relationship of the sets is A(T) D A(T'),
the division of groups takes place in the individual
with T', so that the only tree referred to by the
agents in A(T) n A(T') can be used for crossover.
The individual which maintains T' is unchanged.
Fig. 5 (type b) indicates an example of this type of
crossover.

5316

agent 1 agent
2 4 1,2,3,4

t crossovei
+ {2} C 1{1,2,3,4}

agent agtt

(type b)

agient 1,2 agent 1,3

t ctossover t 1,2} ¢ { 1,3},
0 {(1,2}j1 {1,3}

(type c)

Fig. 5. Examples of crossover

(c) If the relationship of the sets is A(T) 6 A(T')
and A(T) 9 A(T'), the unification of groups takes
place in both individuals so that the agents in
A(T) U A(T') can refer to an identical tree. We
show (type c) in Fig. 5 an example of this crossover.

We expect that the search works efficiently and the ade-
quate group structure is acquired by using this method.

B. Extracting Multiple Rules using ADG

ADG can be utilized as a rule extraction method for
classifying positive and negative cases in database. Respec-
tive trees in an individual of ADG represent the logical
expressions, and return true or false for each data. If one or
more trees return true for an input data, the data is regarded
as a positive case. In rule extraction using ADG, fitness f
is calculated by the following equation to maximize f by
evolution.

miss target data misrecognition
g Npositive (> NNegative

a ENNegative fault-agent 6 V
misrecognition x Nagent

In this equation, Nposittve and NNegative represent the
number of positive and negative cases in database respec-
tively. miss target data is the number of missing data in
the target positive data that should have been judged to
be true and misrecognition is the number of mistakes by
which negative data is regarded as a positive case. When rule
returns true for negative data, we count fault agent, the
number of agents who support the wrong rule in each data.
Thus, the third term represents the average rate of agents who

support the wrong rules when its misrecognition happens.
Moreover, Vw is the variance of every agent's load. This term
is introduced from the viewpoint of load balancing among
agents. The quantity of data which an agent takes charge of
is considered to be the agent's load. That is, each agent's
load corresponds to the number of data allotted to its group
divided by the number of agents in the group. In addition,
in order to inhibit the redundant division of groups, f is
multiplied by G-1 according to the increase of the number
of groups, G, in the individual. ay is a penalty coefficient on
the number of groups.
As obviously explained above, the original ADG method

needs the supervised information such as positive or negative
case to learn and extract rules from enormous data. However,
because administrators are not easy to give the information
to all the events that occurred on their systems around the
clock, we need another information to detect problems.

IV. PROBLEM DETECTION FROM LOG

In general, when machine leaning method such as ADG
is performed, some sort of supervised information is needed.
Therefore, we need to ask administrators' decision whether
each event is error (positive) or not, and what extent the
event is important.
We consider these manual decisions are not difficult in

themselves. However, it is difficult because the decisions
must repeatedly reach considerable number of times. In
addition, they depend on administrators' experiences and
their knowledge; an unfamiliar administrator may regard
even negligible cases as important, for example, paper-out
condition. Thus, we will propose an identification technique
without their judgments using system state pattern in next
section.

A. System State Pattern for Supervised Information

We focus on the following two different states in order
to classify messages from log files and to make use of the
appearance pattern of them as supervised information.

1) Abnormal State: Various configurations may be tried
to optimize the systems, and not a few configurations may
be mistaken. As a result, unimportant and non-fatal errors
will frequently occur. If such errors occur, various mes-
sages related to them are output to log files: "Configuration
changed," "Can not access XX," "Access denied," and so on.
We consider this is "abnormal state."

2) Normal State : After a while, the configuration of
the system is apt to be completed even though a few
errors may occur. The decrease of the number of error
description in the log files is to be expected. In this condition,
various messages not including errors are on the increase:
"Successfully booted," "Successfully access ... ," "File was
opened," and so on. This state is regard as "normal state."

3) System State Pattern: Moreover, even once the state
of the system is normal, we may encounter unfortunate
events such as hardware failure, misuse of users, unexpected
intrusion, and so on. These events result in temporary ab-
normal state. Therefore, compared the abnormal state and

5317

Log messages
Operation Start succesul booted.
-Abnormal state - Can not access

3 ~~~~~~~~Confguration changed.
o olr ex. configurabixnenor

0 D j ~~~~~Succelful@ booted.
Normal state Successfulyaccxxs
- t; 0T, ~~~~File was opened.

- Abnormal state - SucessXlby bootdd
Can n otaconss

ex. hardware failure, Accx denied due to..
risuse of users, NG fila asfound.
nrso

Fig. 6. System State Pattern

the normal state, we may find some differences. That is, we
can detect errors and capture the reasons why errors occur
by focusing on such system state pattern (SSP), which two
different states emerge repeatedly. The example of the SSP
is shown in Fig. 6.

This approach is based on the heuristics of an idea that
error messages, which include important incidents (device
failure etc.), will appear in the only abnormal log.
You may consider that we should focus on a keyword,

count the number of the keyword, and take the difference
of the word frequency into account in order to detect errors.
It is certain that we may detect some errors, by comparing
with such frequency of the keyword, for example, 'error'.

However, we can not necessarily use this approach in all
cases. For instance, all the cases in which the word 'error'
emerges does not include any disorders as the following
message such as "No errors were found."
By using ADG, we consider that we can detect correct

decisions because it is able to learn a rule connecting
multiple terms that the word 'error' should not be regarded
as error in case of co-occurrence with the word 'no'.

B. Expanding ADG for Error Log Detection

We adopt ADG as a learning method and the SSP ex-
plained in previous section. If we give GP terminals and
functions for rule expression and an appropriate fitness
function to ADG, we can automatically get well-tuned rules
for error log detection.

In order to detect the problematic log, we need logical
expressions made by the conjunction of multiple terms. The
following expression is an example.
(include <EXP> unexpected) A (include

<SORT> warning)
The second argument of each term such as <SORT>,

<EXP> represents the attached tag. If the message enclosed
in the tag includes the word specified by the third argument,
this expression returns true. In addition, the logical expres-
sion has to return false for any logs in normal state.
By the way, the candidates for the third argument become

much larger and their search performance become worse
because log files include various messages. In order to
improve the search performance, we prepare word lists for
respective tags beforehand. For example, a word list for
<EXP> tag consists of the words such as 'error', 'not',
'unexpected' and so on, which appear in the messages.
Moreover, we use numbers for the third argument instead
of words as follows.

Preprocessing
Logs

Extracting
Rules

Using Regular Expression
.., no natural language processing

Using ADG

Detecting
Errors Using Extracted Rules

Fig. 7. System Flow of Our System

(include <EXP> 3) A (include <SORT> 5)
When we evaluate the first term, we draw the third

word (ex. 'unexpected') from the <EXP> word list. If the
<EXP> tag changes to <SORT> tag by mutation, the third
argument "3" will point to the third word of the <SORT>
word list; it will point to 'information' from the word list
(ex. 'error', 'warning', and 'information'). The word lists are
different in size. Therefore, if the third argument k exceeds
the size n, we use the (k mod n)-th word of the list.
We calculate the fitness f by the following equation, which

slightly changes equation (1) .

f HitAbnormal /LinCAbnormal
HitNormnal/LineNormal

ZENNoxmaltfault agent
HitNormal x Nagent

6 VW (2)

In this equation, Line means the number of line in log files.
Thus, LinCAAbnOrmal and LiaeNo,mal means the number of
line in the abnormal state and normal state respectively. Hit
means that one or more trees in an individual return true for
a log message. When the rule returns true for data in the
normal state log file, fault-agent, that is, the number of
agents who support the wrong rule, was counted. By making
use of this equation, we can extract rules related to system
errors and detect the errors.

V. EXPERIMENT

We applied ADG to the actual log message data. Our
system flow is shown in Fig. 7
GP functions and terminals are shown in Table I. Our

322 target files, such as syslog files and html logs, were
collected on a server. These files consist of 48269 normal
state lines as LinCNormal, and 17804 abnormal state lines
as LineAbnormal. In order to describe these log files, 25 tags
were needed, and maximum word list size N was 774. The
word list with max size was for the <EXP> tag. That is,
the different 774 words appeared in the tag. The respective
weights in equation (2) were ,3 = 0.0001, 6 = 0.0001, and
-y 0.9999. The population size was 300. Each individual
consists of 50 agents as the default. These parameters were
decided based on our exploratory experiments.

Fig. 8 illustrates the change of the average number of
groups. The number of groups corresponds to the number of

5318

TABLE I

GP FUNCTIONS AND TERMINALS

symbol
and

include

<HOST>, <EXP>, ...

0,... N-1

#args functions
2 argO A argl
2 if argO (Tag) includes argl (Word)

return T else return F
0 Tag name
0 selected number in word list

Rule 1 (18 Agents): (include <EXP> /home/cactiuser/cacti-0.8.6f
/include/menuarrow.gif)

Rule 2 (6 Agents): (include <EXP> host.there.nejp/A/IN)
Rule 3 (4 Agents): (include <EXP> startup)

Rule 4 (3 Agents): (include <EXP> /etc/cron.hourly)
Rule 5 (3 Agents): (include <EXP> /homelwww/html/phpgroupware)

Rule 6 (2 Agents): (include <FUNC> smbd/service.c)
Rule 7 (2 Agents): (include <DATASIZE> -)

Fig. 9. Extracted Rules

Fig. 8. Change of the average of the number of groups

extracted rules. As a result, 50 agents in the best individual
were divided into 16 groups. The best individual detected
372 messages as problem logs from abnormal log files. On
the other hand, the best individual detected no messages in
normal log files successfully.

Fig. 9 shows a part of the acquired rules that correspond to
the tree structural programs in the best individual. These rules
are arranged according to the number of agents. For example,
the second rule means the strings "host.there.ne.jp/A/IN"
are included in <EXP> tag. We might not understand
the meaning of this description, but actual log messages
including this string show the significance of this rule; see the
first log message shown in Fig. 10, and you easily understand
an error occurs in the service related to DNS on the system.
We examined which rule's output is adopted for the 372

successful data. The counts of adoption of these 16 rules
are 152, 72, 13, 40, 3, 32, 10, 9, 4, 2, 16, 9, 3, 3, 3,
and 1 times, respectively. That is, the first log including the
host "host.there.nejp" in Fig.10 found 72 times in the only
abnormal logs. The rule with more agents tends to have a
higher adopted frequency.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed a new method using ADG for the purpose of
the extraction of multiple rules to detect errors on computer
systems, by focusing on the SSP of them without any
unsupervised information. In this method, the clustering
of data and rule extraction in each cluster are performed
simultaneously. We found 16 rules related to errors that
occurred on the system and showed the effectiveness of this
method by the application to log files. Grouping of agents
and assignment of data to each group were automatically
optimized by evolutionary computation.

<HOST>mysvr</HOST> <LOGNAME>messages</LOGNAME>
<DATE>2005/1 1/14</DATE> <TIME>12:58:16</T1ME>
<COMP>mysvr</COMP> <DAEMON>named</DAEMON>
<EXP>unexpected RCODE (SERVFAIL)

resolving 'host.there.nejp/AAIN': *.*.*.*#53</EXP>

<HOST>mysvr</HOST> <LOGNAME>error_log</LOGNAME>
<DATE>2005/1 1/13</DATE> <TIME>10:29:46</TlME>
<SORT>error</SORT> <REMOTEHOST>*.*.*.*</REMOTEHOST>
<EXP>client denied by server configuration:

/home/www/html/phpgroupware</EXP>

Fig. 10. Extracted Logs

However, we consider the optimization of this method is
not sufficient because the number of tags (25) is relatively
large and the number of terminals (774 words) is consider-
ably large. Thus, the optimization such as the decrease of
the number of tags and terminals is planned for future work.

In addition, we did not apply any natural language pro-
cessing, e.g., morphological analysis, to log files in this
paper. However, the files include various messages written
by natural language, especially Japanese, as shown in Fig. 1
and Fig. 2. Thus, we will adopt natural language processing
techniques (i.e. [10] [1 1]) as preprocessing, and apply to GP.

REFERENCES

[1] J. H. Andrews, "Theory and practice of log file analysis", Techilical
Report 524, Department of Computer Science, University of Western
Ontario, 1998.

[2] R. Cooley, B. Mobasher, and J. Srivastava, "Data preparation for min-
ing world wide web browsing patterns", Knowledge and Information
Systemns, Vol.1, No.1, 1999, pp 5-32.

[3] A. G. Buchner, M. Baumgarten, S. S. Anand, Maurice D. Mulvenna,
and J.G. Hughes, "Navigation pattern discovery from internet data", Itn
Proc. of the Web Usage Analysis anid User Profilinig Workshop, 1999,
pp 25-30.

[4] A. Hara and T. Nagao, "Construction and analysis of stock market
model using ADG; Automatically Defined Groups," Intternational
Journal of Cotnputatiottal Itntelligetlce anzd Applicationls (IJCIA), Vol.2,
No.4, 2002, pp.433-446.

[5] A. Hara, T. Ichimura, T. Takahama and Y. Isomichi, "Discovery of
Cluster Structure and The Clustering Rules from Medical Database
Using ADG; Automatically Defined Groups," Knowledge-Based In-
telligenit Systems for Healthcare, T.Ichimura and K.Yoshida (Eds.),
2004, pp 5 1-86.

[6] A. Hara, T. Ichimura and K. Yoshida, "Discovering Multiple Diagnos-
tic Rules from Coronary Heart Disease Database Using Automatically
Defined Groups," Ititertnational Journial of Manufacturing, Vol.16,
No.6, 2005, pp 645-661.

[7] C. Lonvick, The BSD Syslog Protocol, RFC3164, August 2001.
[8] P. M. Hallam-Baker and B. Behlendorf, W3C Working Draft WD-

logfile-960323, http://www.w3.org/TR/WD-logfile.html, 1996.
[9] The Apache Software Foundation, Log Files, Apache HTTP Server

Version 2.2 manual, http://httpd.apache.org/docs/2.2/logs.html, 2006.
[10] Y. Kurosawa, T. Ichimura, and T. Aizawa, "A description method of

syntactic rules on filmscripts," Jourtlal of Natural Laniguage Process-
itlg, Vol.12, No.6, 2005, pp.25-62 (in Japanese).

[11] K. Mera, Y. Kurosawa and T. Ichimura, "Emotion Oriented Interaction
system for Elderly People," In Knsowledge Based Itntelligent Systemns
Jbr Health Care, T. Ichimura and K. Yoshida Eds., Advanced Knowl-
edge International, 2004.

5319

